Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 10Toán lớp 10 - Sách Kết nối tri thứcBài 14. Các số đặc trưng đo độ phân tánBài tập trung bình
{"common":{"save":0,"post_id":"6448","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"6659","mon_id":"1158767","chapter_id":"1158885","post_id":"6448","question":"<p>S\u1ed1 l\u01b0\u1ee3ng chung c\u01b0 cao c\u1ea5p \u0111\u01b0\u1ee3c b&aacute;n trong 11 ng&agrave;y g\u1ea7n \u0111&acirc;y c\u1ee7a m\u1ed9t c&ocirc;ng ty b\u1ea5t \u0111\u1ed9ng s\u1ea3n \u0111\u01b0\u1ee3c&nbsp;th\u1ed1ng k&ecirc; trong m\u1eabu s\u1ed1 li\u1ec7u sau:<\/p><p>2&nbsp; &nbsp; &nbsp;5&nbsp; &nbsp; &nbsp;16&nbsp; &nbsp; &nbsp;8&nbsp; &nbsp; &nbsp;7&nbsp; &nbsp; &nbsp;9&nbsp; &nbsp; &nbsp;10&nbsp; &nbsp; &nbsp;12&nbsp; &nbsp; &nbsp;14&nbsp; &nbsp; &nbsp;11&nbsp; &nbsp; &nbsp;6<\/p><p>Kho\u1ea3ng t\u1ee9 ph&acirc;n v\u1ecb c\u1ee7a m\u1eabu s\u1ed1 li\u1ec7u tr&ecirc;n l&agrave;<\/p>","options":["<strong>A.<\/strong> 5","<strong>B.<\/strong> 14","<strong>C.<\/strong> 6","<strong>D.<\/strong> 9"],"correct":"3","level":"2","hint":"","answer":"<p>S\u1eafp x\u1ebfp l\u1ea1i m\u1eabu s\u1ed1 li\u1ec7u theo th\u1ee9 t\u1ef1 t\u0103ng d\u1ea7n ta \u0111\u01b0\u1ee3c<\/p><p>2&nbsp; &nbsp; &nbsp;5&nbsp; &nbsp; &nbsp;6&nbsp; &nbsp; &nbsp;7&nbsp; &nbsp; &nbsp;8&nbsp; &nbsp; &nbsp;9&nbsp; &nbsp; &nbsp;10&nbsp; &nbsp; &nbsp;11&nbsp; &nbsp; &nbsp;12&nbsp; &nbsp; &nbsp;14&nbsp; &nbsp; &nbsp;16<\/p><p>V\u1eady&nbsp;<span class=\"math-tex\">$Q_1$<\/span>&nbsp;= 6;&nbsp;<span class=\"math-tex\">$Q_2$<\/span>&nbsp;= 9;&nbsp;<span class=\"math-tex\">$Q_3$<\/span>&nbsp;= 12.<\/p><p>Suy ra&nbsp;&nbsp;<span class=\"math-tex\">$\\Delta Q = Q_3-Q_1$<\/span>&nbsp;= 12&nbsp;&ndash; 6 = 6.<\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp; &nbsp;<span style=\"color:#16a085;\"><strong>C.<\/strong> 6<\/span>.<\/p>","type":"choose","extra_type":"shape2","user_id":"131","test":"0","date":"2023-05-28 03:13:22","option_type":"txt","len":0},{"id":"6663","mon_id":"1158767","chapter_id":"1158885","post_id":"6448","question":"<p>C&oacute; 100 h\u1ecdc sinh tham d\u1ef1 k&igrave; thi h\u1ecdc sinh gi\u1ecfi c\u1ea5p t\u1ec9nh l\u1edbp 10 (thang \u0111i\u1ec3m 20). K\u1ebft qu\u1ea3 nh\u01b0 sau:<\/p><p><span class=\"svgedit\"><svg height=\"70\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"72\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"60\" id=\"svg_1\" width=\"398\" x=\"-1\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAY4AAAA8CAYAAABxcV22AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAzASURBVHhe7Z3tkR4pDIQ3FwfjWByKI3EgjsOx+Kpd7iudECAxIMZnPVXU7sswan0B3v2x\/vhZFEVRFAHq4iiKoihC1MVRFEVRhKiLoyiKogjRXBwfHx81atSoUaPGf4bEvDhu8eXLl3+d\/Pr16+\/Zs5yK92Ye\/0btync+Vetc3qTdeHLTOYDL4\/v3778\/nedUvNVguVS+86la5\/Im7caTm87d4FS81WC5VL7zqVrn8ibtxpMnzuHXS3jfGpIfP378mtM\/WfBXVfiahfatx+fPn\/+N5dOnT79n+3jtEuTOilvnFLmbsUubfPv27Vf8HnZpI8eRuKO6oKeNOepm1loCXaybsUub8cox+8kfayL0tNFfJ3WB1oaG1JRjVHM8j9CLGfNSM3NfY05qe9DrmreizkngqJV0NsaoIVhIXip4JwNPvDg0ZVzwbXagRPLIJtJFZt4I183YoU3ow4mLo6eN3Mo5rhttrogu6GljXtYWzzNqLcEzrMHaGTu0uec8h5dkhzbnqc1+y6i1hmfQ6JyKaPd0dYxcN2OHNj5LO4x5hl7TvBFxTgNne5ts9AzoYo2Kt5NZvL1mwkGKBujhzSNygrUYush4hrxJMDfSBTu0gfwpa\/fF0dPuHWJWLiReXTCKG3Myv\/Rn1I9e7Vm+AfttFi\/ZoY148TzKDm3M6X5Gr2XUWuPJuVd7pGvFh\/Wn9zV7WetgTTTuxhOvcxYQh9MW8kCwNiOcxxyHfoYhDzJ8ph0OfI6C90ZwI2voU4+ZXYAC8kDGV20PNvSBNdMFO7Shy1riGdfO2KFtAV92HCZRbatXNTtjhi2sncVLdmhDh88jPNXm3oruW48uiNQaOfDY3ZFvzOnaot54b8RTbfayzren\/lq78cTjXA840Ls4AGwjML0ZEZx8j8+ZSDyXn9lw8h2smQVvATsjes2ti6KZ2dWcLPKMWSyR3O7WBqwB+8Uiqgs82lgzi31XzJjj\/M6LQ2JpYw56sMUxO8TAU21oQJf15RjVGUR1QS\/nBDaz8o24YYd7G7ryc4+n2jxTdH6xBmtHaO3Gk6hzBOJ4Vw8JPiNpMgB+r5MmD0grMNoibMIo2kcL2JX6LLxuCInHrkQXmZvJyssszqfaGiv\/PXZrg1muQVQXjLS5mTF2H2SWLnuKoMZZB5nub\/ae3F8WT7UZs9Tm3CjnUV1gxU107kc8jZlQk8PDDm3MyfODtZY1sNDajSdR5ySzQw22kTB5cdBxa9AWgteB4TlskUjxJd534Av9gj8cPaK+6CJ7LtQeT7U1eDbTJLu1YW\/UUySqC2baBLZHh\/iOmGFDHpaIOevisPDU\/Kl2b8\/OtKO6YBS3NydgR74xJ+PjGSjPM4sd2gDzsIWB71fOlMaTqHOS0cUhD0Lr4hhhNRLeybw4NEx4j6hd2NNFhg15mACssZpBskNbYuW\/x05t2DqlC2Zxk9nGehoze9cas0sTayLsihk81UbcVny78w1GccPe7NAmT2N+0z8ICdbM1mntxpOocxIE32t0OMbEyItDft9DvkvwTtbFof3z+Bz1xSqy9a9Oa06zQ1ti5b\/HDm3m16sJorpAa\/fqOot\/d76Bp87gqfYo5pmPu7TxVTLTjuqCXs4Rt+VDj10x63xnXRzoK31Jwu7s4tTajSdR5yS9i4OHOpOlk4fgtC7sMJF4rpOK9VkXB7Slvv5sEfUF9nSRGRObGvn12N2hLbHy32OHNmyM\/LGI6gJLG3Oyh3mw6I0u2Z1vkHVxAB2z7rseO7Tx2dLemW\/Qyzn0pP6ME\/lmj8GXESfyrT\/30NqNJytFITzYrCGxbl0EINfLgPE9kiDBGploNlwU7ztILn3TvlhEfbGKDHROZ5sZ7NImVv57PNVmHa0x8hHPo\/TixpzUHR1iIKo9yzdAv2VdHADzMubMPtM9vjvfYKSNZ152xazzPbs0wAltz6UBtHbjSdS5P51T8d7M49+oXfnOp2qdy5u0G09uOneDU\/FWg+VS+c6nap3Lm7QbT246d4NT8VaD5VL5zqdqncubtBtPbjp3g1PxVoPlUvnOp2qdy5u0G09uOneDU\/FWg+VS+c6nap3Lm7QbT246d4NT8VaD5VL5zqdqncubtBtPbjp3g1PxVoPlUvnOp2qdy5u0G09uOneDU\/FWg+VS+c6nap3Lm7QbT246d4NT8VaD5VL5zqdqncubtBtPbjp3g1PxVoPlUvnOp2qdy5u0G09uOneDU\/FWg+VS+c6nap3Lm7QbT7CgRo0aNWrUkENiXhw7wR\/Zgs3ZHy7bDf9w2u6\/OOnllF0Pf6N25TufqnUub9JuPDnhHA7vyF+g3AHiOPEXPr28qciZ3NKufOdTtc7lTdqNJ6ec8xziu4honYq3GiyXync+Vetc3qTdeOJxTv8teT30Txf8dZX1t+FPQD88vx7Dugj4FZgnjqhdzZOf0la1WScM79\/p16xqU1eOyK83sX4V\/f9BRP+RE9Xu9dBK\/k9oe21G1nlte\/4fEq+uxLNvT2j3dDEvc3LytyOIK6ql0dqNJ1Hn4ATe6W1yzNNZfPX8hyVPQJFw4ELHE0skXhZ71oAgYldD3zMvDsQmDyvE6D28JCva7I2Vhiar+Wauqc0aR4is7\/XQav53aOOztMM9O8O7BrpEa0n4TK638OhKenFLTmj3dPXZxHUzItoEPST1qRXda1q78STqHDf96OKQ9NbtIqrnjRcFwFqMUQOSaB6J\/Gku8+LAO\/JSn9W1x4o2dFcuKcmKLkCO9WEBX2QuZni1Rz2EuZX8P9Wmjo4Xa54eovDdWmPpcS38fKorGeWcnNAe6Vo6mJv1nFebsLb4KvHEqdHajSerzlkNzmdyyCQyAJlkT+Hk0MhnsDvDsqFBQXmI42uvASUeuxrkkD5DI\/Pi0IzqOmJFGzVfjZWsxpx1cUR7yJv\/p9rUwVeJpyarOcd7Or+c45kwwqvrzflu7ZkubOi6Ys2sJ7xxz\/DEqdHajSdR50YNjnnZIPherkUA+MymxXzPFtABI9GyufGufI5neGcE3okwakBJ1K5GxxbhqTaA9or+ijbrhHc5ZN94WI2ZPckeRP\/Izx6i2p4e8ub\/qXZv\/3r6L6oNdL4BtOiT51Bb0e3l\/LR2L9+6v6B7It+a2RnbQ2s3nkSd6zWeTgzQa1EoXUzM9Q6NUWExj+ca6I0OoWi8vQbURO1qoDFrpB5PtJFHvI8RbS6woo26yVjZ3JHL40nMPMw4okTfGfVQNP87tDEn9w7zP+u\/qDb3v9zDzD0Z7XES1QVW3BnaWpe5tS4O6\/ySrMStgY1e743Q2o0nUed6F4cECcEaDh4IVqFGxdMbXCYfybAafdYMsBPBakCLqF1NLx4PT7UJ7Mw2kmaXdjT+VV1oSJ2MSyvSQ7P879LGPGxh4HvoyrxYRLR5TmibmJNnx2y\/goguseLO0Na6zIN1cezMtwXeR4wraO3Gk6hzo4sDTuIZE8e1qxeHBHY4ADSsxM\/s8X0vVgNaRO1qevF4eKpNPM2suaW9ovtkE0ui2t4e8vhxShtrZuu82syztqf\/ISjH6IDD8yg67ixtK9+woc\/Lnfm2wLuzXhqhtRtPos71Lg4WRoI1mNtxcRBq4x2r4FLPQvs4w7vxonY10FgtdFS7V8MVH3Zqe\/JMVvLd086+OJ7k\/6k2wL7RewR2R\/sGeLQRE9Z5a+nZ\/9GYgRW35oR2L99a51Tc7K1ZH83Q2o0nUed6Tc+GwXOCzxirFwfelc9gR2rge1kkJAv2RuCdCJ4GBFG7GmisFntFW+eK9dN1nbFDW9fVw2q+e3HPDk1JVNvqodX879DGZ6mtP\/eYafNsmB2IEuieOECtuDUntC1d3d\/Q9NhdiRvvzOL2oLUbT6LOsTmsBofDeMaBNSgOA7EKNSoeteTQh4t8BlszsC6CpwFB1K4GGtBaYVXbqleUVW3EKrV1XWes6gKtHbk0QFS710Mr+d+lLXPg2Tdgps0D0Rq9PT7a\/wTvR+nFLTmh3dPVufH0e1SbF5Q1ZrnQ4B1J44le8H\/nVLw38\/g3ale+86la5\/Im7caTm87d4FS81WC5VL7zqVrn8ibtxpObzt3gVLzVYLlUvvOpWufyJu3Gk5vO3eBUvNVguVS+86la5\/Im7caTm87d4FS81WC5VL7zqVrn8ibtxpObzt3gVLzVYLlUvvOpWufyJu3Gk5vO3eBUvNVguVS+86la5\/Im7caTm87d4FS81WC5VL7zqVrn8ibtxpObzt3gVLzVYLlUvvOpWufyJu3Gk5vO3eBUvNVguVS+86la5\/Im7caTm87d4FS81WC5VL7zqVrn8ibtxhMsqFGjRo0aNeSQ3LvCiqIoij+SujiKoiiKEHVxFEVRFAF+\/vwHXMT4MhR\/EC4AAAAASUVORK5CYII=\" y=\"6\"><\/image> <\/g> <\/svg><\/span><\/p><p>Ph\u01b0\u01a1ng sai l&agrave;<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$S^2_x$<\/span> = 3,95","<strong>B.<\/strong> <span class=\"math-tex\">$S^2_x$<\/span> = 3,96","<strong>C.<\/strong> <span class=\"math-tex\">$S^2_x$<\/span> = 3,97","<strong>D.<\/strong> <span class=\"math-tex\">$S^2_x$<\/span> = 3,98"],"correct":"2","level":"2","hint":"","answer":"<p><span class=\"math-tex\">$S^2_x = \\overline{x^2}- \\left(\\overline{x}\\right)^2=\\dfrac{1}{N} \\sum n_i.x_i^2 - \\left( \\dfrac{1}{N} \\sum n_i . x_i \\right) ^2 $<\/span>&nbsp;= 3,96<\/p><p>Trong \u0111&oacute;<\/p><p><span class=\"math-tex\">$\\dfrac{1}{N} \\sum n_i . x_i = \\dfrac{1523}{100}$<\/span>&nbsp;= 15,23 ;&nbsp;<span class=\"math-tex\">$\\dfrac{1}{N} \\sum n_i.x_i^2 = \\dfrac{23591}{100}$<\/span>&nbsp;= 235,91<\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp; &nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;<span class=\"math-tex\">$S^2_x$<\/span>&nbsp;= 3,96<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2023-05-28 03:29:49","option_type":"math","len":0},{"id":"6666","mon_id":"1158767","chapter_id":"1158885","post_id":"6448","question":"<p>\u0110i\u1ec3m thi c\u1ee7a 32 h\u1ecdc sinh trong k&igrave; thi Ti\u1ebfng Anh (thang \u0111i\u1ec3m 100) nh\u01b0 sau<\/p><p><span class=\"svgedit\"><svg height=\"120\" width=\"370\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"122\" id=\"canvas_background\" width=\"372\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"110\" id=\"svg_1\" width=\"363\" x=\"3.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWsAAABuCAYAAADh\/DJ\/AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA2wSURBVHhe7Z3Rsdy2EkSVi4JxLA7FkSgQx+FY9HzqqV3jKYDAXvkuGqo+VSjdJbhkozHTXH3xy\/cQQgj2JKxDCOECEtYhhHABCesQQriAhHUIIVxAwjqEEC7gMaz\/+OOP71++fPln\/PXXXz9m\/s9q\/hTfvn37l646fvvttx9nff\/++++\/\/2vOjZW\/dU7jzz\/\/\/DF7npW\/dU7DRT9ej\/TVPfj69et0zoHd+qZfal84sOP\/aN6p\/v\/r\/p3uoDZa6MZCgSgBfd6NrrevD5Oc9K\/8VzH3AnCh62U9hJtw17+qB9bCmoTW67Kelf9CfeEW1iv\/3evnM\/p36IYu1FOezWZzgc1FQKXOu8F6pE3r61oxuK\/pBDv+8++o+VwY1UJdk7t+6mAWYLNGYz0O9QMr\/4H1cYzhFtZP\/oNz\/XxW\/w7DmgtxsyduCuvdX3WrAnkXO\/67aJ0xqoVawO76qRnGK7Dm3hOnWPnPv+oJ1um2Fyv\/nevns\/p3eEVdSDfVqOGmOR3jO\/0cBxTMtXB1rD\/5XIp2x3\/mabY6X9d4GtWDwNv62V0\/2rq+Xi8V5lbnvJOV\/xWXuq+s\/Heun8\/q32lY8+X6ZNOxesMuxhF0Y0pHZgk1m0PR7viP9qpV+p0CT5oZfQ\/c9aOl+q9an4VxP9+BJ\/8rjmG98t+5fj6rf6dhPdpcLi4B\/O1qVoV1sJ4R6Eczg785r67pFDv+j3BqOvQ\/NdsIJ\/0jZv6zrtF+neQV\/919F7fU\/2f17zSsR1\/iYgyeDmx8\/ZUNLmEnpPMpICpa32lW\/s9w8V8P7s4t+meM9LNON82v+s8xZ9\/FTL9wqZ\/P6t9hWM82mwtxwVkIujWbfk2M4MnX\/xfAuQ7\/M\/io\/6tieBfS3x\/m0nerfvkPWoNTvYuV\/x2OOa1j5f8t9dP5Wf3jJPsbLlw3kJtUA5mrP\/Ul0CHsBJrrGiqYUvX3z6d51X89mHqBnwJtVb\/0qUBv0y\/\/BX87BMOMlf8V1lHPdWDlv3v9oG+k\/2f6dxrWwCZyAY1+IW5Y57mhE+h\/aqiqvxrnwqv+uxSqwNOqrwfFbfqFGms0nurt3az8F2hmL9yY+S\/c6+e\/7t\/HsA4hhOBBwjqEEC4gYR1CCBeQsA4hhAtIWIcQwgUkrEMI4QIS1iGEcAEJ6xBCuICEdQghXEDCOoQQLiBhHUIIF5CwDiGEC0hYhxDCBSSsQwjhAhLWIYRwAQnrEEK4gIR1CCFcQMI6hBAuYDusee1Mf21Xf22NMyP9\/bVBbq8F0nvbZvpW86dZ6euvx5q9duoEaK3aNOoabtWPztEcg55wYVU\/dU7DYQ+eXvtWX5\/2av5sJazeFVbDTkEtVACOjPRjVH1fXn+h5Wm6v9InVBDS2+dPs9Lf\/e7rOc2qnm\/X39H5DmEHq\/rBZye\/V\/T6+Ej+LHeTm+gJwN8go\/RZcHNu6sST\/m4M5znol77eOOjTGngAda11\/iQ7+kf1M1rTKdBRfwV1btffcal92Kkf\/uXzLdR6+Wj+PIZ1NW3nZq8WyGcz0z\/DpWDRid4nRsFQi\/kkK\/3aj14\/TvDDo\/7yqdyuv0MdrertnezUv1vWPME+7DxYfiqsayBgnoKghmAFUU4GzvSPUAP2NZ1Ahaii1ajhoDkd4zv9nFOs9HOcwpTnGg7eC\/QxRvpu199hTn3iwE79M9\/Xx\/luoHlHm2rpqYamYY1hmCH6DWWW0M047sBKf4f53V8inw3aux4dqwXbi9mFlX7prrWiYy6B1\/VXfbfrr+i4Ezv1T29X\/5U\/rMcJdNccmtHXO2K4S3oa1GAYGYFZHGfwN8KqgafY1S+Y2zH0Xcw2GG+1ofxdvXYq1pX+WUAw51A\/M34V\/ZXRsdPs1P8IR\/9ZB+t5Yjd\/hmHNxbnAaDyZgVkOG\/+K\/tGx06B\/pEn+jh5GMPveu1npJ+xGxemif8avor9CHTk84Cur+pnh5r\/69Ol\/W6\/kz\/b\/f\/qmUqx9kx03XnRtMtKxufQruYNWCnJWBC7Fuqu\/P2xWzfgupL\/r+1X0i9l5p9mtH86ruPgvyJvROkBreKVfPxzWmFJ\/XfTPbnT9fHba2A6bWDeSIkWzGou56rcK3OVhudLf60WF3RvwFGgb6Re36wc01zU4saof5kb+a94BNNc1VND6av58OKwBIRxnuG66qPq1saPhFOBoqdp6IVb\/GX1\/TrPSrwbUcAk6QU1XfZ1fQf8sTBx4tf6dghrQP8qTj+bPdliHEEI4R8I6hBAuIGEdQggXkLAOIYQLSFiHEMIFJKxDCOECEtYhhHABCesQQriAhHUIIVxAwjqEEC4gYR1CCBeQsA4hhAtIWIcQwgUkrEMI4QIS1iGEcAEJ6xBCuICEdQghXEDCOoQQLuAxrPtri\/prc\/prd9xY6V\/NnwQtVdtIo7N+eKV+nF4L9\/TapdlrsNDPep1Y9adr\/ez6717\/9bVjo\/qu2jWeXg03TVhttJAxos9zk\/r5NCv9KgjR50+z8tNd\/8p\/PtcC5nynwO7I71EgaK2syYXud\/e3r8etfjpdr7t+grr7XT+ju+rfYbg6XainPDfjpprn7woF4VCwK\/36u2ut86dB2+xXHDjr3\/G\/18\/sOy6M6h30UB3tx0lGtVD9pbac67\/T\/XfWr5rotYxm6eNf9L7CMKy5EDebocbi38oqYN7FSj+MzORhw3BgpcVZ\/47\/HeewxtNZY6FZjZew\/hxG\/t8Q1p3anx\/JymFH6UJqOg2F86yxEOIQ1rv69Vl8xMDPgsJjVP3y213\/yv8RnO\/ifUVej0KgNh97xbpdQAu6BTrrZ+2N9kTnP+3RCWb+O+tXWHct1Lfqhb97f49qrDINa76sC0M3QzcTEujQcCv9MzM5p67pJF2\/ihPt7vpX\/ld0XGtzY+ap9kNwDuc6Ub19WoOGIzP\/wVk\/mmsWSqt6os+rpzlvxjSsRwZx8dqAfJZR\/M33qoBTrPQTGGgeBYeD\/hm36N+tnw5r4rtOsI6RJrTWh8vsvFOgp3qtsJBm9qLWyk5YnGDm6w360Y4mBnuhMYO5uqbONKxHX9q52dP8u9jRXwtXuOifcYv+j9bP7Hun0EOx+6zgGw0a9DQKro78v+XHysz\/W\/R30IbGGSv9w7CebXa9GUXZn2J8x+HJtqu\/Gzd7ir8b6e\/FeJv+jvTPmpAgeSrWd6NQ3sHFe5jVTw\/r7j\/6b\/D\/Bv1dX9X8VP+MGdNKZNF14RjBDVQAXJQCFf3zaVb6VQj6rHkX8HKkX7jrX\/nPXK0XCpf5XsAnQXNdwxNOYQ29flQv8nfmP+e58OS\/u370Ve2jz1V\/7+cRj91NAHMBjX4hbqi5emMXVvoVILP50+Bp1ddx17\/yv887BTWgj7EDe+UU1tDrp\/tb+5fhFNSw8t9df\/W\/BrXo+lf96\/NTLIQQwpSEdQghXEDCOoQQLiBhHUIIF5CwDiGEC0hYhxDCBSSsQwjhAhLWIYRwAQnrEEK4gIR1CCFcQMI6hBAuIGEdQggXkLAOIYQLSFiHEMIFJKxDCOECEtYhhHABCesQQriA7bDmTQazNzFwfPQmhNP0N5EIvQJoNJzeeLP7Jhg3\/9FTdddRdfY3mTi96QYtVdtI46y+HEGf+veW+q9vUhnpcn1T0m79V1jf6k1DWxUm07TZFQlzCgvQRgoa66kQVcAur5ZSEIi+HuHqf0c61VDsRX1lk9bn0nCqhxl9f1bnn+Spf4Vb\/aO59iva++fq96w\/XOj1X1Et\/XRYyyQu1jdbRcBwCws0d73onBUj56\/Mehds6EhrX5Oz\/x00SrvW1wvXaQ\/QMfNU+nt90XQu+gUaZ\/1bcfJ+9uBgP7SGkd7eH07M\/Ndad\/x\/DOsaGv1mHOMGQJHeHNaYxJwL6F7pcfe\/gj5pfWKnYN8FmhkjZg8btDvtw1P\/VtzqX3o7dU+0rsrTnp0ETbP6177s1P7jDlF4usDTZiPGLSx6AaJxVADA8ZVR7wQt+KnQ1ujhIBz9FwqMWe0INWhvwFPQPIzqv7TVEKy47cNu\/zLnVP+qhV7vrAeP5X+fV9848VT\/rIUBPxXWfLE+DZ422zUsWAO6GXUtFQWiE9KtjQQd6wUKrv5Dr6MZfb2n6XpUJwpo\/K7rUsC47MNu\/zrWP6C9eimd7MkszHdr7Z3MNHXfOYdznxju0ujJxefRZoNjWLD4p2YT6HYKCZht8Eyro\/9iqwj\/3pfRet3o\/vMZ7Qz+Zp0O+\/BK\/\/Y1OUFNyF80aozWBy7+V2b1j\/6aRVt98uPff8GXZFIfIzMw0MkkPXk72uwK580eQqeYFd1IP7j5L9RU\/QFZmdWUIzP\/xWr+XbzSvxxzq\/8ZaFegobvXlYv\/Ylb\/+uE4Gk8\/Wrb\/\/8OFZpuKQU4Np7DuT96+mbPzTiNdnVqsFTf\/hYpyhArZUfesLqr\/NFXvB77jGnwjba71D+hCn1C96Njol+jOr9N38lT\/nQ\/\/sh4x2mzhGBYsvmqScbUAOMZ5jqC96mcj0T9qLNewRvNMF2upD043ev3If4H2Wjv9sxuj\/r2p\/vtn9bP6oe+PA0\/132EfOP+JXzasAQPQrVGDGl4x8wT4WvXPfgG5+o8uRkeNNhqj80\/R66eD55pzDmpAY+9f9\/qv\/o90KqA13P6HMKv\/Ef9pWIcQQjhHwjqEEC4gYR1CCBeQsA4hhAtIWIcQwgUkrEMI4QIS1iGEYM\/37\/8DXP8lzLrdqBQAAAAASUVORK5CYII=\" y=\"5\"><\/image> <\/g> <\/svg><\/span><\/p><p>L\u1eadp b\u1ea3ng ph&acirc;n b\u1ed1 t\u1ea7n s\u1ed1 - t\u1ea7n su\u1ea5t gh&eacute;p l\u1edbp<\/p><p>[40; 50] ; [50; 60] ; [60; 70] ; [70; 80] ; [80; 90] ; [90; 100]<\/p><p>\u0110\u1ed9 l\u1ec7ch chu\u1ea9n l&agrave;<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$S_x$<\/span> = 13,79","<strong>B.<\/strong> <span class=\"math-tex\">$S_x$<\/span> = 19,73","<strong>C.<\/strong> <span class=\"math-tex\">$S_x$<\/span> = 17,39","<strong>D.<\/strong> <span class=\"math-tex\">$S_x$<\/span> = 17,97"],"correct":"1","level":"2","hint":"","answer":"<p><span class=\"svgedit\"><svg height=\"220\" width=\"350\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> &lt;title&gt;&lt;\/title&gt; <rect fill=\"#fff\" height=\"222\" id=\"canvas_background\" width=\"352\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> &lt;title&gt;&lt;\/title&gt; <image height=\"216\" id=\"svg_1\" width=\"351\" x=\"-1.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAV8AAADYCAYAAABMd+BVAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACvVSURBVHhe7Zzhzey8zbTTS4pJLSkllaSNAKkjteTDvMjkm1AjUdJq1\/ZjXoBwr2lZIkckd8\/54T\/9uyiKovg51XyLoiguoJpvURTFBVTzLYqiuICm+f7pT3+qUaNGjRqHR8Q23z8af\/\/73\/8rwF\/+8pf\/WM9xUrO\/\/vWv\/7feP\/\/5z\/9YfsPf\/va3\/9sXWn2Dkxq9mSfr+OYccLE3lj+qQGgqaDDf4LRm8PUbXxIjEMO\/\/vWv\/1yd582Fd5In6\/jmHHCxN5YqknW+odk3G2HkF3tVXp3hyTo+1XfUB3zH2P1R5GJvLLMC\/fnPf57+JUnnv\/VrDmvzn8vOL\/63A+59g0wzxI05vRF14X894O8voB\/f\/K8OrJ+B86EvOlZ1QBx4buVLRfMG5xH35JoYV3L1\/p\/wVN+RC6wN\/byCi72xzAq00nzh8Ol\/8mM9+Kqjtwfu8Z\/yq4U8A9afhV9EvQPUxkG\/vwn0gC78gvoWM2v3cgr+feuLk2T5zPvU6yq+eUbf5sm+k8c135VfIDvA516TikLtCJexklQzzVf5hr\/Kr\/ab0WiUUyv5tsNofZyZ5vC3z2TESq7djSf7DnDuu1+8LvbGMivQTDHgWwLrcTBp+SyuYeevLo4MPM+5WAd\/2XyjX3HteI\/zeR\/XQPfoNXaCObOMmi\/v6dBf6vRVfdN4HLoWRkTvMfYemBP1zLQhmJvB+Bywa+LrmXFQU+aVNswI1uJz0Fj3xj3VnevpfEI9oi4ZeoYz88nsXMaj+\/S0XaFX0zNg\/i54djf3MuK6TifM+eRfPFg30ljcJMeoUAAPiTCB8RcDwWhSk\/hcBPtq8rOIeBDqF0XVItTneV\/Xw7U+wzkjsvvKqPnCzjgA9+ZcFhJ9o35uLRDPCHFqAuFZvY97eKYH5mMQ1Rc+qI4Rfa5H9FfRc3Bnor5TFz13BXNVB\/iN+dwb9xiL01ifpy8ae1w\/Aj91PvaFDf6OngMx7h5YTzXQOGb2ccBnagxUZ7X3mPXdgWf1+ZXcG6HrEFzDjjWxNj9\/gvpOGoub5IDYvUJBIFgHjisIAIfOoHh4cR6Dj3C+wr04X\/3C57iOroF7cT36R7i+Hk4krjGip41bP85FPDEJXIxkdEYs+Aj2662He3E9F4sD80bgfhwaq56V00rj4RmPNI33YGNsmgP4HGPWNeiXrgeb0xZo\/inRnx7uWQf2X8mVGbC3O+vTvjvw7G7ujXDnCzQm6Ia9OHY0xHORxuImOeCQcxr0kp+JyqTozesJAptLaqxBQdQv2HsDe9Ifpdd8R4cc1xgxs17vsJ3mo3NgfByqM2JErJHReuoLoQ3xxGJXMC9jJhaF+aND7TGvgFsH6N6aA7Dr+jqwj1uvtwfAHljTAX\/dmSi9dSNOS9pm9omMNAW9mJRZ3x14FroqtGW5N8KtS7Am1j6Bi72xzArkDpf0DgpB6iH15iEx3Nq9xFUB1S\/YR+LhmRivFh6Ab9k6cY0Ro\/XgO+5xf851sRFnc2AdDoA9XAGO1lNfCG2IZ1QA3HfEaG\/Y6S\/zBoM64j734P2YV8CdOdC9NQdgjzErbr3eHgB7YE0H\/HVnovTWjTgtaZvZJzLSFPRiUmZ9d+DZeA60Zbk3wq1LsCbz61Nc7I1lViB3uIRNIzoeC54HGuf1BOF8hXtxvvo18hHgmbieFh7oxaLENUb01nO+MF4XG8lijHBvPINnI7pfxN2jDWuOCgDzMkax6N7xjACuuQd1c42C+sd7sHFvXd\/tpcAn7kucjYzuwSetD0fv2cgoV2b2iVC3mLfE5VJk1ncHnuX5E9qy3Bsxyjms2Yt3FRd7Y5kVaOQ00GIALAgVkDY9ODw3Okjc08TBZ11X\/WKiq4DqF+8rsdiypANxjRG99agF7hNcY7jYiLMRPKv3GC\/3wGeNFbGPtFdfCG3wX9eKYF5GL5boF\/bRHGBc3MNpqbj1MJ97aw5wLY0b87g+91acTcHeqhXn\/+Mf\/\/ifuByjdRWnJW3wO9vHAZ9VN6wDf+C\/2nvM+u7gPgptWe6NoPaaKzwfDKx9Ahd7Y5kVCA5ibhx6CHBe70XxmNg6b+YQdW8WAtfGPU06isuh6\/OeooUHmGCjQ4hrjBitF\/XCHPhLf2JswNkI99KhSQb0nmrjwJx4hrTBV9UtgnkZ2J++6HDr6n08x1xCfPq5B86Zz2N91THmANfTQVwOOVskxgpfMa5svjFuB+6r38wHrJ0x67tD9yK0jXIP8Wa+8bw4uBb+Yu0TYN1IY3GTvsVMkTyBX2r2VH6l0dNzKePJufbmOnGxN5ZfClTN9z18SyP3C+9bIIb46+vXPDnX3lwnLvbG8kuBqvm+h9LoDE\/W8c054GJvLFUk65RmOaXRGZ6s45tzwMXeWKpI1inNckqjMzxZxzfngIu9sVSRrFOa5ZRGZ3iyjm\/OARd7Y6kiWac0yymNzvBkHd+cAy72xlJFsk5pllManeHJOr45B1zsjaWKZJ3SLKc0OsOTdXxzDrjYG0sVyTqlWU5pdIYn6\/jmHHCxN5YqknVKs5zS6AxP1vHNOeBibyyYVKNGjRo1zo6Ibb7FGqVZTml0hifr+OYccLE3liqSdUqznNLoDE\/W8c054GJvLFUk65RmOaXRGZ6s45tzwMXeWHYEwotx8BxG732k7u1T8T2an747E+vrehjRH\/jh7jGGHXaf+zYz7zL9FU\/SaCaPruJTHVFzLpasFvkSLI6dt7vhuRPE8+m9mKtX09qvMLBeRO9n7zieAetEGoublMFges2TL2DWIOMbzXj4PSFnwD4joZB0eh9Fp9e9xMzY0ezbUN9qvn16GmV5dCWf6MgaizlOHVi\/sRZjfcf5s+CZT4m+sRFH6LO7BxvWAZzHa4B80F6F+65Br2D9+M\/f\/+ImZcTDUXhQMaDYCAFsnwSJPVREhX7w0ABtCta4IqlOgzg47sCTNMJ1L4+uZldH1BaexYjN133ZaC3i3swzGSdywPWIeF64z1jjnrgXzxs2xod14jOwxWdWcbE3FjcpY9R8YafzKppLcBUh4ppnpOcD6AkYn4EPVyTVSVgsLtGu4kkajfLoanZ0RCyMkXErsMWcpzbxM9lpSCdywPkCP7SXYB\/0Cdjini5W9haAtaM+7G+j3pPhYm8sblJGr\/lqoBBIRXPzdw6UUEA8j7\/8TJyoIB6cHsQsq\/O\/SUykXT1P8xSNsjy6mk91RD3GOmDM+AvYtHgdawSohrN86jugb2yEOD+9VjhXcc1bm6trzgD3qccO0Q\/QWNykDNd8Y+A4QAbt5gMn1ix8VteE0Cwcl3RA\/QI930bs+vwN4Au0ALGxXMlTNMry6Go+1bFXB4gXa3OgDgiuqRfhfJ2Xgfkn4Blx9OA8JdY70JqHNr3mGzVYwfnZWEbB9HANK17HoON9gOBOJrn6hb17zTeK6nwbgfl3IH5rV\/Nt2dHI5fdVfKojYo91AJtqwHhZr65GoMWqLydyAL6r\/\/TDNUbY4p54VvsQYLz4G\/OD4P4n5+9ibyxuUkZMTgbtBg\/ZHWivQX4C9oRf2MsVGe8rzjYC8+8A\/OiNTxLnBPDhDkRddIw0yu7\/CvjxCa75uti0XlzD6tXTiE991yap9PoG+5Dimiti5zy3Vm\/fFVzsjcVNyojN14GD0gNEgFEEZ5vFJZWKRoFVQGebiSWC+XcEeq8WyLd4ikZZHl3Npzq6+LBm\/CGkzdU942wZn\/req82V5utqQm3uGWdbxT3fWHY2mWlYCA5BEjY+PsMAdxOc62Edgj2RJAQHpIcU7wOus8Lq\/F\/hEu0qnqLRTB5dyac69hqprst6Zr3ymprE2p3lU98BfM\/Oi7CnRGDrxQbieev8Xawf\/\/n7X9ykjJ3mCygOx+h5ijxqzpzD4QoGfvC++7bEM+65EVjrjsTGciVP0mgmj67iUx0RSy\/vNeZYq1ET1+wy8NwJ4P+ML73my37F4Rqr3j9x\/lgn0ljcpIyZ5nsCiDRqvidAIa7GsaPZ2yiNzvBkHd+cAy72xrIj0K+ar\/vGPgm+KXf2eHNSzVIaneHJOr45B1zsjWVHIP0Z\/60GiT2++c8\/xrDzy3pHs7dRGp3hyTq+OQdc7I2limSd0iynNDrDk3V8cw642BtLFck6pVlOaXSGJ+v45hxwsTeWKpJ1SrOc0ugMT9bxzTngYm8sVSTrlGY5pdEZnqzjm3PAxd5YqkjWKc1ySqMzPFnHN+eAi72xVJGsU5rllEZneLKOb84BF3tjqSJZpzTLKY3O8GQd35wDLvbGUkWyTmmWUxqd4ck6vjkHXOyNBZNq1KhRo8bZEbHNt1ijNMspjc7wZB3fnAMu9sZSRbJOaZZTGp3hyTq+OQdc7I2limSd0iynNDrDk3V8cw642BvLjkC9F+vQpkPffLbyPt9Zsvf19u4zhh12n\/sWjA\/jLu+ivZNG8d21USe8ujTe\/9YLo1aBLztozO4dzzHmCGpT71\/xPt\/eWwdn+0ivxmfOO+srGXgu0ljcpAwGpUHThr8OHibvU8De\/BnwvBYRBNNriDa63zvcDOx7B6i5vhw6Xl\/FXTQCOOORJsgJzYs7saMjYtWGi9j0mrVH2IwI84r1zdrtNbkeO74T+hjrM\/rS6yOMwfmQnXfWN2Zw+zYWNykjHg6ACHrAkRgQyIpiREwwwIPRz3ooep9gDY1jhh3NvgH0jMmZncOvuItGAL6Mzhh6Qbc7sqMjntF4Yr0i3lh3+ozLK9hONKAZsDeexZjxI\/YRfplwREbnPds3Mtz8xrK6KHDNFwFHoRQX8OgZJ4KC50bJgL1cE3J+\/yqpTuOK6C7cRSPmai+PQMyJO3FCR1evEdxnfcZmBnr1NGLHd\/jIfVCXsT\/MNF\/si5jhs\/NhpMVs38iw+\/7n739xkzLcYUIAOA07Bw8TxPlg50AJnsPz2Jf76UH1GjufI\/AJz66wOv9bUFPVffWL5FvcRSPmGPXB0Lzg+escfL4L8OdTEK+rBYKc0ZjxWWsEXFEnrvnSD\/wF8FOvFd5TsvOe7RsZcV\/QWNykDNd84ZxLajjc++Z14sxC8Xo+uIMDmKPfkjO\/CiK7Pp8GfmAgBoLrOzTgu2iEs44aaZ644sU9zLkDn+jI2GN8hLFjaGOJ1wDPw646ZmD+J\/RqmL5w9Hxy\/SU779m+kRH3BY3FTcqYbVgaiJsPIXaT3ImhfuFeT8SYWDOxKDuafQP4caJIvsFdNHJkGs3m9y84pSPWGTUP1AW\/tF2NULMVPvXdNULYtGfwrFxsbLQZu31jhNu3sewINJucGohzvhfoDD0x6Bfu6SER5\/dMLMqOZt\/A+c2zwd8ruYtGjhmNnLZXcErHrNa0XjAvNrNePY341HfXfN259HyDfdYHrrvSN0a4fRvLrHNKbL7xmkA8fptCRH4mzjaLrk20qOALPxNn6\/k+AvPvgCsSxng1d9Io5olqhHuxwDWPrmZVx14+a5y4jyajII\/YdJwmzpax6nvE7el8X2m+2Xm7HuFsGXFf0FjcpAx3wAhIBWDgdJgB8Jl4fxX6oAeB\/VVYfNZr3If4Cv1aYXX+t4iaAlzHGK\/gLhoxz6JG\/NKihjGP7qAh2NEx1mLME8Sm68Zaitfx+Vl0jx1co+z5Hn+EAJ69MnPeM30jw8XeWNykDAYcDwMOw86BeQrF4BgdJkWKa0R0vXhQAMKN7kPUE8JeBc+CYzWWb3EnjWLe9f61wHEXDQH82QExaEyx1qCB3tdmBKIm8f4MeO4TEEOvZtU313gBzz0yc95Z38jAc5HG4iZl9JrvaSBq1nw\/BSKvxrGj2dsojc7wZB3fnAMu9sayI9Cvmu\/ON84K+GY89a1W\/C+l0RmerOObc8DF3lh2BNJ\/6n6rQWKPb\/7zjzHs\/LLe0extlEZneLKOb84BF3tjqSJZpzTLKY3O8GQd35wDLvbGUkWyTmmWUxqd4ck6vjkHXOyNpYpkndIspzQ6w5N1fHMOuNgbSxXJOqVZTml0hifr+OYccLE3liqSdUqznNLoDE\/W8c054GJvLFUk65RmOaXRGZ6s45tzwMXeWKpI1inNckqjMzxZxzfngIu9sVSRrFOa5ZRGZ3iyjm\/OARd7Y8GkGjVq1KhxdkRs8y3WKM1ySqMzPFnHN+eAi72xVJGsU5rllEZneLKOb84BF3tjqSJZpzTLKY3O8GQd35wDLvbGsiNQ78U68b2p8a1n2f0VsK+upUPfPdp7Lydj2GH3udPAD\/diIMaL8c2XE424i0ZkpEl8ty3Gt14YtQp82SGrNa0LDq0bzO\/dmwXPfQr8jO\/rjbUfY4vv+42+z5z3o97ny4DYDHj4vOZh9u6fACKpUPishQZB9Ro+nBL218AHp19MVsyJyfsL7qARgD5Rg3iNnIgN+S7s6JjVIsB1bFqEmvE+a7c3vwee+QQ2UT2rWOOMjb7hGdQAoe+YR7LzzvrGDC72xrIjUDwcEAMECILCxYCA3v8UHgKh6JpwtCkQVuOYIa7xSxgnh8YXNQCwaTL+iis1UpBzWqwgaoLPsN2RHR3xTIxHa83VgeI0g+1EA5qFPuJstEfAFutVe4s7yxjP6Ly5b9Y3Mtz8xrK6KOh9M6rDERcwRI2HTGbWVDBXDwl7Yc+I+g3wzC+T6lMQE\/x3+jg9eVazOp7iSo0U6KV54Yg5cSdWdZypm15tEORQ1Cx7xvFJDuBZ7pmdnzZfR2y+o\/Oe7RsZLvbGsiMQC5rO0GEePIc6G6\/BzoE6cDhYX3GNCGA\/7Evo8wqr878B\/dYiQ5K5JHTaf5s7aAQYO84dnzFUI+qo90\/k5CngzwoztYj4NV4MbXC4pzUCuN4Kq\/OJ5jF8GTVf9qLor6LxZec92zcysG6ksbhJGa754lqdpg1z4nzCOZ\/iDgiH1xNR5\/Z8G3HC509hEmnzRbzaWAjmrSTOCe6gEYAfUSdcUyfNUwIdtSCvZFXHrBZBjI81wLrA55gvLt8yMH8V+kpcbSu47+qcxFiz857tGxku9sayI1BsWFEwooHEgAGeU2F26CUFhOqJGBPL+TbCxfprXNzQu9d8V+I7wR00AvAjnncvZ0jM7ytZ1XGmFh2oF9aiqxFqtsLqfBB1HzU93BvtgXhxv3fORM97pW+McH41lpHzPWJywikenKKBOOd7ga6gSaP0fFK\/ibON2NHsNPAXfmhiOT15VlkCnuYOGgF3tjOauOeuYFXHmVp06HOYh\/lKb90RO77jGTfi3rge+YMY8NwsmIvzXukbI9zejWXFQcLkpTO9ZNZfYhAj\/ipztlV6a8C36JOzxVhmwPyrcbEweRVn+wV30Ai4RkLtAHIHcxTmhGp7Fas69nxHnKwT3EdeKNqcnSbOlrHquwONMJ4f1h01Xtzr7Z2d92zfyHD7N5aekyPorDYsBKWCsOg5hwHwmvdXAnJgz5hIBCKr0JjLBCT0a4XV+d+Afkf9YoyYE5P3F9xBIxDzDuCaGvG+5pDLk6vY0TGrRdzXdaNGrG9qEu\/Ponvsgjg0f3E9+hLAPY09wlhG5z3TNzJc7I1lRyDXfAFEgp0j3mcS9O4rFClrztk6EI77uUODqCeE\/TUjfRgvxmpsp7iDRoT52tOEWvbuXwn82SGrRcQ4uh810WY1C577FNQvm2\/0SQdqO56zDm3IM+ed9Y0MPBdpLG5SRq\/5ngaiZ833UyDyahw7mr2N0ugMT9bxzTngYm8sOwL9qvnufOOsgG\/zU99qxf9SGp3hyTq+OQdc7I1lRyD9ef+tBok9vvnPP8aw88t6R7O3URqd4ck6vjkHXOyNpYpkndIspzQ6w5N1fHMOuNgbSxXJOqVZTml0hifr+OYccLE3liqSdUqznNLoDE\/W8c054GJvLFUk65RmOaXRGZ6s45tzwMXeWKpI1inNckqjMzxZxzfngIu9sVSRrFOa5ZRGZ3iyjm\/OARd7Y6kiWac0yymNzvBkHd+cAy72xlJFsk5pllManeHJOr45B1zsjQWTatSoUaPG2RGxzbdYozTLKY3O8GQd35wDLvbGUkWyTmmWUxqd4ck6vjkHXOyNpYpkndIspzQ6w5N1fHMOuNgby45A8cU6o\/ds6ns0V97nO4uut\/JeTsaww+5z34LxYdzlXbR30UjPPw7mX3z3Lca336g3C3z5FGjAd+ISp4u+szfW9C\/f56vvGtb+QeJ5KWqPgy\/RmjnvXt+YBc9FGoublMHGNWqePDzO4TUFYCPm9Q4QSJsN1tMkg2h6P85\/+isleQ4ac7y+irto5Ih5gM96fSc+1RFxuZyArVe\/sb5jLc+y4zv81IYL\/\/WafYNgfrYP7mv82XlnfWMG51Nj2RFopvnCYQ04BgRgi0kxCxNCwcHwoHhfm7t7BvN\/kVTfAHrGLw\/V4EruolEkFjfANXS7I5\/oyHxHfFpnrg4Ul1ewnWhAGXhGzyL2mhgLiM8oLpbReVObrG9kuPmNZXVRkDVfiBPXdQFjXhSGOBEUJwjWxz7xsxL9hg+\/SKpv4BLxLtxFI4V5G\/Mw5sSd+ERHxhrzpFcbxP0oyp5xnMiBrNcAxhlhj4jPjtbrxZn5EMH8SGNxkzIyQXAvHp6bv3OgCp7Vxok9eI39XWPHM3pQ8GlVg9X534KaIiZ81viv5i4aKdAm5hvPXzWMc65kV0fEylxAPFqP1IHxYuh93IvN7Ko6QQ33fqABd6bEPZud92zfyHCxN5YdgUbNFw7GNXvz3dxVVMSYYD0Rdd7MN2vkU59PwbgRA8E1i+5K7qKRAp9iATEH9fyRN1qQV7KjY6yrmPMxPtYA5zid2LQ01zJ2fCfwBc9jjPoMRvQVZD2nd96zfSMDe0Qai5uUMWpYcNwVf0+I3STHWiMRIVRPxHhYvVh67Gj2DeBHjIW6rBTJN7iLRoRFN8Mov3\/Njo7R95nGgfusHVcjzKsVdnx3YJ2R\/\/A39hyNJ0PPe6VvjHCxN5YdgUbJCbtz0jnfC3QGiD1q8tjLie\/87sXSA\/PvgPObZ1PN93\/p\/aLpsZoT32JVR+Q9nnFj1Iy0XqBTbHa9ehqBPU+Q9QnnG+a7\/tADvq72jREu9sayI1Cv+eIadlf4ToxVgZReMdEv54uz9WIZgfl3APHHImGMV3MXjQgKKmoFXB4xJ1we\/5oTOsbYsSaajKINzmnSq7cRq773alH37vkeG6abB7Lznu0bGZgfaSxuUkZPpN63BmAAfAZzVwNSuJ4KDFF1f1yr0LgH8RWus8Lq\/G8RNQW4jjFewV00IlEn4vLI5clVnNAR8WjzRWy6bswj1jc1ifdn2fE91nDcO\/oefQW0ud7C9UbnPdM3MtRH0ljcpAwGFw9Dvz0dCBjPcYwOkyI5AQnncOihEdh43\/kGUU8IexU8C47VWL7FHTXq5VLMo7toCE7oiBrQ5gsQo8YcazFqos1qFjy3Q+YbYtH70Tf63mPmvLO+kYHnIo3FTcroNd\/TQORR8z0BRF6NY0ezt1EaneHJOr45B1zsjWVHoF81351vnBXwjXnqW634X0qjMzxZxzfngIu9sewIxOaL8a0GiT2++c8\/xrDzy3pHs7dRGp3hyTq+OQdc7I2limSd0iynNDrDk3V8cw642BtLFck6pVlOaXSGJ+v45hxwsTeWKpJ1SrOc0ugMT9bxzTngYm8sVSTrlGY5pdEZnqzjm3PAxd5YqkjWKc1ySqMzPFnHN+eAi72xVJGsU5rllEZneLKOb84BF3tjqSJZpzTLKY3O8GQd35wDLvbGUkWyTmmWUxqd4ck6vjkHXOyNBZNq1KhRo8bZEbHNt1ijNMspjc7wZB3fnAMu9sZSRbJOaZZTGp3hyTq+OQdc7I2limSd0iynNDrDk3V8cw642BvLjkC9F+vE92zGl9asvM93BvUDI76zFPTey8lnd9h97tsgfsR7B+6kUZYnMW8xvv1GvVngyw76TtwsJxBrfIlVfOftL9\/nqzWLsdpHZvqM3n\/8+3wZMIViQhMeJu\/H+avQBy0kiBSvVVgIqtfw4ZSwV0N9q\/m2aJ4wb3D2BDnhCvAO7OiIWDUPEFsvL1inGj81Yn0zt7TeZ9jxPdYo\/WOfiL7EPsJr9TVeYw\/tE7iv11nfmAFrRhqLm5QRDwfExgfgNJM8BgTcM7NgrZhQ9AvwkHgogDYFa2gcM+xo9m0QB8cduItGyL+oCXJOv3RxX5vxndjREc9oPK5eAe2IX2sTn1UfAFus34xV3+mP1iyAf+wTzg\/tIzEWAC0YDz5HvzRHZvtGhpvfWFYXBe4wXSPVpNbPJBaB4kRQeslAv1RQJfoNH9w6I3Y0+ybwn\/q7mK\/gLhq5PIh5F3PiTpzQ0dUrgC7UQmvA1XKvnkacygH6CVzdq7+YG\/sMewmIZw+oD\/7O9o0MF3tj2RHIHSacZgAAQep1nA92DpSw4SjqlxMZxMPRg5lldf43Uf8R866ep7mTRvCFxckc4TX1g274y893Af58Cuog1oLWB\/5qQ4s1Aq6qE+6Lv+6afYfX8J1nSzgHuOYNuIbqojhNRnA\/pbG4SRmu+QIGyUGy+TtgLTyrgkA07uOaM4iH0\/NtxK7P30A1QFx3aRx30gjAHw7NGeagnj\/y5o+gI\/KBMWt8rB3kPojNF\/dUIxCfmQHzPwVrxGZJXzjUJ8asNs4DMVaC+4h5tm9kcD+lsbhJGa5hwWF1mgLxEON8gHufJHk8BF7jL4TqiRgTy\/k2AvPvABJFE6mabwvOGr5oMUIjlxvE5fdVnNIR67B5xBqAFppHrkZYWyt86juej\/kMP9XGs9LGiM+wcajvsWYI5630jRHcT2ksblJGTE5ea4IDDcQ53wt0F\/UDe8WDA+o3cbYRmH8H4EdvrMTzDeDDHUB+aWGCXr4qd9AQnNKRtYaYsGZvAKdZr55GcL0d8KzrDbDHc8l80\/uu5+z2jREu9sbiJmXQWToTr4kGir\/xG8fZZnEiYT\/amGRaYM7W830E5t8Rjf9q7qKRyzGeOf7i3qgYr2ZVx14+uzhJ1MjNHT3fYycH6H9vL9xD7SvaC+CnxgI0PsyNfqlttm9kxD1AY3GTMtwBI0AtfDpMoXjNZxjwSkAKfeD68RrAJz1E+BcPhn6tsDr\/V1TzbWGeaa5CI+ZFzFPg8uQqdnTs1aJqoGC+xhtrKXu+x47veGakPe7puvQVuQ943uwr8RrE89XnwUzfyFAfSWNxkzIYcDwMOAw7hyY0oBAco8PkgatoEc7hiPsBCMf7KiiBqCeEvQPVfD0x72IexDxazYdvAn92QAwa06jWoEeMeaa2MvDcCvGcdKh\/MTZtnADXet\/1EL3vzjvrGxl4LtJY3KSMXvM9DUQcNd8TQOTVOHY0exul0RmerOObc8DF3lh2BPpV8935xlkB37SnvtWK\/6U0OsOTdXxzDrjYG8uOQGy+GN9qkNjD\/XPgFIxh55f1jmZvozQ6w5N1fHMOuNgbSxXJOqVZTml0hifr+OYccLE3liqSdUqznNLoDE\/W8c054GJvLFUk65RmOaXRGZ6s45tzwMXeWKpI1inNckqjMzxZxzfngIu9sVSRrFOa5ZRGZ3iyjm\/OARd7Y6kiWac0yymNzvBkHd+cAy72xlJFsk5pllManeHJOr45B1zsjaWKZJ3SLKc0OsOTdXxzDrjYGwsm1ahRo0aNsyNim2+xRmmWUxqd4ck6vjkHXOyNpYpkndIspzQ6w5N1fHMOuNgbSxXJOqVZTml0hifr+OYccLE3llmB8AIdzMXgy2ji+zfjW870BTwY8b2bn4CX7rj1snd59nzGX9qyF\/pgzl2I8Z7U+BPupJGeLUZ8N23UEOPbb9SbBb58Qu\/NfVmdZJrNgOc+oed7r4bJifO+1ft84YA2JQqggbtrBs5GHIXYAX5grdho6BOhyISHEr88NPFinA5d80pifNQ46nIFd9GIZ655h8LSa5x3duZX8YmOzO\/YPJg3zHvmTbxmLVNDre0Z8MwuPd+jL7GGZ3zPzjv2AOTLan5gz0hjcZMcMw5BCIqFA8YcBbYo5irwlyM2GeznbCy0GAOATZ9xcyKzmn2b6DvAddT9Cu6kEYaCQlSNNEfuxq6OiJl1EuOHzeUN8x5\/4zOwZXUR+Ybvzg\/MYTwzvo\/Om82azRzQtoKb31hmF0VAWQDqZAwYZEHg3qgINEGwf0wgPI89FPXD+Yw19LBinI5Zza4A8SDOq7mLRlqYhL+OWGAub+7Cjo6IhTmAXI7NyMWLuuAzTjO9P8s3fNd6JurvjO+j8+7FuZojLvbGMisQgtKg4aALkus5EWLSf0Lcv7c25vAAcX+UdCDG6ZjV7AoQS+b\/L7iLRu48kQPMFX6GbvjLz3fhUx0RO\/OfYE3kvYI6Ydz4G+9TpxW+4Tv9YB2z5\/A6852fe+et\/UJx647gfkpjcZMcMYnhJJ7VZsdgAJzV5gjYICnUJ8T1Kaprvpjb25uHR1yxRnT+nYDfd\/HtLn7E4gTIB9iQE+4+cgBz7sCnOroGFvOEtcGY8bnXwGJ9jfiG74C+cKhPuB75np13b0\/cj\/1sBPaINBY3yQGH4JjCBszBIAHm95rvygH2iGL01sYcikkfFRyGFpqLM8IY7wQLKsZ3FXfSiAXHocXoYC7dQUv48Qm9ZsJ8wUD+ax3wWtHanuUbvsOm9cqzYi\/Y8V3PW\/uF4tYd4fZrLLMCzTQlPUDMjfN3DrAH9onNnQIq6ocTMIo9E+epGE4Bf+FTr5lcwd00Umby0OXSFXyqI3LDNZOI1gH+xtrS2p7lG767c1Hfdn3nur25q\/ngYm8sswIhKG1K+KzXQOdAgBiEs+2CdaLImS3GAKLNzYnMavYL4C\/8uVPjBXfRCGcPjRScL236mfCX0B00\/VRHFx+uR3XinnG2jG\/4jjXjDyhtmJnv7r6eN7+Y9eydLcPF3ljcJAcchuMEAatD8RrgmgcKO66jcLu4Rht9wH1cE4rIbzDnc4zToWteCfy8iy+Ru\/gVz7x3rXmJ3Mpy4Fd8qqNrNrEu4nWs1ajZLN\/wPeY8fe31mZ3zxp66704+qI+ksbhJDteUeGgc2sQAheCgQD0wR0UZ4ZovyHzC+no\/JpSLM4Ln7oDGEcfV3MEHkp05C5JjtdC+Cfz5BMQSGxiAXWOORE1m61Jx664w63vsA5nvM+eN\/sL7zocMPBdpLG6SY6YpfQpE2Tnkkzyp+d6Z0ugMT9bxzTngYm8sswL9ovniGwwN+Eqq+Z6hNDrDk3V8cw642BvLrEBoSpiLEf8pfwrscRX6T5Fqvp9TGp3hyTq+OQdc7I2limSd0iynNDrDk3V8cw642BtLFck6pVlOaXSGJ+v45hxwsTeWKpJ1SrOc0ugMT9bxzTngYm8sVSTrlGY5pdEZnqzjm3PAxd5YqkjWKc1ySqMzPFnHN+eAi72xVJGsU5rllEZneLKOb84BF3tjqSJZpzTLKY3O8GQd35wDLvbGUkWyTmmWUxqd4ck6vjkHXOyNBZNq1KhRo8bZEbHNt1ijNMspjc7wZB3fnAMu9sZSRbJOaZZTGp3hyTq+OQdc7I2limSd0iynNDrDk3V8cw642BvLnQTiy23ce3r5buCr33oGrtRMXwDk9Ijvrv32m+h6YO\/ic2Z11DMfPYP8yF5ghZyJc1bfzQ1GfjiwZpav7j3eMedjTWC+3ne+633ng75YDD5kYF6ksbhJV6GNJQpYzbfVgHrxmkmob53D9RUN+CqN\/mjM6Ig52lBw3u455seo+fbmwIZ7gHnI6x7Ohx5skKNcZVwaK\/3VvqDXXJfQd10jNvR4H\/uqHvg80hDonqSxuElXwWYCMeK3SzVf\/4sE10xY\/OVnwuT8NXfKqyeT6ciaicCmzRF5AhvGqHHgPmpP56ARxXqEbbQOcH45sDZ9i\/lLtDfExulynr7hr84HGo+rD9h43\/Ud2vC3R1wTNBY36SooMP+qaNV8PUiuXsKCar7PZldHPMfmi5phM0Gu9JomcynOoU1hjY6Y8T02yrgPYTyu+TJOkvmmzRefox7aXHtruX0V90xjGTn5axgogkZg\/Ayq+bZEjRxIrJhcv+AuGj2dHR1HeREbK8EzvQaNz9rwAOtxlHurvmMf13xho9013+gb4++BZ7ierq3gefQa1UVxmihu\/8ayKtA30eYLECAD52FX8\/3\/WmC4xCFIDtXzl1yt0R+FVR2ZG73GgHzRxgpibcU5rsHN1OOq7675xkYafXE5juve3lhf77k9AeZgb6zfa77uOeL2byw9J68gNl9NpJnD\/hV30gwJ4JKDSYkEuoI7afRkVnRkjcTmqiBf4n1ca0OLc+J9wL1Yq47VHMA+saFhDa1590XAXOdgH4lg7bgebHFPwHmv\/eULKCzvqXBXcSfNXBGoZldxJ42ezKyOzAPXSBTc18bK53oD912DYj2OyO5HYvPlr143XEMkrmFiXTyndQJQK6oHoCb424sT649+2LhnGoubdBUMNAoEcWDHeHPzjckJomZMsqt1ukqjPxozOjIHYm44MCc2m0icgwYVm5mzRVZzwOV3BHtib4L58Zm4Dq7hS+wrgA1eURsbsdaTs0XimqCxuElXERsJYbBZwL\/iKs2YFKoBkpGJxl+8Lsl+zVUa\/dHIdGRtaEMagVxZbb5A9+Ceo19+YDUHdpova4I5H6+xXuaH1hDA\/Njg9YsGfmYauj0bS+bYL+k1X8DG8ubmC6gRhyYNEkTv6XCafhPsWXxOpiPrwg1tIAT5stN82XBHa0cwb4Wd5guiBprrao9DUbvzAb7xvjbiHpgXaSxuUjGmNMspjc7wZB3fnAMu9sZSRbJOaZZTGp3hyTq+OQdc7I2limSd0iynNDrDk3V8cw642BtLFck6pVlOaXSGJ+v45hxwsTeWKpJ1SrOc0ugMT9bxzTngYm8sVSTrlGY5pdEZnqzjm3PAxd5YqkjWKc1ySqMzPFnHN+eAi72xVJGsU5rllEZneLKOb84BF3tjqSJZpzTLKY3O8GQd35wDLvbGUkWyTmmWUxqd4ck6vjkHXOyNBZNq1KhRo8bZEXnvV1FRFMWFVPMtiqK4gGq+RVEUF1DNtyiK4uf8+9\/\/D5KbNVKJUcgbAAAAAElFTkSuQmCC\" y=\"0\"><\/image> <\/g> <\/svg><\/span><\/p><p><span class=\"math-tex\">$\\overline{x} = \\dfrac{4.45+6.55+10.65+6.75+4.85+2.95}{32}$<\/span>&nbsp;= 66,88<\/p><p><span class=\"math-tex\">$S^2_x = \\overline{x^2}- \\left(\\overline{x}\\right)^2=\\dfrac{1}{N} \\sum n_i.x_i^2 - \\left( \\dfrac{1}{N} \\sum n_i . x_i \\right) ^2 $<\/span>&nbsp;=&nbsp;<span class=\"math-tex\">$\\dfrac{149200}{32}- \\left( \\dfrac{2140}{32} \\right)^2$<\/span>&nbsp;= 190,23<\/p><p><span class=\"math-tex\">$S_x= \\sqrt{S^2_x} = \\sqrt{190,23} = $<\/span>&nbsp;13,79<\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp;&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;<span class=\"math-tex\">$S_x$<\/span>&nbsp;= 13,79<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2023-05-28 03:38:37","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.