Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeToán lớp 6 Tập 1Tính chia hết trong tập hợp các số tự nhiênÔn tập chương 2Bài tập nâng cao
{"common":{"save":0,"post_id":"4559","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"6649","post_id":"4559","mon_id":"1158113","chapter_id":"1158138","question":"<p>T\u1ed5ng c\u1ee7a 4 s\u1ed1 t\u1ef1 nhi&ecirc;n li&ecirc;n ti\u1ebfp c&oacute;&nbsp;chia h\u1ebft cho 4 kh&ocirc;ng?<\/p><p><span class=\"svgedit\"><svg height=\"130\" width=\"130\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"132\" id=\"canvas_background\" width=\"132\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"108.22136\" id=\"svg_1\" stroke=\"null\" width=\"232.22162\" x=\"-45.55556\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfQAAAHwCAMAAABnmW2uAAACYVBMVEX\/\/\/\/\/4QD\/xABAeF7\/mQAl0P\/\/wgD\/3wD\/lwD\/\/f7\/5ADoZQD\/lQAn0P7\/zAD\/yAD\/vgAlzv3\/2wIaz\/8Lzv\/\/kgABzf\/\/0QD\/1gNBbEr\/nwD\/jwDmWgBEaUL\/\/fIRz\/\/\/\/vkd2f\/\/qAT\/owL\/tgAh2\/8+dFr\/ugAd3v8g1P8i4f9Ab1H\/3j5EZDzlVAAh0v\/\/+O1Gb0o+cVX\/9uX\/4UYg1v\/kTgD\/rhz\/rAD\/+\/X\/3Csq0e3\/20nnYQD34gv9xAH\/9Nz\/tzH\/8db\/7qP\/wEv\/sib\/sQD\/3CD\/643h3yVFgWRGdFIvz+YzxdX\/9cb\/65f\/+uj\/+uDjRgAYzun\/1o7\/6YL\/41Mr1fM4wsv\/rBMC0v9AnpT\/5F\/n4B7\/5ng2vMbx4RL\/0oH\/6m\/\/42lGelkiz+P\/877\/5LP\/znUvyOD\/99D\/8K4+qqb\/x2P\/3zXX3zH\/+Nj\/1Rj\/784\/sa5EjHb\/xFcI1\/8l2Pcrz93\/8bf\/75r\/2plCkoA\/pJ6b2XL\/yWz\/vD7\/2xL\/57z\/4qz\/36NBl4mk2mgo2v\/\/6cRh1K7N3Twi0PREh26v21y63FFF0c48u71V0rtq1KFJ0sE5s7jrdSfs4RgSz\/U80dH74s181pJIfl3\/7gAp2Pwy0dZ41pyH2ImQ2H7\/1S3517z3yqeRyoD\/7cjE3Uf97+I80d1Q0spZwcP1uY7zsYHxpXDukFH\/3FPthEH\/pRFDubX2wZv\/zxdu1arwmV\/oahr\/9gDugQD86dph1brreTfxwxLzqQPoYQ3GxkPXxS7mxB3mXhexwFt6xpKoyGZnvq6bvW3Npj5DJyUpAABRYElEQVR42uydW0scOxzAYxj+ZkpIhoVhhx1Ylt2CLz4ICl7wwXt9sgpaEA4FK1Rp8aCCD9aH2upDP0cffC6Ffr+TZKadvU8yO55GNz97ak+9dn\/zvyUZFz0rfB+d7qPHwRcvDgvx0dead1V\/DD077+pOuqX8JITerpVvff0Le40cFuKjzx4VL837kj9t\/Q0D\/GsXOazDR3fN0POk99PF0oLdF6n9CwcAvuyquoXMrBLiCQj1NkSKL8v5QZUDYAzsPXJYhujcPSk9sX74FZVDY46BdI4BLzVcqNuFj74Rqpwn2skRKoNrJsNcAfwYOeyiMe8J55n11sYK8kft4N4yqTwBIHIJ3ipkcqeZc5Xi57+NZN1H50uZcxXq066XswixLNNUyT2DkHDhRr3JnOSj1iuqmmeAG9Ytwkczm4R4XRBau5otLH32TRrmGQDMDevW4KMzj3g9EEI2i85uO0s4c56F+huX4C3BR2stQrx+1unhfSFN218y5xkA1Y\/IYQM+WpxXzvtqr501kCn1aTWo9QL4YteFug2Izr1GvQHIHZgVwxbu+qJPmP8Z1l2CtwDZufcN9Gx2u0MmvGMc8AAAs3PksIBN2cUNsU5qp\/phXl9S666DrX9HjjLxi22oDnWe7sDMan72dSZT+xCAvXUJvlTpRcR\/q1Hi5VrfPEG+xrrrP1UY7hwDXHxw1kukvp2cdDNhcdWjXh6E0OZ+\/gV1\/ooJ5TkAd8N6maxH\/J8PvvTuG52W0YDQ2sZMzgW1rdZdcwG27o5VlpfclzkwPv36XPxZu3PPlmXyU\/zXYZ93d06GuQaAq0ajf5q8nPe+7F6AAPNXx++1H6RkQ1VT++DTcz66XsoP82xYN1Ve3z+dcdL7Z3fAWHmPvq9raVcbqtoQ0vqMBvBWdXB6AETXRgPJw9nPVmsNOfrwAyB9UAPM2D87jdwH9KRJPQMIVTswfo+XvXTnXNv6Uh35eqV88XL\/kHqUhvsuv\/dhbwlD9rBiYHOv9zSOQhpBvcMT1MOnC67vPEnwB8jXKeQrNxst4lHiEW\/DSe\/Dx45ok9mWvfrnfFgcHXmm0gklrdPuupEM5yYAZrsayk+u5muUCDxP\/EKOXo4BupIoBJx9\/9QY5PxBPpaGEEK91Xq79g8XLABsCPDpvGZ97fRnzZPK069LTlyo97B4wfvtYHN+8e69tJTTueuTHJD2U0HbDAM2B6qvhylfu7kVnqXybI\/3yknvYafvg68SbzT9abffhirxCkG81pGy7qP6sqop5gC82hukvHG3Ia5HQWdh+Ykc3RyzQXvYgurF8V5XtH9rUnPp2QHp5I6lV7JlLASwd\/0HtJXP801VyLvrSvMBObrgeMgudgCM\/7u+134UcrWw8+QemAfUkMM5LggAv0Z+TyHfXw29JK33VpVTl9+72GHDdzRVdX+7kyX3YgU9U9Dan5NhXhjgF8jvcD57d9UkMq8PuNBu3X1RHfhJds\/RjuHL9Kf0KGSNjCSdxC2unBcH2EF7Wr8822ypECeDOon5S+Rop\/493wBIquz4XJ2WGUk6jV8yKOo8W43d+Z3XZ47mk\/mMDJsWb5CjY78j0lMAAIzPffzshSp4Cpd0SBLLiNan1RrCyt1VjWTt+mDpbmjrlP5Wx3lW3fFWLQyJ1G4qXn5QuIA54BKkM1FsTj6LrJNrPMnvdeTIpNenDZZIQHmfasUxTTUaOQ9FaseASwDwr6PNpHfTWwx8cKHexiU30gACzPiWF1Ji6JzQGuYAuBSAQywrue4XP3PS2zgw1wCARbg3ifBuEO003OIccFkAa1GDK+6nk97GEjMXoSYuDlteHBJPSzwRmWFKpvYSAUIM+kd312vGrhJYUDubaoUh0bIetzAv2TnfCnXzDCE1d5Ii44BB4V4KgDPRzFNK8po6SrfUrQxlApjXqL71Wyc9xUffC5bZrLrjqSYN6VDrYU0vtZv3ckQ7vx+uIEfCXs7KjG51J\/HgJRsSN9X7lQ6wZqgrnTTvkSPhoAqjp1kAxoIWDWn\/QY1mw3npsa59JJdSN7SlNJZLiUBV3UFUd7VU1+k8rEF2WqJ06S91qzohq7PIIfnwqiwfgFV1D7OlOvU7jY2Gc\/NerqVpnXi1b8gheV2ekGSpDovZXS3VqV9EDucA+NEAjkOi28odufwuabwpt9hK7WJ2F65T5y2z7RVzgL2MdRflVp10yW6kId18hRbEynxI1Lqr8ec3t16jmtLpDHIg9FHXiXl1b8WxF3AA\/MgADyjRtH7nQh35aJo9hhQAoYLxLW7kvLj1BeoRLem3yIHQY1kBKb7nIBx0UVoHr3egg9BWAzk+sseMRPgtOkiAADoQf5Ey2gUAfCrWy++tEzTu+OgHf6RAT0h8Ys6q1SiqVCYnJyfaEP9bqURRtco4Tt83ocjOuo51QrzPrqjvXZTvPMvdUvXkxIuMiW463jgp9eOCqV9vNZbQVde\/r1ehbOGBsh1VJlPdMqAz2oV3veXPu1ci5d4o5QN\/GRKdUD90i3LHUJr0JEEL35Vu2xNaZO+chH1FmE+KgxaaO+uEjPtJCn9viUNZGT0A4VsKyxROGJN9YOJemE+aP51pIRRO86VvLI63dHSNR1+aSct3lAjvTeMFzSco8VFa6PN6ua1YR\/rP2TEP9XcjO4cggEx4vmxz+8mnjpj8SsNDnen0coSO+6LcBYfRmrYAV2U0pnoehT91frKKh87zgKdCnTO5Y3570w6GkZI6j4QMw\/pdvM7LrxXxIYke2ALVkO6Nt\/RjBsWVs0jEeF6Al5\/qZaIXDOjldPp3ujbW1n8VPO8+FSTGJ\/KMl+99IvEeTEH\/YT2\/lyO1sT5J8T6CQoWcR7+n8In\/nd+rOBHvU94BWC3Mj\/RNNLb4BbK7Gs5EjBtW8fIrvPwe1CDXk+Dzd9Zp8xn8TApfoV4jE+r\/AhiOZ8AqqpBP\/HVkeZ+oMAig5z4nMra3N\/kC+duQK2InAjBaZIXqpBrOLHCefhdijIMAoPsYPBluPdxAT57Lm\/u7k69fv12ura0IZmdnd3dnZuqLi4sNf0hyRwdmP4mAR6pZt0O50p6082qKa5MehHnSvfmVJx\/pR14ch+rwaa3ZPDycn9\/cXF1dvd3Y2Li6Ojs7+3x6enS0v39zf393dyIvjofLyzV5aUxj0FfOKi9eWBLj7SjtFZZpB2ALOR08Id7T\/0GxN+0\/Z0e+TqCKULxQ9Xe1VlNyKC8LeWFs6p5GV3ndSuW\/tSdZ\/s\/RKZpb1Z\/+DxK8l3d4DEHpJ4LkdfqneIGDbil\/8cKWSj54eE+Le7qzPhxv00f+QJ7E9XDXol0XMlH\/\/Yao3zKSt8WQKx3UTFSdeDFhUSUfuFY3EaUjHPBWTFNC2o+QriFFoy\/1gdjz86nUUyaZQinD+c4DodzWvN6J0l7FSZKHl3l8\/7Hch7lOprv595011h9EpBsTNhnk75pG1pbyAcU9CoR2DaAAGGC6bkvuv6yZSydhkJPdk1pueV7vyfJJbccaAvteAjlXRLCMbGGlViC7exzyhrRJK5bejBfqJhk82v0bP6zp+mcLSA+bQ6VDIJU\/PefyW5bakxxfvnR7nrO\/7lHj7E6nMAzL7HYuxejP7bh87cnzeFuC3yDEWLqHMTyfYt6ntEcAUL70A2QJPvKMrdMmxzDI+ZMs5l3eHyXHQ\/UTsoaWRwzjPH45qKSLzP40i3lvaa\/gqZKlR+vIGn56xLSk98\/uAE88sz9ujofoGlmCb\/60eGGL9XUe8Mmn2r\/17+gmeZk5PqjsIEvw0aah9AHZPQCxAPdclCfaxYI8BCVG+gdkDaumNZ3yvmE+8eQbuG7kgnx5wR5Ee7aM6QjdGkqnvdkd4LmFeUKplR1+WbP0jtCGofSwJ7tDwJ\/+nNaf8io7wC9rFuQQujKTTgj0OK8+hzlt8PRWLcM6YHuk++jMTDptcehUjp9R0963jS9lXRb4d2QLhs9qTTy6xaHDOXuO1by7srORrQO3Z2cVoSND6UFnnEfPtJp3VfZoVOvA3iBb8NG+R0yc19rX3QN4rh1cbz8HwYjS3yFb8NGNkfRYZPcxSu1dKf55bLIJ7o122eJs3R2gOhZh\/ifYqwCjSN9G9nBCDaRTj8FYlfMO65UARpBu0SYb+moiPd5KpQPgiTFJ7e2L8bhwsAN\/j+zhITao6RQwpOV83Jwn1gsXdsAW7begy9ggu9d44nxqnMp5Z2GfgmLSYQ\/Zw0pMiPbTlye9OwTj6TyxHkAh54E197cIZqnOzEaS7B7I7A5QGbvU3pbiKwBFsjsgi5ghedKTTEBpGNYwVs7HNM6TWC9kHTBHFrFYGyKd\/A7xOKa1hSnZxgXw\/I5LmB6tgMC8eY+QRTSag6STxDqloRAecMaSS9bmu80fn+Rfj8FY+itrdlal9EOP9Dee+CYiwjFjXN2\/DQEfv1GtjNEN+L8WSfcbXcdhyZ+ZPIxpS6R0zjlWxgUBH+vU3pbieWAmnc0he\/D9TY90GSdSeKwinMu+Uxl3zjuts+Cp7qxK6X+Ow5JUOFUpnScpHbfvpDLnvKB14PbsrErrt0n9TlN6KIUDT2t4O+Ccd1sHg5HtwKKanh6HTWu4Es5xWsOd89KsA7y2SLovpcsiTtMajqHDuMvtpWR4gHVrpPvi5YyGXjaW4bSIuzgvNdYBru2Q7qvvon618DIZy7L4dnFecqwDxlbcvqiMn28v\/2LJtzVAuZvVypjXAdj534305IvvftieY8C4kA0qyJ3zx4t1gOhvbqf7Svj77TdLHJiK73wCcTTKOe9vXd7YqpPeL\/Z8\/Ugv3\/iHg+WlSrbQlg+Acz7MusbDCHypjvy\/o90\/\/zTNWRUHINGeNiad82HWJwHyH0N+epko\/1\/N7+28fnMBLEvp2s4rzvl\/7J3\/TxtlHMdLjz6tTb94XmE7Sa0dXu0Xm9qSRrca2Mz8srY4zabtqFgWQa3WYKQCboDTDZABAwYBAuGbyVzAX4yL\/LRgYIE5\/yqfuxaefrlr5e5pr1HfHdsCtL3P5\/V8vtz1ee4ppqJzadD+jpq6K99cf\/05SL1C3J\/75O1fz5wERuM\/I\/7fW61W7pVuwPhiHTv76MqN7242QSBlT\/XvXfv192dgj4lS+nH0H533euw5siV35dexn2XBx6krNy6\/rCijnvv82gfp0zJwzBhHF+L+83MmSkutFrw0hzb\/0mV2S4Dc4SL\/b242nUYBjzGlX\/zwjFGJargYAcO\/9h4TOAVdZCgNPa3MxhkNV85f\/aEJb2f3LazhRiC4i\/D\/jXtlW3hgPNyyGXHX6E69cf76WWwV\/inFNSXgJHFPe3XR5K4uoWrahw2pHMaooaOeBqWhI6UrvK6x8ZXvfobEsZB\/7y2leOCocT9izms994+2prSqbxgUHpFa7PA4pF6shQfGU\/nQUYWvazx\/+et3WeySuMOnfyAtyluULS1wkWIeJi2nbNDq5ubmjo75+fb2C0jt7e3z8x3wJ+h5h0\/lJBv\/\/JGXZ42as6WdtQUpYwsyBlmDnsgKzpBtaWkRgi6wVU5mU7yGxnNf3spkegn5\/eIJIIY0p0xpMGozYt2i7mjvvn9ncmRjfW177OHM1tTU4urqan9\/fxerSwWC3+yHWl1dXJzaevhwe219aOTO7e526DttRgUgMAvhQC+O3pu1B5qztLbNWrO4yBkjYAsUZwtnDGfN0gY05373hQ74wkdjwAAySvsR+hNBF9wqB1X4K+euprmLz+\/fA\/CPWYNstezs7Dx69Ghvd3JoY21sazOgokz12TKZTBYLxUqVkb5QqrQoVhaLyZT9fCqwObO2MQJ91g6D6DDSMKPPe61mNoRv3xla397a1FOmXGsoTsVsQcZQ0Jg8f1igQVtjcFjv7+5Bz0H\/teQ4lIOuYfEKCnJn56PWPnv+1tnT4kP9NSMoBbsFHdsOhLy7\/\/jJvYO7M1PhccrS1tbGGcR5RMAZelVp8Twn7bg0\/vHN2btLbA640JGNHkd4c3lbPc\/G89DS2GyYpExHFvEfWGnx+gAZ1AZlocbDUzNjB\/eePN7fhYNgJx37mjodwi4Inl0Z\/Ox1hWhdM5SCzrLe231872B7ZnaxvwuShg6BSo96UpVlGFbl8efedbxrcWZsaeT2PJeB09y4v0SVa+4l2u8MrY3NrnYtcG\/A2VReg9AQoCxQ7JsudPUvzo5tH9x7\/Ndf7MRTRF0405\/6VCFeRgCKE9+bGV+AQzPjEVZ6lrSqgtKnfcYOMYpiI3FhfPPhxu1mDhurIl1\/4c8zuNUXJpe2Agumw5gmM+9TIcv07Bd8kEc1wQLzZm\/vwviffzRoSu95d+60hBb+JQMoxvzRVFsbpecEWVeD9KzSDYQlMLM+eRv2SVl4eU+W1FlVu70b1uy7i1S6cGRergp0mAQ8vb0HOl0J5ppnryok6JpSGHoL2B03YXUJWSjxLlLBqIei+mfHltaHJu\/Dpj\/vZIn73yHr+7DlXLo7uzpuYaMb4cZjBTaRelXvn6Wg6xrPSoHeZBCmDnbGLTiQH3qF8jj8fiuUnZOVk99BZX5HdVzX5ZR8y8Klrv5VeLI083Bse3ttbW0Jfm2nTxwXV\/u7LnFVGxVt8VYUGuF3ODwqVpjw9z4pvik\/3Khb2rXYD4xAMNBn2yQxT1P0eBxWK9PX1xcJhBOJaHT6QU9PEj6gHkxHWxPhcGS8r49hrH7oOZHKbZFzlAEtJbDhAxrhtzLQinHWitY4NAJakWRteDAdb00kApEIZ4QEK5A1nl6dpngrd0varNmLgq0c2GmTwBs6ysEwTCTcGp1LxgZSwc6Q12vmkdcbsgUnBmLJuXhrf2Q0DV90xOj5JMEIlQOyXgn0t8bnBocHJpZ9Ia+ZT9CI5YnUcGwOjuPAip\/xO1QSjOjdbyhe0k8rJOnz75VAIND3RQa6HgK3Op0riZ7BgQki5KJp2uXy+Ww2gl82m8\/F\/VKICKZiyWh41Gm3IvDyiEwbMZqYTg7DEZuxoogRGSu8rk44hJPTCdYI+DLioP9ZFHrteYnT4596CQhBvycKOqly2J0r0VgwRNPQScSxZPOxfutMJVuhz2CwyMQdAvfbnfpobCLkPb4VNp8PGhFKDbJGwMErAvovxaDrNDcVEvX2CRzQkbOYQHRw2eymfYRo2VxmtzkYi4f7rI6KBzyb0plIIj7cKc0IAhrhnUi2Rqx+FYkFOmrjmqRC\/8qACzpJQuLTw8te6CvpgiEPIz66whT1GX7kViYQH5wI0TiMsLloLxy8K4yDJPFB13ypkKyfjEASdOQuZ3i4k3bZCFyywTQZjLXCHFl27KgyRQc6vS4fgU2wYAUHI06YsvBAh5dgUe8uWhcNWKD7++JBN03glo12dyYDjENVfnGj1mt2lcEGcyrBODBB171xGsPkSKAEYqGjKIfIkbvwymf2DrT2WVXllYcJzKXMtI0oi2jzQJxxSIGOzte+w7G09YxBKnSPMz7h9RFlk42mJ+ZG7aqyiVTZI8ll2kWUT7R3IGzHEumv44D+NpAI3eocNvuI8spHL0ed\/nLVdrszGYJBXl65vEmnh5Qa6bW\/YVmk+tUJJZACnYmHaKL88rmDUcajKoP8K9Mht40ov9zLEatk6JchMgxF\/SVJ0J2Dwpkdd6jEAmUo7fbWFF0hC+jOOCMOOirpZxVY5r+\/LwG6xxkzExUTzPG4K7vH2eN1EZWSzztnlwb9xvNPYcnv73wPgFjozABNVFA2d8yJM8WT\/kDKTFRS7h67JOjXFZj0k2jozLCZqKzcqYAfZ2rvpInKyj3HiIUOmb\/yOi7oHxlEQrf3mIlKiw6GrbjinInC1F5h2UKtftHQdegDNqn63PC0KOjWsJmovFyhCB7qpD3utREVlyvYJxK6RtN4XYFNvxuBGOgrQR8hg3zesB8L82mzjZBB5phdJHTdbxi3c\/rIIAI6yfTQhCxyBSMYoFsTkLkscgccpAjo8HwNZXcM+V0JwPEjvQ8GujyiB5ySmTsinbId\/rCTFBXpdT9gvIvY82eMx4ZOWufMhFxyJ+2kROjMgIuQS96EQ0yk1zZivY3o+yIi3bnsImSTW+qJmx\/WJtlExxhSDPTPsEL\/5AQA+dAfF4VOOsJuQj65Uow06Ci5yyBbMHCMiZGopP+IFfq7Zwqh7xSPdPugmZBR3riUUCflPvqooxj0J\/zQz70MmWPUR4UnbWCmKPXRZRsho3wTfVK6uBVsaQp\/fqf4Fzvoaq8q8EL\/9mRhUX80TglTdyS8hDxCwUKWXOcsIJIZxFXR8V+gIXsPeJc16a78qMCs30FhqO9aLIKO88\/RhKyih\/kbeG5R6+HdHwQO39PXScgqmzfiERqwvVO8ga7RnVPg1scGwLOyKdxGCUBnYjL17shvox4+p1H1psjW9tL6+trYJllvoqpyxBLmqJXkXbfu6P2lVsffxl3GDv0rI+ChDh7PLlh4k3xfykfIK\/ecnSxEbpoZaUZLldvXV008h+8fdhHyyjxoJ3mQWxai+w0agb3Kn8O\/2cdJ3vnvAOzetZh4qAeCNkJeuVJOMt9rpv5JrTbndmTNGzzUw7IfPJ1yFjI3WQ7+amioFdjM+JwCvz4UWvQA9rbaVAV+S9hshMwKjXryvbbZnrOJN8td212fT93R6iVklm+5EHrb1B5Qvtqg44euu4WPNZo\/oxRcygj2LZY8v3miIUKa8NdFvWWVjfKCm3N2W6j8k3SakFv5HYmeWtgHoAUYAHuDSA3PLNjTCvx690yRm1LsbeameNIRl99vdJIhc+v5fA1CnkV9yJQL3ZlyEXLLvOIhcwZs1y5oYV1tVJ6qg9R5VrDBio491D8uAh105FLXy9\/\/wqI+zOTESv0IYo7Efm8qN1E5JV6Cxf\/xqp7q2gMZXyuNL9TpIOa83v1mWaB\/cQIAIegGbQ2VXRlJa1J+6LaJlWyU1FSz0J3WL9RnQ\/fozYTscidyatNC9wmgPKIOamGw50J\/owkxL+P1dyTwNIyWeYqqNuhEwJPdxU1CvPzUtTNZeYp0JNyE7MppSMj6+9m3BQdG46t1eZHOu4INf\/+OBLjNFYdMVXQdk1NnfxZ0alUtCL2muz57wMarDLre9FCr1mZ5HygNcOemWiQdukUkZn1xUgA6vKc7684pSo+gx6oAuqvVk1XR14U3mMip6qS9pwrSu3kaQacsF9hNvF5UZlE3Kp9tyDpfe6Vsu7AKnLQBpVbNRtHt+mqDHs+K9HquZRMK9UlT1XysmoH+AEE3bUAHq7XZjTQkYXizTle2D9hQK\/ehgR\/6CS6G1NpNi76qoHunHSS6LlN0J5nuAIWgV8OxZ0O\/1M25l2vlEHVgeJrt5zTcrh5NCDpe5i\/f4IUOgLomDX2yvnqh148Ug66umaH0R9CHq+DYEXQ9NQOPD\/7J29eHO2VvgNTho2zZ\/eYrOvhGvG1cxnFqk0pfpdBVpo6aotDXTVUGffoIev1QeryiVi6rn2vQQei6y+WB\/vL5Wk3DC0Y+6Ccz7lRrZy36aureEXS9ZQox5+\/fF6oMevQIevpCIvwqbKQB7Odgim88ix86fMGbb7CbRTQalUAgu3PQN0xVBd2FoJvWS0CvCVDVVdP\/Zu66epsIgjBn7M1h2SbmDoJBpioGO6CQAKJEQvSSOBRRDKJD6L2J0BGihw4CBKI+gMQTEhJP\/DjOxrvfnffOe3vYXs8rAtb73czOfvPNLAU9bgwVl1cZ33Flt\/K55ZPqgfmJqeESzU9cQE9EKejad7OZyBkre8+y6P5Y9BLeHzPeRPWW4TP7Kejm02gZ9ChyKkeID1+pNeIW5N+2FSG3bLRLfG+1vZL9kHnL3HNNsHEdW9mV7cApEeiPxzDQjzfBlW3mkbll0Me8i9JIOqrV9Vn1sessnGqctB8ep1v2j\/jhQCckisC5psdoooLL8D5GzhgvFwlA11oAelMwcj0M9McUdC1K3K9PiR01Vs18WzEupjMSgAvvrQk4uvb6rUE9vQlKq8MH8p00j3uhtYhcnVaMkpP7mwH0QicF\/RRde\/HhZY+3dE4ereVpvteq3oLbHz0Nrs5H95ZFzyno2SYQUWR6hxg1cx2rFBZdsj1NEN6piMICnV02+fgOfm7s6pqhfnZJuAg5QJ+aIJXRvcUWI1\/QO1tnv3rQu8\/fo6C\/WSP0dA3U0r0u5VKvTF+OST9sG4z4zp\/sM2bVxM0nbZpSyuBgsViCy93toH9moB9Rvm82EYWR18SgnzLReqlcRNE9wEAfsocj+ByP+qpjyOcCYz57eTGDcyqxxiO+g5mBsYt6ZHBAOeqWXMpWmtREtjNvMLmU8oSkozfHaCWsHfyMa4hv2\/ffnn57KnNzgD56SoIQ+y2xxMzg3jMx3jQS6OGprXPpsfikGug4m5rnom6NVaDX9Bd20FuQSbtl8V9Pw9cDJHCLLwByO+pO\/p0kbJgXq6uMzLz4SDnoXUxmNgafZhW7bsbp1UO5BDq1fToF\/YvjAHWN7\/DBtssI8dKYX5kHzJ2gM34G8gksaecBCvoH5R0umYF79FhMVnd0yie+SdKERHkWyjpcnCqv4rP6oeqob1kA1OUyuBNTYzqPOc\/PtLY4QdcGMTZQGeiIkDS6v\/AF+p6PzdOek2Y9WeZ3B+gtAN0rnzsarLoyRefd3MnPQDNTITtiDAcaGBXZzGd038bQfROg\/mBiefFN0MvWT48mw0EgQz\/jDXvbrknytOsJK2mvMkR+Gv7b1jaA7ixbJNuVV1zStNvXGFpTDWws\/u6YeBMMnClZOp+lt801zkW2wdU90\/g5Vj43QsbN7y9BZHez2HzkEtNGVYL+me5bu2ryHd1gxvNFdJWC+E4Xn1VOLXUNMbX+Hg1G9ZEi1FctkwrtN8aFRS95skOdtNJiC1+rUp4BY4KH+UVr8efqBaqZuqf4UM8MFCjoD+jiadEF+ncYX2\/9KePmgNzLwM+QkXB09Io0Secnm9WTfCM60vk4pVoD0t17kXIz7yr9ytp9oZHWxMK1Pi9ve0G7ettoFt9JGwe6RrsGOnsURUh+KtfHRf5AxyebnKy2yQUT0eJWmIJBFOttqLJv9iWDW4IiahWL6eVH1QkZpVWCHmXzPD4oGtsC4j1Z9pU\/WKUIddaalVNbc0mx1Zt3KzxdG0X8oU7a5sDXPasrU2OxsNjAv5OQS4TMT6QRslfpRT31zD8Hi9W\/M+NNoZNLXaNiqTcPuU9WcGkDiRJq8y7BlP5g6U1c1ASgW\/E9RFBhc27bA1pyyV1VetcdYOOZTM2\/pz8xWROj0pp66hW9ph\/YWbl6VNrE3j5236QqmN+eB62EGPZQiHBHOhXE0lxIra+krrJD8QdWKbQ1BwzlI6yL1lWWdMYjH\/lP1s+hjir7aU8+xiqixsK+LfbvqkhG8aBbDW20VPVLTS4EMSmN7tg1X5W2ZiCXusvqvrjxg60eN3WALkadjF3nj3YV5+8jCQTvTnttRpogAe7uY8yMocHEoN81m0H6k3mfpwnJJ6dj8fJ38ZV9ywQe8\/WgXX1abFwJ9BCoGdgeKojt\/KDwVEwfZ0WqB9EWCdBfb2Sz5JSUCTHYlkphedBBv\/sM8QsvVeZz97cJL2o8\/05CxJnHQRv5ciK99fQpu\/VkuvKd6HKQAT36g7p6u0L+vftOOwUd4j6HZkoO9TbnlX32CUAuF99RS\/e49eQeKdg1XHPp\/ImdmoTZm+zvKfhoIfTiuuoFNXUBP3dyA5x9wc2wFObQRxIqfuZPRfWio9TurG\/BO88uxZUPrE+Vh9XHjTj2mKupSzn7GVsJxmJkwvI2fkoR9Kjrfj6ZyEa3qNg0HInQncigHn3BqgcFZaB35bPISFw+TAnQwc\/toL4+wqqqyaKuFxM5OnTE7arLJqyqKrmkzjHt8yAXHsX8O+tevaooVGXe36sySgGDSORgT6w6yiL8TV3XJTEPh5DH8bv2kvIbBUX8RmYA3SFQFfq1RS8N6upHFBHweKILeVzwTA5VdpRgZs0L67K5+0gCTaQLv0HFMwpER3iYGDJYGcNoNHWvdEHoZRhQUHCZXBBn30Jn09yaIuXqernegjyO27S4mnZlTPdnJ\/pbrNG3naLnkzIhyMxCNvkvDXVttkVLm\/zJvuog62rwj7quj16ZIBhAAYMM+o1a0VH6FZvLhIZPGVf\/bYUqhUUjtDRFoHkXcHISzr6\/nMwdDgN1cYnNo66KJfXQQ\/GDioaHbjy0OvGpQBznNT4yzqhkBQk8Gh0iE59o7iadyWH822ZKvlu9qX4xtxJ3AqmUa\/D5TTdNyYip1Dn2kLZ5XdrRMQ9PXVdbqn9u0mt+BiRTgcxydLQqbhOijq5VUv7rnqB\/p6BP7m+8o2R6Mfp5EGycFOhg5bI9jU\/gEaqM5xosePoOI6EZtpFE96f4IuZiOglx+jjeTEPd4PSZW9sj3EQp2QAPV1dAK3ZsZyOGuHG2EL8Hw3zhCHup7YoPCl7XY2hUJmO9PeWHqYDJ5B+8mbgoKOiPTYUPEHUwDtl86PUDxpJAmI897SywXtB1XSiOW4mRBBBFunWKKBnkgfIaStHBbE9xdg4ttjX6J7DHF40hjk6EODJQ5n6sUjEnTubGz0dvOm5sbkzmkEH1J41iMpHFJdm8bG7L5LUUljU0l0OFDbPEBHc2CczX8XMn5lV3dX30VJrEYRqBZycg1Rc2kN5ApQUMbFDQtY9GnP6EQrqhAb7rIuOQoYnk1hci8izsLubnQP0Qkjn3KksRaoynhB95knKWFR41JJXDZYeCbuSRugdI4J9YJ5SKWYJ4IjZu9OCr5UAfKQ16YoarVm6TdzKnU8adGzDkTsoxJnNyI6nYmdco6Y7OEDlDISuPAN\/eyBe70oWsffhzre5sJPTVY\/jUhbDuzbi3AnNP0MHP0C1rZCtgqjeHJ60gHQ7m6muQwGfzDRmaBDYODda1Ap2Eziwe5m6Tlngd62XGnXvNQfzmVXvDZm52D+RtM\/2\/Y33BjvVPcPXGyUEyXkMuRQ1twkEFB+mBzgX4s9t03UsUhwMd4wi8F4W3+XLvGxQcU68mI7j\/gMIjoK0p6WJp40adv1w4OqilJzUDnZDQZWDOGZI5J+PODXontJouevMq2SgpQvpaab9YHToo5shGbS\/01VnkCUf\/wM6nl1o10McSqcvarqptjJtQcOOqLDB0t3izco175IF\/e9qEyig46NGXLFrFO3vqqwJCX474fJLvckn8FDSvLucHBsZc3m4hGCslYDIbI5vq6KXX25L2IAjMfOMD3thOzu2va7zCxED6E\/JRrRroLRKgj0Ti7mHrrVkUFZc1jH6GEZEOCVK5SANGaXf3DWZtjg5WI5CBTo4wm7y17j+iY6AH1BJodw9KTsLR1wtHUix1auZ053MOQhYWXQPIfqefq\/OGZfqO0Lgo05Aubmc0cazX\/V3GTB+jlnjpszwPi8Tdz1y5Qw6ORi8y7i7\/FNIMT9UREqFcfd8\/yqT7kcRhVGANAnzeAOr17mNNv2q3PaIs4okJ8duiftnXuKG99okU48eBcYeRkBh0DUdiZ6Ee2S8w3z09iQP9rWxFVXwJodOH6hmwZm630YmfNNj\/kO+ktW1X9YlyKLOOi9n7Goj786o++GuQWoX6jVDPdG0F5hFjI6Ti\/w06PdZphD9eB9SRxIFOHIyKXCoa8jlu6CfOc8HMyHKZ1f1RLijkhGM3TWS\/hb46cTQdff3TEdsjyIBqg\/o704E6cvhaYw6Vl1DEC5WcWCoj8YoHlcIjcfcPOux1jwEq80h9mLnUgP08j6APqFa44z390hzM+qCevoobJx79Dgw6GPfTEoMjD5V0NNY7m5BNcK94+Oz7ZagPvq\/DuZ56P1hKebFfNXJ0nJ55B+r96Tp8u+nzuU5cOMHF\/V\/FhZBRl6SmAu+1jnUdYwLlQMfSrtuOxOy9mmdzGavrK+vAXEy5yzNzQ3bUJxd6a\/8rtuciSRzor4F5INBxWTsmOQt6uYU5RrvLgo6bruXrQP1OKlPT47zrWq4TOVxyzLsa+jn29zWqRyUlTY1\/RXfXuVwkzjA3caAHBR2M+wjJV3tWjA5z7Cv3BJ\/YbEdisqgy7Kjlcf6XvXP7TSKIwnhJhCqpVNztKjW4oi5ysamtaTSSEDXGS4Go0QgGsT60KtpYL5iqQRIfpAErpdDYhgZrfTH1yWji3+fZhXoYQHeG2Wg1\/R4K3ULKN789Z87Mzg615c44QMe8aCj1RICgriwY6iJEFiUFuhxq26HboX\/pYtbp\/fBGPugag6XG5OgJjzuMSooDr2egO0dJFWRupKDD6K5leHQxapgLZzrqwmSlFaKGQLf0Ptjbxa6PbTMIXk6n7RLDYoMpry8e8hvSD44WteIHQwRrOOOpk6eufcQ3iS74klXR520wIeowp77dAbZ8v8yOfNsNYM4DHbfOn2tMjlD\/pp3D3I019DLgakztgpThYK5vIjgPxQlKc+HndxEPK8SJm8VkxQMdmNtOd7HrvM3CCR0bbIloMK9SDA24uQq4gVRSGSSZv9Vhzkt9vSTFnj22zOdieGA2orlAE1k0wQUdijhcKkNfx71QmXNCxwyfk+A0Rrl8xXFHp9Hu9jtSSZ\/X3khAfHZBLy3yz81lRIHADi5GOVwMzUa0zI7MF\/Noggs6MD\/fxa7TeJWFAzqGSYVoMLvZU32SCjncnfTlofSYz2UmJJapr7FwrYUPiAR1u1JdmB3qxMUwuIjNuKAhkLn4bArblBO67cY2duZHzyFzHuhI\/a0oEw1mdk1HXocG\/Kx5PRRPKiNmOxEhtGU7\/9BtCeaaCBcj07H0EGOJ4nYMLL+M1FygpHICTHBBR+Yfu9i19zDOyvAN2ZB6MCCZSXk902MQKH43dXg4U2NVj5nUdlkscDBnM2FdkYQm7F6lOrnspA53t98ZSkd8yqCdMCEQYw+uIZvaLX\/toIr7gnHOCx27RFNFFrZvJ1vM44sWX4+GHP5h9+95+x3+8fSTqO9nRsQJrLkgTwnHZgJS\/IRoJ02oLsKTs+PwEXVNOEKz8diMZ90FjtQm8miCEzqg29J37ChrHXeTKOJ4pmHJcu7TEtRzzYHiUqKRhfjs+JDT0a7V3MMOh3NoOT05FlYUbxNyCHN5lSnM+YM9MY9rQzDLKzPPxuIpzUTr+esG3E4wkXq5kKwqLnMTcshVK++oSji6L1LvVZexn9nGBv3+LmBuJHRM8R8kiQx2rQEGR1zTgeTCy\/RoyOkcqMlZfwiNpibHkgFlxIsJESNECiQYmfPP01izIg7eUHUT8dTykBMtaI+O0GhaNTGtjAwicTQRzqMJXuhA5myfur\/jXaZQf94NzI2Fjg0WzIkyRntjjhx0eTw+30w1kIzFvqkqxiKB6Awc80BT2VuJQ1K8ok7IsDPnHbt15yShvQmvy+MDE9FwLFbUTMRiyWjVBx48rvYmBPFKFk1wQwcwB\/eoF8W3br3DQP3hI70OHRdRdIL907wsYosRbWZXA8brQkF41463CpAvqknxTzJHE4UyDEZ+ZQI8jDR68MJhNNGEfGI1yG4CF1G0cjnUA8xV6vsf01P\/iMwNhY7T2PmSJKmB2l52Qni8OSeKJfrax3jsQahPRE4PULK\/yVzAzM4PHdBZtvSsL3U7dYR2edwXvSIOF0Z2PvBJrMgSVvL0wtYSc1Cz\/wXmaMKUX5MwZTHLbhalQKEeBp1Ab79c1VZnDurpf0oZ6jd37aBhjkug2dWt5kdTZm5RFIAfM3CzIMtLqzACNDizs2cs64XvEyIMQ1lNwBsEWZz4nrfqJHbqJdDIvH9P455\/dMXci93Ua+h54kzDns+UZUlWm4CFuCg+q2CA\/B2hiUQ2B1kHudMRhxgvZRN6mYr9ZgeL7bhaxOFu3f13KJjf20V\/s0w3B\/Q6s1tT2TlJkgQK8NpLRKgFSvl3GwI5qNYAFwrzjB6EXCFRz3g6YrutydJ7sK\/pjrRjp3X780vYn+uKE\/q6Z6tpqhK+sghZUhvAbgfVfpjrP0DwBwHy4WLgcyZotW4Y5KBukObhw9oVETwIKln8+DU39QM\/PdyyWpE4B\/Q2hXvfVgI69O+nLulQP3Kil5I53qrM32ZWK5TCq6X5929kESQLqswgQZV2TJhYyq1kpuCl8JaNg5zgrnoo63ioZOseaJGz3KoMv\/f8LOIww5\/RifRrdIGOmxIY12igRL7wNlPJldcCdijVoOVk4U14rVyqZAqfpt5ZtdduLN514QcLqh5WV3JzawHVQt3D3HzpQ\/YteDAZ5wE3JUDmvf2Y3HFj1y1Xu7bxzLjrbT\/CD14L+2DwVl3wFI7UX7NhiRPctR6rwUMQPXBEuP72I8D8AMZ5Y6jvv\/ObDv1iLwNzvKBuJHhNrYc3PPA\/7gE3GkLmx\/t+sYnzdZyZa2Z+m6Jwp9xSjF\/\/BGIOD4ZCx6ss7an3nNrX1V4nqWbcySsupk0ZJr7rLZbeHThAb+3Wn\/6icP8IhTsjdNOmuMQPHZlbenCw1hrq\/e2LucM2Wub4j\/6PLPxPitwQGJ719yDz9sVc6\/7PN9mKONz6m0uvNk+azudmAADOuB\/ADr19hj92soX6RbYiDudh+Urdkzs3qfPPwlrUGXfdL9k61Rzn922MzPHrPHi08\/LJnaZN6Un36zx+sHcFrU0EUXiyhDc7cdksC5Kl6SG0h1yKCJZqQw9tAm5OLSkmUAgFK+TQ0BAPHsRDm+qhf8CD4EkvXkQEL3rpX3PWTfKaZrM7s1PXWuYDPbZLv31vvnnve2\/tp2XM7TFibibUh56ccMcP96jB3SVNzXpKeHDVKoOcC4o5VpPlHEtyqqSTrmY9DXDUAQwwLaGPIq9cIOVsDTmXAtiqpAeScp3qO4DCjQ0M27IEv515gFb4F3baDzgWVUnfI4ywNc16WoccdllEYHExN2a9LS\/c0TClBrdJWMC65jwFJt+7fYKcJ8f6KWGTQEfWM76zHZFKEOs1zXrKGxv3uN+X+PS9tfSOhOj5RkrWHcWOOt0iIXSsy3fTnVC4l4UpD63w5xOPFHon5OB4iqT74ydgXX2uy3bTnUnFXQjomXs4EfBNDwCyl+\/UJWOwQ1ezLiveOWPocReO9bNpSW5Ykwt2nHegKgeTR6ZouLp9IwwaTjoUscsicayfYo2mW0oR7E4hp0S6y\/ABeiOd4iWGvh0D7JVyXh7m6rNprJPGyyJANkoOI72OpJPtgU7x4lbYgHTLSsG5lT\/bJFO0BrYDmSg5jPQGkh7IOZ3ixXVceEWX53zp5BG5inapCJCpkuuSGfR1q1VGx4FlSlN+cDHbYWWkN5BjHQy1WWFau27U6\/wfrtd\/C5r7o+OACzlJ6R6EOZtbKtWxDcisJkdz\/ngvCqb4tqv1nGA9jud3S+40X3lLCIucWjUym3KhudHxvCtXF2WFp1uqlkSU89VDC3cUtNaKAFl53+kemUd7RLWgi0cJwg6beK\/FtB6\/wTCfQ+XIA8hKyR2RCAy7OsfHomCHpNuiLTYe5md15DwKrz0Dsumu0k7ksjNWH2lDjUhftVoWIt3iFZnNpDF1tiVYnwNFcyT1hyQaDZ\/ekekmxA2aImHsmjEtoYsa3zgkgKZXBMjgUHd7C0+Ztk91ko8fYwOe30VE+3OxFVNkV6wFA0VVJbf4oGk1XfeuDDPeLOlFwAm2ZM53LgJGxSB0ZQdHsTyzHvvycdp1lo\/otsBUSOfNeMqDrhpynhzsfV8gxVfV3DPU\/RL7RGxvQKm+wV27pVevbJOy4i9qO+dIuRBa6\/zH\/t3VBPTj98\/xrx7rd3m436LdQhlAeLs\/GFXLjC27Yj1GNNgrh4lWWTDUSP95uf8j4V1k\/HD3+C\/Rum5+VSRw88zC1G5i2VUKx4muSYcqVWILhY39b5XER9vujCi9MzsqVHvps6vdF2X21RP8u8qh0iklfMDHUwz1X8sb7z+Q+JM9+Nfo1lxKb9MSuYyBvfTZnc95M1K0Y9lVFixswcQvpFA71C8f3Fte\/pqU4oP\/Wv1Dfyznb902ucxAczbM7o7Lm1Gcv6qn4Rxdk59sgPjdBEov7m\/yzue1iSCK4xsJs7smJBIoShwkWMFLWBYiq1tcrNYfObW6WEEIBStUabGoN\/WgVQ\/+A3sIeDJBcsgPI5FES7AH\/zDf5kdfE7PuJjNjV\/0qpWKhm3zyvvPmzZsZasUsoxvsYTK5\/AJw\/5fOI5rtNALcm34a6++IPP1CYtU6WDzx3rzKGOrfaCwWM2gZmPpC733ZWM\/eSOHJXf9V0ENjIZKYWH9XIGm\/6nNrT9Ap+zGfi9QZ\/J3GQFRrm\/ikPtwl\/Vl+7Zzr9cgb2HvBl8f0txxLF+gWj8TYySNQdr2NGRyLTp3zjHVCADqbv8dcWRrmc77c3b+nbm0+y995kjoxYC9zOPYt9HUg+egYBwLnzYxO1K49xbeRUSvYUsO5Efor+HtP1G7rkqoGd6C+1NzWamH7xs7ODtAHpeRxpSZITo3+6KhRhLUk4G5i+\/XoZ0SuzJ2+x44ctblNJlM\/xurvl+zYQEanNN0jqxns61T1K8vPllby+dW1dVdrq6v5\/MrS0tazjeXlp0+vgBYXF+Hr06dPlzeebS3Bz66urxcKhTt3stsLN3ZS+CkIK3q8gm+kPoOLqNc+ShylSqcKCUIm+3uELdQpHVKntJ2Z\/tHU\/UYAjx\/wbSAw9dzjzQ33c7BWgFyhp\/08MTxFYDmC7j5en1GgVyL9EMuuvLSEq+w8\/B1LsUZsKEujJWkmZQC+F\/RJGv\/YqMNvM+YpPbexsp7tk+9TD0dRCN199DqH4cL5O4wAbrH+InoW11tH8nc2HzxqWTHEbjd2+T36TLaB339cKYDx903\/8MFDoCfJpEu5FBf5\/COXEWepmavxuetHkoRb+ztO1bXYARl7NYbH585evQXzwztQEzr0KjAeGTh+0Dswv\/ZGBHNpcT6qzKWBOu\/6zNEEjR0UNbrFQ8eOVf\/el9zmRn7bBc9QD+JcmUF\/P9lrahcgVbrtrt3GT\/5q8SQJp4CzVuXGsDd0KRzcB+T73+lL2R034A+nn2fc3bH+fv6NJESqdD6quH9OnoZg5+zvCS02JoO2TEkNB3VXCH4xf2dbZi8Hsbs75lSvdDHxoUo5BSLdpT4XPZYghPBripXl\/QINimrdclhifWyoV\/WN\/DlweqapPPttDgi9IOh9UqV76eHpVZDPgcUT9oNIMNRP2IgbPb6ZCx324QNl9K1tlztf+R86MkFAQkJxdvcD7VgnIZ87Qlj7I1Gpr5DA\/yrNbu9KITP5AyGvbm3v+Pg83\/aJs167D7YkMXow0pgzp2A+h\/3vLM5FrQnULZi+hTHa97UIPs\/QvMc2Scd3\/5MkQqr0cnQLjTJ3IYkPQbBVjlMCjyW6Ti00efwkozeX11Jigx2b47ygk4Wbkgjlrg1GdKQeJa7FYyonsxUYsSw3Hu1WWQqnyQ+4q3nxGy5lrzQORFx\/VwW8tjfpUeiKm8+dAersXVNYgfcQtTtlM6zYe1KXsuLCHfukvHvW7guB\/mgs0PuTN5yykxOso\/pXa4LBY42uFWrqfexiqOM9m97Qhfi7OQ+Qf6Uej5MEIcNUTo6wr6t7Y++Uwzq295V5dkJcsMu4bXGivyeXBbw1byfeAaVAVfYCWDw2wDNIxmnbRFm21cqFmru6JirYsd3dK38vSPx1OY3QR6jDlN0N9n6os6anMczlPKK9GtJ5+0Cb5wRFOga6B\/SExEvYNRNVFO\/tsGd6U\/azMiv195jLeYhqnXYlzNFurvGljgGBhZnJ\/r4p8dZtzN0n6OTp5KAXGl4xW4+kQS3L+q3Ja0Zj18UeynhXJf2GLIA5dj57iCTuS7x1GUuwkzz+pHIM26aYtjM2m13nB6WaplHqRd+wnXIlnC6vqtv8mWOblLcI+SJx1ru7cZ\/zi+ZIv22Klfq6ZFaKpXK11m46ENSGoVFrkss79WIoCzb3RRxlLUe8Ax0bWZ5x9qx7igd0zOLdDxuRWaHLqf1DaMxcZbfYqjchsG0bXH8cO22Wwod9hTNzXEj3hZ5c4wtdv6z43uUJEzfsgGc+b2q0X7XYajudH67jH2Sv2bRWUUM1ui+NVGPFdbuLr7+r0ru0L\/RokuCyC9ttPib+5oPsK6VqvdHd0w4YPjVoo1UJD\/bllKjU\/Rjxh358gyv0h1HF92qQBGHdzIgHTo0hPIA+VyxV2x3NNrQ+eItqTjssNm\/u8GeOmxb9qa9yhT7vC30OoONhJIzj15rHfoVhRKtmse5QYzDOW9SI1XpdlIdMXl\/AIizvQA90C+pChuPrfw0lWB\/F5xME9z0wUneTOf+O9Eq10f1Be15v2YbTKpqHOXtXgTlDGsuSumPT1CbHl3M1rfhG+ukEwZv0GSWnPvocRjJkWyzXGnsQ8v1svlY8ROxiJuh4P76\/SIJj\/m5+9r8r5OQFFzqO6ow64Q+uZ\/fu01VKNcew3Uoe\/eHUTemQirRZQcxxRPf3d471mRfzij\/060PoWJZjGdZ3gOg02492a84PcHpq2LH67h8f4MVcDY3FOBL09P1Nfu4Oge4L\/UyS4MZlDtSziCwgeL1cb3aoBkHv1FtFycfpOTMXs7iGm5P\/tL9fOa9MBZ15XR1PCp6We6ZYgrTetg2t06yX8D8m6a8Yz\/vr6IGhkw\/c3B2Y+0M\/C9D7IiQijrp\/dpcxS42YYWiGsdes6jj6C5SaFcg8goHuD32HT\/+MmnkVCDpJEj7b1dHh70z7\/OjoerXh7Gm2bccarWLl17ou37kaY5yzT9cwlVuVVC77k9MBoCuwyIbQ8eIutplKAV7AzNzNUq3RAe4GdRq1skDw+oLIbsgUmQb6kewpPvuToRoXAPoRhI7rLswOz7jPsFKsOcBdozCZa5dzUk+cybM3TbBP1xD68cdc\/H0+CPR4PInQsUeS2eG3VfbDJErtDgXsBsB36qWKntlHz4Jf\/A3g2A0ZXITkeQT6lXiwO6D6QzrmchFO1HHjNYPV70LFlrrSbEjv6q0yjPN9MaFX3bVUkcwjQbM4TKcWuOxgSytBIj06sCE0eE7Ub+QkBqGb66Vqk9qa5a7LaXTPabbrvWr9jPBVUL9nAsWfOS6jB\/Z3wmFQP3U+WKSnMdL55HJYh1+UWDXgqeqlhmUblrsyZ0HU9+A3aqXdEdaqt\/GPjwlmQZYjocniBqG+wh7ob09joPsvsqHIEW7LjKklPsX0gdPXuz+0\/cMK3botSLOcRr1aLhWLu5WcbvpsZDFzu8Xesv73SEQk895Fi1OKJDnUZx5hoAdYZEMRvNCHPdbXeTDHIb4IvDSDxlBu3BuG4YZ+x+k2G+16vVarVqutVnlfrVa1WqvV6+1G0+m4eSFNvBeEHC\/oCQodRY4\/Zt+fHJ0JOnZO8VDqHFLnM8JXSm3LHnJHWWD7A2k90YPCf1tWzPh29L0slrkMzGeAzpy\/v4Eu2CCCAwrIr9c4cQsE+cYy5yoaqALxju1208kyvn89KpZ5BA+YmUaEZDOsC2xRJRj06wgdb2zjSD21gsHO0ejr3b1ZuGux5FcxyJE53r42Zf6+w7i+aqaVgNDPIHSuGTxSL+iSyh97ptRyZ3LTMTe+yQzWLihzx01tK4y5e9Cb+ONn0Is8zhljlQwrSJzVX33LVFqObdPAyKkN1i4QOZ4eNpNI8g7jDraA0JX4WY\/T\/3kGROq+yZk6zuSqzR\/BfN7SvqW+ysKZY1lmen9PMNWzFufjQaGPPyK2TvFsEFzYklCcuUOpds\/Q\/LhT+v3oe7HIsUVq1lB\/LjHoXtAhXVEIuhH\/GjwWZVPnxPRDqH3u5abxe583Yon3Yq0dt67NKpLIMrwR5mXsd\/eF7nmnPlfqgH0LoXMf30EtR9O8uFPt+3uGDI71lMDgqRzTEZEKRLoSBHr0CPG5aZsb9lR2WRKlfuGm1qWTuFN3NI+IRo53ZTOE+nOW0yfm0oqrqB\/5OEIXOKxjWVaXsAAhALtaqnUNg447u3eYh2dA79vrxdnHQDP39mo6mlbicQDvv8jmeVUfX+qyu4l9VUIJ4W4W6yPTd2pD2ZUtzNlbIYP3R95iK1be+sne2a1EckQBuLZoTldviu5moJmmJwzDTMAbLwQl\/rAQ\/\/XKH1gFYVlQYV1cFBW8WL3QJF7sQ+QqgSUXgSwL+wZ5sFTV9OSQsWe6uqdHS6e\/mBhY3dH5+pxTp7q6an9hryms9830vIXSh1jW8aTESriU1r4NLv6Pv2Ubp5HZDSroCqhuEmfAQe383c2C3AFame8lnSLDLOs4jj+9cshwwF\/9T7Hw4sfvhfKffuvbpxlU0CUAu45TwLqTi+vlViDsJnvnzeSrE59+KLquiw976NrV4xN\/\/fPdKmb2IWPjsw0DAHRtu4BrXnFxs9JqCe\/8nneON9kSrdtovdD2rbI0\/GgnB\/Ie6oM5twd0DgJh\/Qrz+8DmJ68vV0SFt7DCa0inQO3iZzRs1b\/9vH5Gigdb943D8AFPaRFvE8CAxoWJcO7Vx2Jnqbd+2V\/eq1n\/885XPejfOb4YBuok5J8PhtS3Nwh596aCwh8EFwYxTl2gc2\/W320VnfAc2csdXX4NLKYqvJb0lFsvg9X2yulHUhzYuXw41Tioo+jbLJDPtgxxF9ypzeM6GQ7tx8Wub\/eajFuywvMf0tqMMVxRUbR21cG9PSuyujvy8LVKJf77hw6umxjLV8Op71a+fdncJsPEiTP90c2t2koyGEuTDn44FOs4qNvdPHaKuqC3PrypVB4qyNF55oG7Eu5Bde7L+rv6sLfgwDsU9cXrk+mAjSVMw6asoym8uNtrU0tOAcqdz7tzD3++op15rQwIXBfOdzc32iH+YDswqE+L7z0K6T+jPTTrsSC7Isq78pZ18xH88vk3Pz9ojKNz\/YE7KGjV9cb1m5fCQ74+lyJdb7OCwVs45X1zY1Kdga8tPj4xf\/bsw+GgZ2kOf8Zd+VZt2c7xAPE9uPXtcw3p1KdDtY5BU5FtyyyRpJl3GvHnyaWDqZ8rD57V0Tn1tdsyb21XtGWPvU3mdqh1mfp472VoKG1S\/NrpgUr1OPRMzudK+NTami3IP1of\/C5Lf+cgP9pt2fj6xlYDq+sj4ZBFlwI1xLrSHosPw7U365+3t+qzjfvSG\/Wtye2PO1OVUOR0\/NaBKd55O6FT6n57tX5MTGEDNKTjI8xDB0NWmBesje8evl2\/2rxaUmxeXe28fbM793Ol0vGdO68P\/5Fk1ZZ5FH6YuawTYsr5NQ75qDvwBLT+gNgxlfYlID\/H5Izv4p1DYkpXxj3XpT\/MRFbAT4hjhnElfUlJNynWFSYozRXnmNI9l\/ozEQ+4nPhcNmF\/8\/+kb0rpJse6DHYs97ZtzrWQGOfQTukejAnhtaD99IGQTszBITsUqOHWDSXBOaiUroRbQcC5Eq7+vSUmcaCm3o3N8OainKNu8Y+q4Z5I6YyrlB4bV58WDErvhOzibWBjOrenADqnIFDGqYjwoFbjzELjsfQVg6Q7ZEpIL63n68+7aniLYQ1vG0fp0w2TpJ962aSD7714acpQ6rGwxdyrrOcQt2VCuMUDldITD7Zl1l6DGIND1lC6Jj41ZwD9ONid3aPkqK3TllloPEF60yDphIQUaFbrYI90irdFqgOfAm23ZbU4paPxBOnRLDEIL0uk46qKEbYunMdrJqJOW5Z+3iGbIAYBFGge6yNb1zvrZID6HAfpqdIniTnU\/VyrtcGvjmis2y\/ijQHBWw20jKtMEMwTc9jOuUIfxBrZlyNoXa17BaqkR9zShdUuiDkcZ8\/uOCU7cik+btXiKTjOMkj\/TMzhXe7nMgDoqDXs0jmFzsmFqzVLXzr\/hZjDUh7puCB+pAo7Lm9X0i2eRfoRMYf1AaRTgFEazslyDoCrJGqWPozdEXPYiaWXhT09tb\/0lHPM7hlqunVtzMIZQg66pJezc31n4ToA9SKeSfprg6R37qyWhV2rnKN0QOc60qN9Yg6v2rOwZYpPS+0uOm\/PzGSU\/t6gSP8dpee3Tu2Xz\/i+my1TO207R+ktbmWAWSfGSHfINzqYdJyUfa45Xvxa909kAWAsm\/RLYg7fAGgR1r3nOp6TYe7dc+79EGgLN205rFP\/BrQIACB8jpVdVvMQ7gUGuFmyu2HLYZ3t0KeDgsuonl2w2+JXUmHejcdZRukLxBiOQ6BF4T+3YJdT7SH4FMHsXrMySl8xZiBHNioovYhgf0bDeDuhmmN2D7JKnzZH+keM9GIqu7zL\/hy020nVHOfdOcsq\/SsxhqUq0ELxofIcujfZp1VgjCLd2T1rTW8RY7gqTjpO0D397k1m9p6bAQL1mtzKBmOWOekdb7IVaP2J5\/iemR2zO8a5vnVzHnF5i9IL1W6\/fKojOjl+E5kdwzxB+hjPLJ1bdWIGDjmkBUvHHP80S7v9omdmx5LeDKyssMiUNdAO+QJAhwEAPMnSroo5ANC+0i2eQ7o5a6Bf+dCLWF5MV4KDFJ5kaVfFvIqZvZdzP2CZpfPIlDXQTn0c\/enhx1JTAaHdD59QaVfFPPRReQ\/AxeyuD28Zswa6fnA63sVUF68S+PL7D2lAWzutvnga2qXyF1UqlKfi8hzZnbXMWQNd70kjGaJY5AHvS63lQbsKKO2GZ3lbKQ+pTgoDD2rKoiL+3L3xhPqDrkj\/lRiP0w9CVizWn85R\/NCu7SY\/0S5\/MlXLpXIN6TM1zjlrwwXxZyZk90RIN2kNdL5R\/\/vUh3O5R+G\/tt01t29XpdyWyjXbEndFMC3Y29trSlqR+n15EKj0xzpNfCfa2xkhuiZPG4ccWf2tM6s24wJQbOAqRmpXyivYpGkE+vjk1uT8\/OLFxedPv\/xydPTr3d319evX+\/vvb25OTk4ul5eXb28XFhbkhSEuikimgSCo1SyTlsPmY35FeO1vPfBlgkftnhrKG1TdbVspDz1Ung7Qnb4bfjYas7P1+sTE1qRgXlwcixfy2vj17tqUlm0AloM06dxC6Z3ibr80ZvNP9VO08zpkmXQKN5LGPzgIav+PIVv\/FpzfX0epVT3Aw7+wuFcMqe4yxl9UXCzlutJPM86hdy4Ig\/aRy81F+t1FxoFCwukG9iOneVsiBm8utmjagHv4DGNYm5X0O01BhGM51A6+F8owe5zm3VYNmqzkfnblFKD6jowsDtmPpPSUEXzyQX8w5ruh\/RjNe9u4Hbr+GNAcAP1GRheHLHKmMfnYY+8qEEjvD3RHBoNcGQeM8RzZfYRxiM7OSnzGhT7nk3mdeB+y+vgFxGuFHqDyPJG+QUYYh1xGGqGefKgnlnefVisvhYzhVfj4L5ZJpUp9LOR5AO+cjDIO+ZUznVVCKYdBgfDghRUpRQVk8SGufMukjndN8wf6ARllHDL5lTErfSy36oLGQZTURfGKwWW3hQsqoRu\/yMDO6Ucy0jizyzrSrQDHcv3F++BWlXjUlr9+S5Twqgv+oMIxu89tj3CT3p6UE9LTrfPIo3rIEu9TYV4GqJKfIerxi+NvtmWA+7KIF7jwb6TH7opPexrWrfjOuiYq4kGYDyt2t3tFguhu20J31aWAg7aigOoSGXUmFrSWf3Pm0WyAQrmvhkI98qKb\/\/2hHVal7Q60aOB8m4w4DrmxmI71WgvHclnF++0E7Un9YaXSFeq2PJYxlKo9Gn8t+i4c8L6M8rx7zFGLWTrUsFnPQyxfAn732lw\/JjYNdHiA+4GUNFpcb4N7yyvKBnTR9YdURvyQzAN4pISQW+FTxzqf0Qr1wa14q9T1QIovHnDHSYmYlNM92ID7Q7SOzn2rVmuNUY8OQzvQMrtLJpimdR65w5YO1Fvl3GI8sFbB8wrXDtTdIiXEIQua0sWd9SFbB4+2AnkNSu08GnPdgrUD3TXqaLXHwiH7XFM6C+gwEzyAO8aUc\/XBeI3NyOouKO6q2iQlkk+4PDJtLNfyhtdPyRFcjSvhVvxfXguasroX1zasHZMSyeQCSk+zjrOxxYc5RCrMERnvARfVXYV7IS\/yqszucX4\/4Vx7\/40hSQfqjnGeOKTknLd8Wd0Hj3dwd0hJm7um9m7ItWaxYzmckGnWWK8bu1ZQY6sweA8HEI78vPt\/zO9xXemsBhjrRYZ5FPS9oc8DLqv7YNrB+72cd49xyC1Gus6ddSg6zN3V\/gWGtZ8otdqDeQpldi\/k8SZ96\/icU2HzMbRVs9JQTVwtaI25udM8AC1nZpAtC\/O7xjL4wkdwgcW0rFssqFm5qzu4c6QEQ\/2rxTLstuNCoc15wPU3Z5XVnbXGvDxTdQBldv9f06YrncmJssJuvAB4FJtzTe9MzcxL7YJsdWSkH3K4J\/1zwJiecos3p\/fPKRSU2n+oBZa2c0zzXNyI871sM7RAx+vl2J0g9en0d54pVk6OGuTKBSjk9spMTTnMBlPiAxHuVHnXTitvy4bt\/483pUa62mdn+W6eCBrjBUgH1490x4\/JUzbWzYcpz9XUDhB+LKX\/j+u+0lUZjab3t9QFItgIB54cA5HauZUfJk9UIeTsIKyCJP0VfzdlC2dTuMD8njh4i1ZOLqRxB7eYH3TeNRKpfSDp0WL7ClwaD9VVVG4\/kQ2ncctZz7Eba17eTaJxFe7nHgzkfOp1SwbrANItPPh04+1aanUHtxy739tIMOKJIc4tvvJ60YmjHL\/+4wDSAaoHDfJ52uIsv3O+MIGRS7aWTmnffQqAlstg7\/G5yViC8ub0zbyUXOCZ7QB0bUP9lcut\/AM53vzUPa14eF71QVBuP6FN1zPLajfc6eVf60p5AttreWfA3ak6cYj82G9q9Gv6p1rXZXWXab7cfkJ7TwqLYYzLELy9XsSsfp9NF\/Kl9nXnvxf9Zc\/i+Qr6dPJ8w7u351J70vYTs6QkBt9\/oRqVR1\/ft433GfCOe5DjWJjzY4IvSmYXLM5Yji79c6+heGPpd9f17x9jUWb3JCyLdfqz6csjjPGe1F0Kmc92fEOQOMUzzjK36Pv92q+zw7WuPQWhfIQtOdSXlXCLtW6v1dgt\/Tt2PMjm3Du\/Ivc4whSvLV2M3PuyvblbpRS1A50rF0olrqQIZH+2t38xq6Jc4zvqcwCZRnDynXfu7bq6uJAxw\/PmEXH6\/2ikcXzoutQHiF\/7CylJYLEVfb38FL9nerwLATKk9rekBzetLNa5mJbR4sNpGN+Ig7DcfiIJZ+L96wk0rsehB9rN+Vyf+x13e5wN40DrjcM1j4LgvFwolSg9TraZaFQp6DbnW\/1e+9OKxZn+kUn6P+bZ1bjngveqnHfvgZP9nVnyQEe5b++kXHD1S837rNy60f8xHeX9jVtm90Ivk9106wDe2lm6nddNnfEctxZmM+\/PT9bLu6pFcnwOkN6c13U6wCONFM949Cl7PnqO53I8Ik7qnXWg7pWmlsnl1Ok5JpI7IaX0x+Z3Cn0XyMzV9d\/z91F\/63K1TIkBnLn97mJXD0gGUlI8Y81fyqA1AAeb9aR51w8ZW4L52z6xzqOb0rkJOGTrHKCH89MJkpXGSdTLOmPTs6V0Q\/iQlOABaGU93x5n0xjsXdMyi6VzQ3CcXRd6LYrKY31xhSVZZ9ZJ6dwcJjHUcd51dzunIodMXiYM5xhfmSilG0TX0ikAqCxJfblng69nAsa6nLfKkbtJOJ2lU3jn\/CyfILwD071AmlvlyP3fDTIAmVlHLGuXoziCHKALpBETqqMrGwcXAHbW4QW8AD9fJVVmehORFs8B13F1jGb0QQY4FazAo7FskGXtlALEAmkO2FLIjNE4H3wgDdiCB43H8IVyUq34cADNwMCXQo6CQQYUGBhsgFldgL8R2DmnXqxbZvCAl8qKKjWPZvTBCAK2MgE753JUjpwWJRae0Zb74AX+fI1VCB7VbvsGzcBsYhgFgxJwyiWl0cBU4Oo5FqnRYZlBCjhpFjEhwJb78Ip0AKZ+CH0kVWKrAAAAAElFTkSuQmCC\" y=\"14.22245\"><\/image> <\/g> <\/svg><\/span><\/p>","options":["C&oacute;","Kh&ocirc;ng"],"correct":"2","level":"3","hint":"<p>4 s\u1ed1 t\u1ef1 nhi&ecirc;n li&ecirc;n ti\u1ebfp c&oacute; d\u1ea1ng l&agrave; a, a + 1, a + 2, a + 3<\/p>","answer":"<p>G\u1ecdi 4 s\u1ed1 t\u1ef1 nhi&ecirc;n li&ecirc;n ti\u1ebfp l&agrave; a, a + 1, a + 2, a + 3 v\u1edbi a&nbsp;&isin; N<\/p><p>Ta c&oacute;:&nbsp;<\/p><p>a + a + 1 + a + 2 + a + 3 = 4a + 6<\/p><p>V&igrave; 4a&nbsp;<span class=\"math-tex\">$ \\vdots$<\/span>&nbsp;4 nh\u01b0ng 6&nbsp;<span class=\"math-tex\">$\\not \\vdots$<\/span>&nbsp;4 n&ecirc;n (a + a + 1 + a + 2 + a + 3)&nbsp;<span class=\"math-tex\">$\\not \\vdots$<\/span> 4<\/p><p>=&gt; T\u1ed5ng 4 s\u1ed1 t\u1ef1 nhi&ecirc;n li&ecirc;n ti\u1ebfp <span style=\"color:#27ae60;\"><strong>kh&ocirc;ng chia h\u1ebft cho&nbsp;4<\/strong><\/span>.<\/p>","type":"choose","extra_type":"shape1","time":"0","user_id":"126","test":"1","date":"2021-08-27 01:09:56","option_type":"txt","len":0},{"id":"6650","post_id":"4559","mon_id":"1158113","chapter_id":"1158138","question":"<p>T&uacute;&nbsp;c&oacute; m\u1ed9t s\u1ed1 k\u1eb9o &iacute;t h\u01a1n 55 c&aacute;i v&agrave; nhi\u1ec1u h\u01a1n 40 c&aacute;i. N\u1ebfu Mai \u0111em s\u1ed1 k\u1eb9o \u0111&oacute; chia \u0111\u1ec1u cho 5 b\u1ea1n ho\u1eb7c chia \u0111\u1ec1u cho 3 b\u1ea1n th&igrave; c\u0169ng v\u1eeba h\u1ebft. H\u1ecfi T&uacute; c&oacute; bao nhi&ecirc;u c&aacute;i k\u1eb9o ?<\/p>","options":["42","45","50","54"],"correct":"2","level":"3","hint":"<p>D\u1ea5u hi\u1ec7u chia h\u1ebft cho 3 v&agrave; 5.<\/p>","answer":"<p>C\u1ea7n t&igrave;m s\u1ed1 k\u1eb9o l\u1edbn h\u01a1n 40 v&agrave; nh\u1ecf h\u01a1n 55. \u0110\u1ed3ng th\u1eddi s\u1ed1 \u0111&oacute; chia h\u1ebft cho 3 v&agrave; 5.<\/p><p>Trong kho\u1ea3ng t\u1eeb 40 \u0111\u1ebfn 55 c&oacute; c&aacute;c s\u1ed1 chia h\u1ebft cho 5 l&agrave; : 45; 50.<\/p><p>M&agrave; 45 chia h\u1ebft cho 3.<\/p><p>V\u1eady T&uacute;&nbsp;c&oacute; <span style=\"color:#27ae60;\"><strong>45 c&aacute;i k\u1eb9o<\/strong><\/span>.<\/p>","type":"choose","extra_type":"flower","time":"0","user_id":"126","test":"1","date":"2021-08-27 01:18:02","option_type":"txt","len":0},{"id":"6651","post_id":"4559","mon_id":"1158113","chapter_id":"1158138","question":"<p>V\u1edbi m\u1ecdi s\u1ed1 t\u1ef1 nhi&ecirc;n n th&igrave;&nbsp;(n + <span class=\"math-tex\">$2012^{2013}$<\/span>)(n + <span class=\"math-tex\">$2012^{2013}$<\/span>) chia h\u1ebft cho&nbsp;&lt;input class=\"tim_x input_number\" tpl=\"dien_so\" type=\"text\"\/&gt;?<\/p>","options":"","correct":["[\"2\"]"],"level":"3","hint":"<p>D\u1ea5u hi\u1ec7u chia h\u1ebft cho 2<\/p>","answer":"<p>\u0110\u1eb7t&nbsp;A = (n + <span class=\"math-tex\">$2012^{2013}$<\/span>)(n + <span class=\"math-tex\">$2012^{2013}$<\/span>)&nbsp;<br \/>A = 2n +&nbsp;<span class=\"math-tex\">$(2012^{4})^{503}$<\/span>&nbsp;. 2012 +&nbsp;<span class=\"math-tex\">$(2013^{4})^{503}$<\/span><\/p><p>A = 2n + (...6) + (...1)<\/p><p>Ta c&oacute; : 2n l&agrave; s\u1ed1 ch\u1eb5n<\/p><p><span class=\"math-tex\">$2012^{2013}$<\/span>&nbsp;l&agrave; s\u1ed1 ch\u1eb5n<\/p><p><span class=\"math-tex\">$2012^{2013}$<\/span>&nbsp;l&agrave; s\u1ed1 l\u1ebb<\/p><p>=&gt;A = 2n + <span class=\"math-tex\">$2012^{2013}$<\/span>&nbsp;+&nbsp;<span class=\"math-tex\">$2012^{2013}$<\/span>&nbsp;l&agrave; s\u1ed1 l\u1ebb<\/p><p>&nbsp;V&igrave; A l&agrave; s\u1ed1 l\u1ebb =&gt; (n + <span class=\"math-tex\">$2012^{2013}$<\/span>) v&agrave; (n + <span class=\"math-tex\">$2012^{2013}$<\/span>) s\u1ebd c&oacute; 1 s\u1ed1 ch\u1eb5n v&agrave; 1 s\u1ed1 l\u1ebb<\/p><p>=&gt; (n + <span class=\"math-tex\">$2012^{2013}$<\/span>)(n + <span class=\"math-tex\">$2012^{2013}$<\/span>) l&agrave; s\u1ed1 ch\u1eb5n n&ecirc;n<span style=\"color:#000000;\"><strong> <\/strong>chia h\u1ebft cho<\/span><span style=\"color:#27ae60;\"><strong> 2<\/strong><\/span>.<\/p>","type":"blank","extra_type":"","time":"0","user_id":"126","test":"1","date":"2021-08-27 01:29:00"}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.