Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 10Toán lớp 10 - Sách Kết nối tri thứcBài 10. Vectơ trong mặt phẳng tọa độBài tập trung bình
{"common":{"save":0,"post_id":"6454","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"6871","mon_id":"1158767","chapter_id":"1158890","post_id":"6454","question":"<p>Cho M(2; 0), N(2; 2), P(&ndash;1; 3) l\u1ea7n l\u01b0\u1ee3t l&agrave; trung \u0111i\u1ec3m c&aacute;c c\u1ea1nh BC, CA, AB c\u1ee7a tam gi&aacute;c ABC.<\/p><p>T\u1ecda \u0111\u1ed9 B l&agrave;<\/p>","options":["<strong>A.<\/strong> (1; 1)","<strong>B.<\/strong> (&ndash;1; &ndash;1)","<strong>C.<\/strong> (&ndash;1; 1)","<strong>D.<\/strong> (1; &ndash;1)"],"correct":"3","level":"2","hint":"","answer":"<p><span class=\"svgedit\"><svg height=\"200\" width=\"300\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"202\" id=\"canvas_background\" width=\"302\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"201\" id=\"svg_1\" width=\"287\" x=\"0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAR8AAADJCAYAAAAaRzbLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACdkSURBVHhe7Z0JWJVl+satzCUzNc1ymlyaMk3HXEZL+6u4lFtZLlmN5dKkjmNa5paa5QIobmAuiBsii+IuiiKgICLgCigqCiKIC+KWa271\/M\/9nHMIDRE4y7ec53dd53I4Mpp837m\/+73f53neYmQHfv\/9d7py5QplZWXRmTNn5CWvQr2ys7Pp1q1bprtJ0At2EZ\/c3L9\/n27fvp3zunPnjrzk9cjXH3\/8YbpzBL1hd\/ERBEEAIj6CICiCiI8gCIog4qMyLl26RPfu3TN9JQj6RcRHRUB4fHx86OLFi6Z3BEG\/iPioBOzseHp6UteuXSk9Pd30riDoFxEflRATE0MdOnSgFi1aUFpamuldQdAvIj4qICUlhVavXk0dO3akli1bivgIDoGIj8Ig51mzZg0dOXKEevbsSU5OTiI+gkMg4qMgyHkCAgJo6tSptHnzZmrfvj01b95cxEdwCER8FAQ5j5+fHwtPRESEiI\/gUIj4KMSxY8fY9aBxEo23oFevXiI+gsMg4qMQixYtoi1bttDNmzf5a3T8f\/nll9S6dWuKi4uju3fv8vuCoFdEfBRi586dlJqamlPNDPFZt24d+fv7sysS8RH0joiPIAiKIOIjCIIiiPgIgqAIIj6CICiCiI9CXL58mWcTY6ysIDgiIj4KkJCQQIsnTaK5I0dSRGioDEcXHBIRHwUYOWgQeVWuTH5lytCgzh9RRnomyZx0wdEQ8VGAto0aU8yTT9HpYsWoeflqNG3qJjp37jr9\/rsokOA4iPjYmTt37lOT+t2p\/5Mv0NgSFemlJ\/6PalR3pTFjtlFy8kW6d8\/YaiEIekfEx87s3JlBNWr8RM8+1Y16dx9Fzd6ZQqVKTaTnn3ej\/v2DaM+eMyxQgqB3RHzsCETlP\/8JojJlXKlmTQ+KjDxBQUHJ1KPHKipbdjI9+6wrdesWSCEhqXTjhrRXCPpGxMeOwPW89tov9MQTE2jUqDC6dOkWL7P27z9LX321gSpXnkYlSkyili29yc8vka5c+U2CaEG3iPjYCYTJgwdvNjgcV3r55RkUHZ1Bd+\/+me8kJWVz7lOjhgc99dREeustT3J3j6WzZyWIFvSJiI+dOH78EtWvP98gLBPom28204ULxlEauTl9+hrNmbOH6tadR8WLT6Rq1Txo9OhwSk6+IEG0oDtEfOwAnIuzcxRVqDCFXU9U1IOuJzfIepYuTSAnp6VUqpQzB9H9+gXR7t2nJYgWdIWIjx04ceIyNWmygN3Ml1+upaysG6bfyZtbt+7Rli0pHEQ\/99xkDqi7dg2k4ODjEkQLukHExw7MmBFDFSu68W7WqlWHWVwehzmI7tt3fU4Q\/X\/\/t4R8fQ9SdvZNyYEEzSPiY2OQ40A0nn56InXo4Efp6b8Wagfr0KHzNHo0guhZpiB6Pk2evJNOnboqAiRoGhEfGzN79m52Pc8840IBAYfo5s3CL5syM69yEI3AGg7o73+fSSNGhNLRoxJEC9pFxMeGnD9\/g5o392bXgwD55MkrRa7bQdazYkUStWrlw0KG8Lpfv420Y0d6gZZxgqA2RHxsyOrVR+jFF6dTyZKTaPHieIvDYuyQIYj+97\/XULlyUzhD6tjRn4KCjtH163dM3yUI2kDEx0ZADD77bDWVLu3C7gc7Xn9YoVwZy6z4+HNcsFililHY3n0XQXSiwWlJEC1oBxEfG7F5cwpVrerORYWLFx+w+hY5xGzcuO30+uuzeQsfFdGurhJEC9pBxMcGoBjw88\/hepy5l+vYsYtWcT0Pg520+fP3UcOGXhxEv\/zyTBo+PJSOHJEgWlA\/Ij42ABXM1aujR2sCb5Nfvvyb6XesDxxVYOBhat3ah8qUcaHy5afQ118HUWQkgmgpSBTUi4iPlYHrQWEgdqTgejCfx9YuBH8+xnD07LmGxQdBdIcO\/rRhQ7IE0YJqEfGxMnA96EzH2IyRI8MMrsc+w+EhQAkJWTR48Bb6299mmILoxeTjgyD6huRAguoQ8bEiiHXQsQ7ngfwlJibT7tlLWtpl+umnCKpZ0xhE16vnSS4uUZSaellyIEFViPhYEXzA0f6ArGfIkC08LEwJEER7ee2jRo3+DKIHDgymgwfPP7KbXhDsjYiPlYDrQc8VMhe0P0RHn1L0g24MopM4iEb+hM74Pn3WU0TESQmiBVUg4mMl0DrRpMnCnLEZ2dn5j82wB39WRK9mUcRuWMeOftym8euvt03fJQjKIOJjJTA2o0IFN\/6Ar159mH77TR39VhCghyuiUReEwkfMFZIgWlAKER8rgIylWbPF3EDarp0vnTpVuLEZ9gAV0VgW1qo1h90ZRrUag+hLEkQLiiDiYwVmzdrN407Rx4WxGWrtMse2\/8KF+6lx4wXsgJBN\/e9\/mySIFhRBxMdCUEODehq4CYzNyMhQn+vJzY0bd3hZiMFmKAnAyxxEF2XWkCAUFREfC1mz5giPOYWT8PZO0MQHGC4HxZAIxs05FcRo+fJDfFaYINgDER8LgNAYx2Y4U4sW3hYNC1OCxMQs+u67ED5RA+LZoMF8WrQIQbScFSbYHhEfC0A\/1SuvzKQnn5xgcD3xmly2pKVdITe3aKpdew4H5giiccxPSooE0YJtEfEpIrdv\/zk249VXZ\/GHVUuuJzcIohct2s91SnBAxoroTdwrJkG0YCtEfIrIjh0ZPCwMrueHH8I1n5WgIhr5Fcay4khnBNG9e6+j7dsliBZsg4hPEYDrwQcTbQtwPfYYm2EPzEE0\/m0oHUAQ3b69H5cPSBAtWBsRnyIA11OtmnvO2Ay9fTARRA8dupXrgLAMw5E9Hh5xXEwpQbRgLUR8igDGZqBREx\/O2Fj7j82wB9i5mzrVGESjhgkziiZMiOSRsBJEC9ZAxKeQnDz5a87YjG+\/3WLTEalKg3\/bwoUHHqiIHjBgE+3bd5YnNgqCJYj4FJKpU3fljM1QYliYvUEQjfPlO3X6M4ju0WMVhYWd4N8ThKIi4lMIcM46XIBxbMY6unDhpul39A2CaMwn6tVrnekQRGdq186P\/P0P6tr5CbZFxKcQzJgRy64Hu1w4jVQtYzPsBYLosWO3UbVqHlSqlDMH0bNmSRAtFA0RnwKSmXmV3nlnEbue995bxl9rtajQEvDvnj49ht58cy5XRKPUwBxES0GiUBhEfAoItprhelDRrOaxGfYApQUYRtaq1VKuBTIG0Ru53gk1UIJQEER8CgDGZjRtanQ9+MDhSGJHdD25QdiMEa0ff7yCnntuMgfRn3yykkJDJYgWCoaITwFYu\/YoVao0lbebly1LlAHsJsxBdO\/e6+mll6ZzDoRJjn5+EkQLj0fE5zFgeYWxGfhgtWzpLa4nD4xB9HYuRMTPCXVQWKYiH5IgWngUIj6PAcsIZBpoIMXpn46c9eQHhGbmzFiqU2deThD988+RlJwsQbSQNyI++WAem4GnefXqHjyEXVzPozEG0fF8VhiCaIzm6N9\/I+3efVqCaOEviPjkQ2Rkeo7rQQOpnHX1eIxBdGpOEI0euO7dV9KmTcfp2rU7pu8SBBGfR4InNWYcY2sdrmfvXn2MzbAHWGbt2nWK+vY1BtGoiH733SU841qpI6QF9SHi8wjgejAi9YknxtPw4aEG1yO7N4UFR\/KgIhriDff4z396kru7BNGCERGfRzBoUDC3UWDZhcxCXE\/RgNDgNNfcQfSIEaGUlJQtQbSDI+KTBzh7q149Tx6bMXRoiLgeC0HNz5Il8TkV0RUqTKGvvtpgCqJl99BREfHJg2nTdlG5cpPZ9cTFieuxBuaK6J491+SMaO3ePdAUREuQ74iI+DwEzln\/17\/MYzPWSkBqRe7evU\/x8efo66+DciqiEUQvXRovP2cHRMTnIZBPYIsYHwyMzZBlgfVBEP3jj9uoZs3ZnAMhiEaBIqrHJYh2HER8coFwFGdXwfW0aeNDp09LK4WtwM\/ay2sfzwSCANWoMYt3FZOSzksQ7SCI+OQCT19kPXA9GJvhaMPC7A1yIB+fBK6IRle8MYhezzmbOE79I+JjIjv7Br39ttH1YFcGT2ZxPbbHHER\/8cXanCC6W7dA2rjxGF29KkG0nhHxMbFu3VGqWNGNq3ExEkJcj\/1AEI2jmfv3D6IqVcxB9GLenr94UYJovSLiYwBCY24gdXJayjOJxfXYn0OHztO4cdvpjTfMQfQ8npuNuisJovWHiI+BbdvS6G9\/m8GtFL6+4nqUBCH\/ggX7qEEDBNGTeEbQ999v5R0yCaL1hcOLT+6xGTgCGSd1iutRFuRAmBiJHUcE0Zid3afPegoPT6Pr16UzXi84vPhERKTTyy8bXQ+2eiXkVAc3b96lkJBUDqKRxSGIxohWjLS11TW6e\/cuZWVlGR5AJw0CeMP0Lv5bbtKZM2ceeE+wHIcWH7gelPvD9aCDHacvSCuFejAG0eeoX7\/cFdGLyds7ns6du271HAgiExAQQIMGDaLQ0FDD8tvY05eSkkKBgYH8q2A9NC8+0dHRBou+jJYvX06bN2+m9evXU2ZmpuHGfLyI5HY9yBXE9agTY0U0gug5ORXRkyZFUVraFasKEJzPzJkzqWrVqvTdd99RRkYGv793717y9\/c3\/H1p\/LVgHTQvPtu3b6e6desaHExPfjoNGDCAvv32Wzpx4sRjBeh\/\/wum0qVd2PXIsDB1g7qrBQv2cwU6yiHQ9Dt06FbeIbNWEH3lyhXDUi+EOnXqZHBY71J4eDjdv3+fYmJiDAKIjQiZbmBNNC8+SUlJVKFCBXJ2duab58cff+SvfXx8DMuqRzsZ3MzYysXYDHE92gBBNPrt3n\/fN6ciGtMSsVtpjSA6ISGBkpOTydfXl+rXr8\/30rlz52jHjh3iemyA5sXHy8vLcCM+a1hCRRicyz0aMmQIlSpVit\/P70llbiA1u57798X1aAG4HJwogokDxiDaldq397NKEI2cJzU1lbKzs6lPnz7UrFkzg9itprCwsJwlmGA9NC8+vXr1ohdeeIHi4uIoKiqKGjduTC1atKDExES2zHkB19Oo0QKD68HYjHVywJ3GgAChIhqD3qpWdecgulkzY0X02bNFC6KR9wQFBdHx48f561WrVlGDBg3o008\/peDgYHbVgnXRtPhgWVW7dm1q3rw53yCwy8OHD6etW7fSnTt52\/CrV6\/StGmbqWzZn\/gE0jVrMDZDjnXRImlpl2nixB1Uq5Y5iJ5HkyZtpX37jtKFCxdYUApKeno6O5zTp0\/z13A\/Xbp0MfzZtXgj41EPMqHoaFp8kPeUL1+exo0bx2t11GdgjZ5f0Dx7+nT6+s129NJTTtTaaR6dOSOtFFrGHES\/884iw8NkLL3x98\/o54\/+Te4jR1LSwYMF2vUEeHjt2bPngaW6q6srffjhh7Rz507TO4I10bT4INcpU6ZMTt7zOPA06\/X667TpySfp38VK0qcfTaT583dz3Yi8tPuaO3ePQSSWU7ly31D7YlXJr9gT9L3hvljmPsuwpH78cgkPLRcXF1q6dCnfI2YQQMNNIwcSrI9mxQdLrs6dO1OlSpW4+vSPAtiXmJjD1LdiJUosVozGGF7d2o+ksWNDafz4SHlp\/DVmzDb69NOpNLryPyjGcG0nGF6fNe9FK1fueexhjxAfOB9ss+cWH3PFs1Q22wbNig+ym2HDhnFNz\/Xr103v5s\/ChXvozefepj4lK9O4Dh3pi0\/nG5zPXjp27CL3dMlL26\/o6ET6usUn9E2VGtSmXC16vlQvatZsPi1adKDIQbRgOzTtfLD9iadWQcJAhMpduwZSiRKDqVWrYRQVFUNLluzjfi4Ms8I2rWQ\/2iYuLoP++99F5OzsabiuC6h27RncGV+37jwOpo8cQQgtJRVqQdOZT2GIiDhJVarM4G1ZjEjFmE4IEoTHxSWKn4626BcS7ANEZdKkHQYnu4\/On7\/BM5kWLjxgCqKd6eWXZ\/KpGfv2nRUBUgkOIT7GsRlr+CZ88825vEOS2+XExJyin3+OoClTonn3SwRIe2DZNXJkmGHpdSrn+pkroj\/4IIBnc6MzHsWJ1qqIFizDIcQH567D9aCBFMFkXjceju+F+Li7x1JiYpb0eWmM5csPkb\/\/QcrKejAcvnPnPgtS374bqFKlqSxAqIj29U2kCxdumr5LUALdiw9uPozNgOtBK8X+\/Wcf2UqRlXWdbTs6qLduTeWlmaB+sMzCKbMYiXL\/ft6uFZ3xw4ZtzamIxpE9uNZnz4rTVQrdi8+OHek5I1IRLj\/ObuNcdhznMmJEKK1ceZiuXPlNgmiVA9eDQkOMYM0PjOCYPj2GK6FREW0Ooo8elSBaCXQvPpiEZx7BkJ\/ryQ0cD4LoH34IZ3suQbR6yc6+yT1eOPO9IE4VxzKjMLFp00XsgHBf9O+\/UYJoBdC1+OD4XdhsuJ7vvguha9cKFzIiiMZBgm5u0XTixOVHWnpBOQIDk2jChEhKTr5oeufxwP2uXXvEVBU9hcdz4CEVHn6i0PeIUHR0LT7TpsXwjYWnW1HHZqSkXKKpU3fxDX7gwDl5OqoILImxlF6\/PplnPhcGjGjdtesU\/ec\/G+iFF4xBNGZEL1uWIEG0ndCt+MD1NGjgxcPCMLHw2rWiz3pBoDl79m7eDQsNTZWjdVTCzp0ZHDQXxvU8DCYhDhsWyieXYBn21lueNG\/eXim5sAO6FR8Ei3A9yHtw5IqljgX9QTjVdNSoMLb6EkQrC67nL7\/s5sFihXU9D4MgGsPlIDwlSkyiOnXmsdOVimjbokvxwa5Hw4ZG19OqlQ8HxtYQCgSaISHGIBrnSkkQrRzYPJgzZw8dP37J9I5lXL58i5YuTeChZOYgGqdmYLmOJZpgfXQpPgiJza5n+fIkrnC2JjExmVyMiCA6NRVBtDwd7QncCLbIN248brHryc2NG3fY3X700Z9BNGrEwsIQRMuMb2ujO\/GB62nUCK5nosH1LLWa63kYBNHIG2DPY2MzuZhRsA\/x8ed49xKuxNrA5eDhgj6wF16YxkE0BtbDFSH7E6yH7sQHdTkYDI8RqcYGUtuJAm5GWP+xY7dxXdCtWxJE2xq4HmfnKC4qRI2PrUhKOs+FptWre\/AyrF49T37YoIdMltrWQVfiA6H5+OMVHBq2bOnNM1xsHQpjFMfKlUncUY1fMYxegmjbAVHAUUdwJ7YWAQgNlvAIojGao0YND37QHD6cLUG0FdCV+GzffpJefHE6Zz1wQLZ0PbnB34PmRTStenrKNq0tgeOx5xLIHES3aeNDZcu68gm3WJJB\/KTkwjJ0Iz4QgB49VrHryWtshj1A9gMHhKelBNHWB4IzeXJ0vg2ktgAV0SEhqdS9+0oqX94YRGMw3ebNKVIRbQG6ER80kL744jRupRg7djvPclECbP3C\/UCE4uJOSxBtRTAyA4724bEZ9gDX0RxEo1G5dGlnatt2GTchSxBdNHQhPrgx0JsD1\/PKK+68G6JkHxZyH1TJjhu3nZ+YEkRbDloesMOF2UxKXltURP\/0UwS9\/vovporo+VzQmp7+qyy1C4kuxCcqKiNnbMaIEWGKuZ7cGIPow7wzg18liLYM\/AxR22OtokJLwJJ+1qw4ngmEB96rr87iGVDGIFqcbkHRhfjgyGPcBAgDlXY9uTEH0VgGwglhrrA8HQsPXA8GgQUFHTO4SOUfLAAPEyy5sPQqW3YyV0RjSYZmVQmiC4bmxQcNpLjwcD3ffhuiytm8xiA6ioNoiKPkQIUDVcdwkGpwPbnBvYaJl7mD6C5dVlBw8HGpiC4AmhcfjLtAFSpcz969BRsWpgSoiMbYTuRAeDraqwxA62AZg0MB8YG2ZiuFtTBXRKMPzBxEt2mzTCqiC4CmxQeuBwVgaCAdOHCTKl1PbmDVsVszblwEV0SjU15yoPzBhEHkK2pzPQ+DAwhwAkrNmrOlIrqAaFp8cHGfecaFiwpxHIoWTpxAHrBq1WFycdlJS5bEc54hApQ3cBVwthBqNbqeh0GmhzEfDRoYg+gaNWZxNTaW2hJE\/xXNig+qiHGR4Xpat\/Zhi6uVDzGWXLDq2L2ZO3cvOzh5Ov4VTI4cPTqcEhKyTO+oH7hbjFt5771l3GP4\/PNu1KvXOh58JkH0g2hWfDw84qhMGePYDGzDajHEhVXHaakSRP8VcwMpTpK1ZQOpLcDyH0POUHFfoYIxiMaYDgTnGEInGNGk+MD1NGq0IGdYmJZcz8MgiEa\/EnIgbMvLWWFG4HaGDt1Ku3ef1qQrxDIrNvY0n4yBo5qRAzVtupivtRIV2mpEk+Lj63uQm\/ywrsbYDK07BpwVhn8TCtWMQTQKEh17GYZhbcjEtOZ6HsYcRKPfEPcrRrRiCB1Gtzr6Ultz4oO8BBYWh769++5iu4zNsAfIA7B8dHXdSUuXxjt0ZzycAT6w6I3Tw3FFqIj28tpPTZosZAHCjCAE0QkJjh1Ea058sKuFCXMYFoZaCj3lJFhyoQYIQTR28hy1X2jFiiRTA+l10zvaB+02AQEHOYhGRTTOje\/d27GDaE2JD1wPqkkx2OnNN+fwyFS9rU7w70HzIraYHTGIhusZPx6uJ1O1BaNFBT2HqIj+8su1\/ABFdAAXj3PHHDGI1pT4YGwGDnhDKwUqhdXS52MLsOxCOInlB84K00KdizVAhoe8JyPjV9M7+gIPEjxQBg0K5qp8BNGIDxYudLwgWjPig4uGJwbWzDgCOTExS\/dLEtSMYIYNal1wFrnxrDD9\/ptRcPn998Zz1\/U8hgSXEB3w5iAaEULdusYgGsdyO8pSWzPig23oKlWms+vBwX16dj25QQ6EiXkIor2943XdGY\/Kb9T2pKaqu5XCWiA2gLt9++2FLEAIoocODXGYpbZmxAdVonA9aN5zBNeTG\/xbURGNgkRzv5AedoFyg10fnBahd9fzMBjDunz5IT6eBxXRFSsaK6KjotJ1\/3PQhPig\/QDrY7iewYM3O0z+kRuzVZ8+3RhEo\/VAT53xaCB1c9tFx44V\/dx1rYL7GRXREJ3KladxRXTnzgG6r4jWhPhMmRLNowrgenBQnN6e+oXh7NlrHE4iL8DOiRqmNloKXA\/OSsfIWT38e4qCOYjGwxXzqRBE4+hmLMuwPNOj01e9+MD1\/POf8+jJJyfQgAEbDTennBaApyF2hcaMQRB9TPNBNM5dx8weODtHBpfwyJEL\/LOoU8ccRM\/l0oPk5Au6EyDViw\/qXeB60ECKc7m0MDbDHiCIRisGgmg\/v4P8dNSiI8T1xEkfy5Yl0KVLt0zvOjbYVIC7feedRSxAiBy++WYzL031FESrWnywxKhf35NdD6bDyeybBzEH0ejwRxCdnHxRc+KMzQO0GuAsLkfaRHgcCKJXrDhE7doZg2h0x3\/xxRpeaqNaWg+oWnwwmAkjUrH+Xb36CI9ZEB4EYozOeBTmwUEgE9NKEA2hhHMzD1UTHgRBdFjYCerbdz299NJ0DqLRngFRwkmqWke14nPu3HX617\/+HJtx8eItcT35gOpYnJCBcH7r1hOayMbQu4ZTKbQ6NsMeIIyHO8SRUDgrHg9iLMe8vPZpvuZLteKDQBVKj9oeVPk6cvdvQUFFNPqEMJoDHfJGwVbvzYmJf2gOlvk2+YNLiMpn1HmhEtpcET1hQiQvtbUqQKoUHywbPvxwORUvPpG3G\/UyNsMeoEMauQCGk+HDjaejGoNoCA4+PHA9solQMHAtMdmxefMlVLq0C2\/JY2seu4VaDKJVKT7h4Wlc6QnX4+2tr7EZ9gBCbQ6icZQvCvfU9gHHDp35IEWh4CCIhrvt1CkgZ0Y0eh5RpKi1IFp14gPX07VrIA8Lq117Lt+c4noKD35mOG4GQTT6pdQURGM5iHPX8YHRU5W2vcDPDHOtzEE0RnOgPQNzkLQURKtOfHDuOlwPWilwIL9M\/LcMBPeennu5YxrLMTWcbYadSxwdhBxDKBpYDSQmnqeRIxFEz8oJonEwpVaCaFWJD7bS0d8C14OxGZh\/K7sgloMgesMGYxCNIN9YL6XMzxVLg2HDQrlAUh4sloFLiFnQKFdAFwCCaFRGo0L66FH1V0SrSnx27crMGZvxww\/hcnNaEfwsscyBAHl67uNtbiWCaDhbfFhQmyRYBzidxYsRRHvzIZoIogcNUn9FtKrEp3fv9TwiFetYjBIV12Nd8KTE7hJqgdAZj6ejPQs38UEwnkDquA2ktsIcRH\/4oTGIrlDBjT7\/fDX\/rNUaRKtGfDA2s0oV49gMqLYjzXSxN3AdOE0BQTQG1tvrZ43QG+Ijrsc2IIhG\/2Pfvhv4AQ4XhLYktdZSqUZ8Jk\/eyWtW\/NAcfWyGPUATJ5oXkQ9gUiKenLYEW\/1Y8gUFHRPXY0PgLg8ePE+jRoXTq68ag+j69efTrFlxqjuWWxXiA9eDWbZoIMUJj444LEwJYMfXrj3KlbPYpsUBfbYKovGBGDJkC8XHa+fcda1iDqLxQK9Xz5MnQtSqNYcLTxFnqKVHUhXig21g\/ICg0hERJw2uRype7QVGc2A+9s8\/R\/KWvC2CaLgefBBg\/1HjI9gHnICCpl0np6VcEY1hfF9\/HcQbO2oIohUXH6xF33rLODajbdtlMtNFAfCkxEgLWwXR+PMwNgNtALKJYF9Q14W52F26BFL58lM4jP7kk1UUEpKieBCtuPjgaYtgDK4HSwDp81EOBMEoUkMQHR2dYbUTQtCBjZM3srOlgVQJ0JSNjYV+\/TbmBNF40Pv4JND588pdE0XFB64H51fD9bRu7cPFcIKyoAARQTQOZQwOPs7XxJIcCEceo1JdGkiVBUtp5D04A+61137hh32DBsoG0YqKD44MwbAwVDRjbIbcnOoAdhwtEFiG4ekIASmqAOH\/j05sPZ27rlVwDZHpod+vYcP5vLtsDKK3U1KS\/YNoxcQHNQkffBBATz01kXtSZGyGukBFtPmsMHSfG88KK9zNifwOxwKjqlkeLOoB7hYzs52cvDmIxozofv2C+HrbM4hWTHzCwtJ4Li3GZiCRV8v2n\/AnsOLYIocDwngOnBVWmJYX8zY+tn0FdXHt2m0++QQTJPA5LFduMvXosYp77uwVRCsiPnA9H3+8goeF1a49h7cExfWoFwTR6B3C8C+cpFmQOiy4nuHDQ7mfTHr01AlcDtwOjqRCT6WxItrHbhXRiogPbDjUtlix8Xz4ncx0UT8QE+RyqIg2BtH5j2hFF72rq7getYMgGtMjxozZlhNEoyLawyPW5kG03cUHy6vevdex68HYDBySJrUf2gCOB0spLMPwdMSsoLwECE\/UsWO3sYW31na9YDtwDdFlAMFp1MiLg+g33pjNQTSG19sqB7K7+MTGZnKtARpIobZqqLQUCg6WULiGGIsxd+4eg7O5\/JcgGgWLqGjGJEVZTmsHBNG+volcEY0lGCqiMS0xMjLdJktnu4oPXE+fPuvZ9bz44jQ+Hldcj\/bANUPNCNpisG2LymXzzYmHCc4Pw9JMjrbWHmgwRkV0t24Iot14RCsOc8Ay+tdfrRtE20187t69S9u2RRtEZ5DB9fxAAwdu4r4iQbsgiMZOJcRm69bjBseTQCtXhtJ\/\/xtIBw+eE9ejUfAAgbsdMGATux\/0XTo5LTI8aDYaPsM76PRpnLNm+e603cQnKiqKXN7rSN2eqkGli7WnIUM28Q4Kyu7lpd0XesE6dvSnDh2m00+dPqcR9ZvTJ20G0rRpoXl+v7y08cJnc8SIUM5+sDFUqkR\/+qhqG3Jt0Yr8p0yhjIwM0ye76NhNfAYPHkxbihen+GLFqHGx8lT17xOpenUPeenghQyvZMmONOOJshRluL7tn6tG1V4Zmef3yks7r2rV3A3LrsksPuWLvUcTipWmWMP1datXj4LXrzd9souO3cSnf\/\/+FGwQnyTDf3zbZ5+lGtVEfPT0eumlj8jj6XIUY7i+ncq\/StVfGZXn98lLm6\/XKncm1xLP0F7D9R1fvTqt9Pc3fbKLjt3EJzg4mFw7dKDZLVrQxFGjaMmSPXnaPXlp8+XuvpJce\/SkGW3b0rQfXGjBgqg8v09e2nxNn+ZPzt0\/I\/fWrWnBmDF06NAh0ye76NhNfG7evEkxMTG0fft2ys7OzrdATdAev\/32GyUkJNDOnTspKyuL7t+XEgo9gc\/vgQMHOLvNzMzkDSRLsZv4CIIg5EbERxAERRDxEQRBEUR8BEFQBBEfQRAUQcRHEARFEPERBEERRHwEQVAEER9BEKwGik0vX77Mr+vXr+dbjGiR+OAP3r9\/P\/n4+FBsbCyXXK9evZrfs0bLvSAI2uDGjRtc4R4XF0dHjx6lsLAw8vLyoj179pi+469YLD6LFy+mf\/zjH7R8+XI6ePAgffDBB9S1a1e6du2a6bsEQdAzaLdYtmwZeXh4UHR0NLfXoM1m0KBB\/P6jsHjZNWHCBCpZsiQlJydzv1bLli3p6aef5nkf0r8lCPoGy6tffvmFunTpwisgLLXArVu3aO3atRQeHs5f54XF4tOmTRuqWbMm\/2VQwNq1a1Pjxo2leVQQHAAsr5ycnHhkTlpamuldI2fPnmUX9CgsEp8rV65QpUqVqHPnzmyzJk6cSD169KB169ZJV7Mg6BwYjvHjx3PsMnfuXLp378GxyMh98zMgFolPZGQkFS9enGbMmEEREREsQj179mQHJK5HEPTNmTNnqE+fPtSwYUPauHGj6d2CY5H45M57bt++TS4uLlSxYkUKDAwU5+PAYCMiPj6eVqxYwQ+oq1evmn7HeMPCGa9atYrS09P\/8rQUtMOJEyfo888\/p9atW\/Ocn8JikfiY8x7s7YNJkyaxE5ozZ47cVA4MxAfi0rx5c3bCx44d4\/fxQPL09KQmTZrQ999\/z1uycp9oF+S6AwcOpLfffps2bdpkepf4muKBg2VZfhRZfHDjIO\/p1q0b\/0dgf79t27bUtGlTqfMRWHwaNGjAQoMJeODIkSOcCT7\/\/PPk7++f89AStAlExtfXlwPnYcOG0d69e\/ka79u3j44fP87TD\/OjyOKDjOerr77iQiL8RbDYU6ZMoS1btuRb1Sg4BhCXdu3a8cMINyM2J\/B0xI1ap04dLkoVtA92tJYsWUIjR47kOp+AgADatm0bnTuHc9vyz32LLD74w7Fmx19+6dIl\/t+51\/aC44JaDwSQn332GdWqVYsLzzC7G4cIwKJ3796dc0JBH+B6Hz58mHe8kfVduHChQBtOFmU+gpAXuAFhwUeNGkVVqlQhb29vCgoK4qVYvXr1eKMCS3XBsRHxEazOhg0b6OTJk7wkr1atGo0YMYKfjLDlr732Gvf\/3bkj57g7OiI+gtWBwzl16hT5+flxDcjs2bPp4sWL1K9fP6pfvz5vTgiCiI9gNbCVjl1Qd3d3SklJoZCQEBo9ejTvfmLHC+Hz+++\/z\/9bdkMFER\/BamCXc8eOHbz7gQ0I9PpguXX+\/HneARk+fDi5ublx3Y\/U9wgiPoLVgPOB0KC9BjUeyHXgcPAr3sekAyzHMG5FnI8g4iMIgiKI+AiCoAgiPoIgKIKIjyAIiiDiIwiCAhD9P8GDLDvEZfI8AAAAAElFTkSuQmCC\" y=\"-1.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>Ta c&oacute; t\u1ee9 gi&aacute;c BPNM l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh n&ecirc;n hai \u0111\u01b0\u1eddng ch&eacute;o c\u1eaft nhau t\u1ea1i trung \u0111i\u1ec3m m\u1ed7i \u0111\u01b0\u1eddng.<\/p><p>Suy ra&nbsp;&nbsp;<span class=\"math-tex\">$\\begin{cases}x_B+x_N=x_P+x_M\\\\y_B+y_N=y_P+y_M\\end{cases}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\begin{cases}x_B+2=2+(-1)\\\\y_B+2=0+3\\end{cases}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\begin{cases}x_B=-1\\\\y_B=1\\end{cases}$<\/span><\/p><p>&rArr; B(&ndash;1; 1).<\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp;&nbsp;<span style=\"color:#16a085;\"><strong>C.<\/strong> (&ndash;1; 1)<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2023-05-30 04:06:35","option_type":"txt","len":2},{"id":"6874","mon_id":"1158767","chapter_id":"1158890","post_id":"6454","question":"<p>Cho tam gi&aacute;c ABC v\u1edbi AB = 5&nbsp; v&agrave; AC = 1. T&iacute;nh t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m D l&agrave; ch&acirc;n \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c trong c\u1ee7a g&oacute;c A, bi\u1ebft B(7;&nbsp;&ndash;2), C(1; 4).<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\left(-\\dfrac{1}{2};\\dfrac{11}{2}\\right)$<\/span>","<strong>B.<\/strong> (2; 3)","<strong>C.<\/strong> (2; 0)","<strong>D.<\/strong> <span class=\"math-tex\">$\\left( \\dfrac{11}{2} ; \\dfrac{1}{2} \\right)$<\/span>"],"correct":"2","level":"2","hint":"","answer":"<p><span class=\"svgedit\"><svg height=\"180\" width=\"280\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"182\" id=\"canvas_background\" width=\"282\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"178\" id=\"svg_1\" width=\"272\" x=\"4\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAARAAAACyCAYAAACKqZBEAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACOrSURBVHhe7Z0HXFf1+sclJ5UTvV1vw0zL1EzNq21vaf4ttVy5Kre3XJkjtTLLDe4tpuJAMVBCETfuwVJxALIcCKiICkiKitjzP5\/HQxcRkPEb5\/zO8369vq\/q8NOA3\/l9zrOfYiQIglBIREAEQSg0IiCCIBQaERBBEAqNCIggCIVGBEQQhEIjAiIIQqERAREEodCIgAiCUGhEQARBKDQiIIIgFBoREEEoIOnp6ZSRkaH+l7ERARGEApCWlkZBQUEUFxenXjE2IiCCkE\/u3btHu3fvpoEDB5Kfn5961diIgAhCPvjrr7\/o1KlT1LZtW2rcuDEdPnxY\/YqxEQERhHxw5coVGjFiBJUtW5YaNGggAqIiAiIIj+HWrVvk6elJPXv2pHLlyomAZEEERBDy4P79+xQQEEDz58+n1atXU6VKlURAsiACIgh5EB8fT0OHDmUXxtvbWwQkGyIggpALqamp1K1bN1q0aBHt2rWLJk6cKDGQbIiACEIO3Llzh6ZPn07jx4+nKVOm8OnevTvZ29uLgGRBBEQQsoFKUx8fH7Y8siIuzKOIgAhCNvbt20fffPMNpaSkqFce1IF4eXlR+fLlqU6dOvwaQQREEB7B0dGRxowZwzEQgExMQkICLVu2jJo0aUIffPABiwncHKMjAiII2QgLC6PAwEC6ffs2\/zcEJDExkY4dO8al7Djh4eF09+5d\/rqREQERBKHQiIAIQgFAG39ISAjNmDGDXF1d6fLlyxwfMSoiIIKQT+DKIBPTpVEj+qFcORpUsSK1btqULl68qL7CeIiACEI+iYmJoZ+++orc7OzobrFidE85U5V\/Hz92rPoK4yECIgj55PjxEzThw2Z0TBEOUk+qcp6vXFl9hfEQARGEx4AQR2rqXfL03EsD6r5FQVkE5IYIiCAIuZGRcV9xXVJo7twAathwGr1U4t+0zK44XVGE47xy5pYsRaOHD1dfbTxEQAQhF27cuEMbN0ZQnz7eVL68I1Wu7ESv1hxCH5SpRUOfKE\/d7CpQXYcmFB11Rv0TxkMERBCycf\/+X3TiRAKNG7eXXnppLpUqNZHq1l1IEybsp2HDtpC9\/QBq0GAAOTh8RU8+OYpOn05U\/6TxEAERhCzA6nB3D6WPP15DZcs6UunSk6hLF0\/asCGCoqOTFAHZTsWLT6DJkw9Qq1ZuVLLkBEVojNsXIwIiCAooBgsNTaTRo32pVq35VKLEBLY+nJwO0ZkzSZSenkHHj1+mDz5YSc8\/P5u2bYsmZ+cjVLGiE7\/+7l1j7okRAREMT1paOlsYzZqtonLlHNll6dx5Pe3efZ6zL5ls2BDOX2\/ZcjWFhFyhixdT6ZVXHoiNn58x98SIgAiGBenZixf\/pFGjfNmqgGvy6qsLaOHCIEpIuEkZGf8rUU9Ovk0\/\/7yHihUbRz\/9tJtu3rzLVkv37l7KnxtPvXptVF9pLERABMPi7x9Pb765lEXhqacms9Vx8uSVHHtb4MYgLlKt2mxavz5MvUq0cWM4WywVKjjRn38arztXBEQwFPfuYbbHTRo+fAc5OEyjkiUnshuCOg9YGTkBQdm3L4aefnoKvf\/+cgoMjFe\/Qiwa1avPIXv7ybRixXH1qnEQAREMAYyKa9dukY9PJH344Uq2OipXnkZduqxncUDqNjcgEhMn7mdXpX\/\/zZSS8vAgofHj97H707GjBwdbjYQIiGDz3L59j06dusIZFrgg9vaT6LXXFtHUqYfp6tVb6qtyJzHxJn322e\/0j39M5\/hIdoKDL3EgFZbIqVMJ6lVjIAIi2CywOuCurF0bQq1bu1HZslPon\/+cwZWlu3adeyhImhv4OyA+Dg5TqXHjpeTvn3O2pXHjJZzSnT3bn\/+MURABEWwSuBLBwZdp5MidVLPmPCpf3omaNl1B8+cH0qVLf6qvejwQGReX4+yiwN3JLU4CywRWSLt27nT9epp61fYRARFsjlu30jmg+cknazg7UrXqDBoyZBsdOhTLNR8FAQVicF8qVZrKLk9u1gWyNHgN0sC+vmfVq7aPCIhgU6BadMCALfTCC7M5a\/LWW0vpt9+OctFXXoHS3IC1UqmSE9Wps5CCgnKfPHbzZrpiffzObhLqRYyCCIhgEyQlpSlCcYTLyp98cjJXjPbuvZFOnLjMFklhcXEJpieeGM\/p27z+Hrg6mzZF8mthsUCwjIAIiKB70MOCFCpEw85unCIi82jJkqNchl7Ugcc9e27gIrOfftqlXsmd6Ojr9PLL87iuBGXvRkAERNAl0AUENFetOk61ay\/gJ3+ZMhM52xIXd0N9VdFA\/APduM88M5127Hj8zI9r19Jo4MAtyp+ZSL\/8speL1mwdERBBV0A47tx5UNfx9dc+bHXAZWnQwJkzLOnppvvQeniEcsEZ4h+pqY\/fQpfpxjz11BTq0MGDA6u2jgiIoBsgHpcupdKKFcH07rsu3IOCwjCkasPCEvNV11EQ0CCH1CzK3vMLunTfeceFnntuFq1bF1ZkF0rriIAIugABzCNHLtK3327ldCnSsx995Epr1px8pLTcFKBCFSIAd6QgaVnUgKDiFS4V4iYYUGTLiIAImgap1\/j4G1zhiUIwTADDoB98SJGyNdcgH3f3EHaNEP8oSBYHVpCXVziLT\/Pmq9jVsmVEQATNgia2PXvOUd++3mx1wGX59NO1tHr1yXz1sBSFTPfliy881Sv5Jzz8Kqdy0azn6XnapoOpIiCC5kDcAFbH1KmHqEmTpexGoIfl11\/3cqwDQVRzkpJym15\/3ZlTwtu3R6tX8w8sFhSTQYCGDdvB2RlbRQRE0BTonN2\/P4YnfaH7FfM62rb9nby9I3LtQzE1W7dG07\/+NZOb4wpbhIZ1EKgHQZNdZOQ19artIQIiaIbk5DRasCCI6zrKlJnEH+JJkw7wYidTpmcfx4gRO7h4rGvXgrsvmZw7l8RuDNwuTHm35PdvSURABKuDTGdISCKXnmNWBzIYyLDs2HGWe0wsCbImLVq48vdQGPclE7hhY8fu4UBsjx4b2C2yRURABKuBDMuff94hD48wtjbwoUXWAxaAqapJC8rOnWepVq0FHHMpaqB28+Yo7s5FyvnChRT1qm0hAiJYBTzp\/fxiOdWJak88qd97bznHOrKuUrA0CH6ioxZWQ0Fb\/7OD+Al6dCCMbm6n2NKyNURABIuCWMCZM9d5jmiNGnP5w1WjxjwaNGgLRUVZN9iItHG3bp78PTk7HzVJ3GLKlINsgTRv7mqT6VwREMFiYKjx5s2R9Pnn63hWB570sECQsTBHNWlBwXIopI2R\/QkLu6peLRoBAXHsxuDnPXcuWb1qO4iACGYnI+M+RURc5ToOLKlGA1z9+s5\/97BoBayqrFJlGqeNCzL2MC+Qlm7f3oNrQmCN2BoiIIJZQRwBi5iwtKlixalcndmvnzfvlkWBlVbiAhhIhJUNdnbjuWy+sPUfObFoURCLJqa229oOXREQwWzExqawlYEhO3BXGjZczB\/OmJhktkq0xNGjl3hxNrp7Dxy4wGlYU3H2bBKPWESw2NbmpYqACCYH6dnVq09RixarWTgwH+PLL\/\/grEt+5mpYA2RJYB1hcbapK0chlp99tpZL4xEstiVEQASTglmgw4Zt53oO+P2wPmbN8uMAqqnndZgK1Hvge4b7gkli5gjoIj2N7A4sEeyqsRVEQASTAIsf07gwfBhjAGGuwwJBSXdhpqFbkoiIa9zli90xWRdnmxK4RBUqOLJFtmrVCfWq\/hEBEYoEzHN0zk6atJ+rN2F1oIls8uQDJo0jmBPMO8X3jlqNEyfMt5oSFbbojUHJvtZFNb+IgAiFAtqAwisEBbHACU9vzOyAr3\/kSLxm3ZXspKXdo3nzAtm9GDp0OyUlma9n5fDhWO4uRrMgLDNbQAREKDCobTh9OpFmzfLn6WDonEXbupPTQcUa0dc+FPTcoLANAVQsoDK3ZdCo0W\/8\/8IAaFtABEQoEFeu3KTFi4+y1YG6Dpj+2BkLSwTCoidgRQUGxlPVqjO5Dwf\/bm7g2hUv\/mD5lFYzUgVBBETIFyisCgqK56HGDg7TONbxxhuLFfM\/QLcDczDZDGKIxdlYIGWJcvpjxy5xtSsqcbGrV++IgAiPBVYH4gQotMJ4QQeHqTxsB\/NKi9qxak0wowPCgWY3R8eDFgn6ogv58889eNoZStv1EivKDREQIVfgksCs79\/fh+d14EmNACCGGttCEBA7ZjA9Hf0527c\/fvOcKUCHr5tbCAdtEXvR+w5dERAhR\/CkXLLkmOKm\/Mbj\/ZBh6dbtD97NYu6hxpYAxoaHRwgXj7Vq5WbRbmAsn3rxxTn02muLuCdIz4iACA+BLAQ6ZLHjFUVPCPjBdcGyaFRs2kr9An6OPn28uckN1aeWBL9HxJIwRAmuk57npYqACH+DDxWqSZ99diZXkuLDNXjwFquNFzQnKIBDOrVatTm0ZUuUetUy4P+NtZdIf8P6CQ3VzkiDgiICInCLOSow0Q8C4UCgFIN1\/vjjtM2uZsTPhp8V9SvWSKei+xc1IXBlfHwi1av6QwTEwGDEHsxprB1AIBHxADR79ey5kaKjr6uvsk2++sqLq0LRJWwNsOPmxx938e8cqyssPX3eVIiAGBSUcKO0GpvnMcIP5jS2yq9ff9qs5dxa4M6dDE7dIpVqrua5\/AA3BjUhWGGhpclsBUEExGCg7gCpQ1fXk7ysGu4KZnZ+881m3d7EBQWzT+G+YKhzYqL1WutPnkzgjuUqVabzCgg91oSIgBgIuCz+\/nEsFvjwYInT\/\/3fan4SolhMJ82zRebbb7fxcB+U4FsTxJdGj\/bl8QdYQqWFwdIFRQTEICQm3uICsHffdWF3BQIyapQv13XY2pzOvEAHMRZno5DLyytcvWo94ELhvahXz1mXcScREAMAC6Njx3UcIEXgEK4L6jogKnovpS4oe\/ac56I4pHCvX7d+rCc8\/Cq7MegtwnoLrc2KfRwiIDbM9etpHOlHuTaEI7NoCr63kayOrAwevJXjPsjCaMFlS0\/PYPcF7w2K9\/SWjREBsVG2bo2mli3X8EIjBAwxt8PX9xyXoetlUpg5gAuH1OmiRUfUK9YH7xX28SIbFhurr6I9ERAbAsIAq8PJ6RAPNUagEJbHmDG7dXdjmgNkXyCkiH8glasVYHVgGjyEHovG9YQIiI2Auo59+2KoTRsMB3ZkywMzJxDrsMWdrIVh2rTDPAQJm+K0BtyYsmUdqXXrtbqyEEVAbIAzZ5LYJMfmM\/j3DRospl9\/3cddnyIeD8BT\/pNP3NgqW7o0WL2qHZANq1lzHsdC9LRDVwREx2BK2O7d53g8HjILqGps186dZ1vobbyguTl48AKnb5F9geBqDViQcGPQ\/QxrRC+IgOgUWBdYEwmfHjcd3BXEPpAWFB5lzpwAFli4CJhEpkXwPaLFHzUherEcRUB0BkzxTZsieIM8RguipwNWBwbToEhKeBQ0DKJpDkKL+Rtatc4wNqFq1Qe7dWAx6QEREB0REXGVJkzYx6Z4yZIPFjgtXnxErI7HgPgCpq5jsho+mFoeitStmyenmTGHRQ+IgOgA1G5gexpWKSDWgdO+vTtP9dbzUGNL4ep6gockNW++imJitB2g9PR8MKcEDY6wnLSOCIjGwU308897+IaC1YFMy8KFQWzu2sp4QXMCdwXVuHBfECPSupt369Zdev75WZxuxtAjrSMComFCQ69Q06bL2SdGXQcWQGOGh6Rm8w9GFCBwivQoKj71UGMxfPh2RfAmcJxL64iAaAw0UyHNiOpRmN14cuKf2GiGKVZCwUDHLVZStGihn6E9iNPgfcfUdq3Ht0RANAK6YiEQXl6nuRAMBU+oKEWNB4b+Grl\/pbAgY4XlTfgw\/vrrXt2sksS9gKAv2hGcnY9o+r0XAdEA8NORKfjhh13cUIUBM6jv+Pnn3boIpGkVWHIdOnjQU09NoZUrT+hGhPF9zp0bwK5r587rNFu3AkRArAieNJcv\/0lr14bQhx+u5EE\/qJREzQJ6WMTqKBoBAfG8SQ8T5hE70hNwXVDjg8VeWv7eRUCsBOZAYG3k0KHbuQcCFYhwXVDoZIt7WCwNUt9Llhzlztu+fb15ZKOeQFd1hw7uvMh8xgw\/zWbcRECsAG4ON7dTvPEN5jVSsxAS9LBINalpSEi4yYuzMXl9\/vxA3VlzGPgEtwvNkZ07r6cLF1LUr2gLERALg9Rsv36bOMZRqtREevfd5SwmWPSst3F2WiYi4hrPGoVVt2vXOfWqfoDeYfkUHi516izkFLQWEQGxEMiwrFlzkreR2dtPZv8WO1mCgi5K56yJwa5ZDJBGLUWnTut0G4jG+g1YUYiNwY3R4vxaERALEBl5jXr02MDdoOhzwJMRA3QRXZdqUtMDN7B3741s\/kOk9RqMhhvj4hLMliqySVFR2pvaLgJiRnAje3qGUcOGizmYhycitrKfP5\/MJqpgHmBxoFMZQq2HcvC8OHbsEm8MhMuLfiitIQJiBlBqfubMdRo6dBuVL+\/ET8JatebzegWjTkO3JKipQSEeUuNIk+sZZI8wSR4NdujlwRApLSECYmKuXbtFHh6h3PmJ5rd\/\/nMGDRq0hbffSw+LZYCVh7hB\/\/6b1Sv6BZbqihXH+UGEqmStTVMTATERGEmHXgt0fqIYDM1vKEdGLUJSUpr6KsHcwMKDuY\/+F2suzjYlwcGXqVmzVbzfZ9eus5oKpoqAFBEE6BAkdXY+yntmUX6MNxpPwaCgeMmwWBgU5+E9QPoWqXFbABk83E+waDHaATt1tYIISBGAP4pGNyxphtWBICm6PhcvPsqFTILlGTBgM2ctUGtjSxkuFJXhwdS48RJNFZWJgBQCWB1RUddo6tRD1LDhb3zDVqkynUaO3EnHj19md0awDtj\/C\/cR6U9bAou38XBCo6Wv71nNiKMISAHBRjO8gcjLo90a4oFx\/KgmRQBVsB6o3ISZjxRubKw2S78LCwLwI0bs4J4pWFlacY1FQAoAttljvgTG7iM1i9Fz8EnROamlVYlGBUOXUG\/TsaOHbovH8gJB4RdfnMP3nVaqa0VA8gkyLBhqXLbsFG6Ag9UBSwRxEFu8WfVIvXqLuF4Ck+ptkevXb1Pz5q48IGn7dm30xoiAPAakBefM8VdUfyYXJ2Hgzy+\/7KWEBH0XKNkaGAP4oFVgnE0PYUKcLfMBpgVEQHIB6xIQEMWyavjVCMwhF49BP1psajI6CGjjPWrVao16xTbZu\/c8uzDI+GlBKEVAsoFgVWzsDe5+xCoFRL2RPhs92tfmAnO2AtxIVP4i\/jF9up961TbBnFc8yPCzzprlr161HiIgWUhJucPLqrt39+KBxtjNgVUK7u4hYnVoGD+\/ON7SB7E\/e1Z7i7NNDQYk4Wd9+20Xq\/fGiIAoQBxw402bdpjrOsqWdeRZmoh1IP8uaBss2kJsCl2rRug3Qg0SJq2h3+fAgRj1qnUwvIBgdubmzVE8rwPVpLA6sJ8UbeCwSARtg3oIvHeIU82bp7\/RhYUBPyMa61Cyj6CqNTG0gCCTMn78Pl7ggwAc\/olaAvS2SOesPkCg+623lvHibHQ8GwXUhCDjhKntmFxmLQwpIGhGwmyOdu3c2RS0t59EHTuu4\/hHUpJsf9MTS5ce485bDKhOTDRO\/xGm2cFtg9Xs7h6qXrU8hhMQWBcDB27hVBjMXvROYJVCfHyqWB06A+7LkCHb+H1E1sxoPUh9+27iVgq4cNbCMAKC9BfmkMLcxS8dFYtIh506lSBTwnTKyZMJnL7Fe7lnz3nDVQTj3sXP3qjREqsF+21eQNC1iLoODPpBxyzy5zB5x4\/fzwFUQb9g1QFWHiD7AsvSaMACw5R\/NHUuWBCoXrUsNi0gyKJs2xZNrVq5sdWBVQotW66h\/ftjxF3ROXj\/EPBGXwiWctly+Xpu4HeAByFcONQuWaMmxCYFBGsjUdeBXy5iHGiBRrR6zpwAHvQjvW\/6ByY7um4RAEfK3YgNjfiRMbUd4wvgmmOYtKWxOQHBk8jD40GGBVZH1aozqU8fb9q3L0YG\/dgQyJjVqrWAJ3RhOZdRwdR2VEtDRGbP9rf4oCGbERDM48Dw2dGjd9Gzz85ksw6+MfoFkGGRBU62A3x\/lHOXLDmRh+vofXVDUcDvApW4KCqDG2PpUZo2ISCwOpYvP87xDRQUobYDqdr9+y9YvVdAMD1xcTc4dYmhTqg+NXI8C65bQEA89wLBTUe3riXRtYAg\/RocfImDaNWrZy6rdqHffjvKTyUj+sVGAC5LzZrzuF8JQXKjg+nzGCKNYVdwY2CVWArdCgjWRrq6nuDdK+XKOXKGBaPvEUjCLA\/BNkHj44YNEeyidu3qySl6o4OkwbJlD3bo4ndy7pzlOpJ1KSDIsKACEflv+MFNmizlsffw\/yTWYdtgSRfee3Sijhu3TxEUSceDgIA4\/hxghSoSBpZCdwKydWsUD\/rBRCaYbH37enMRkczrMAZ4eMB9QQYGlcXCA9AHhBWqdnbjeSzFzZt31a+YF10ICEw0iETnzuvZTIP5is7ZVatOUGqqZX5RgvVBTAtFgKgmxoDrmBiZEJeV5cuDqVKlqdS6tZvFBitpWkBgVSAYiqAoBANWB7oPsQkuNPSK+irBKCBVj90oKB4bNmyHuKvZQHD5\/feX8zQ9CK0lkgiaFRAESeHXff31JhYNe\/vJXPcPMUErs2A8cE+g96Vatdn0++8h6lUhEzSMfvfdg+5klPlbwo3RnIA8aH5LIWfnI5ySxdMGN0yfPhutUqoraIfQ0ES2QlHvIBZoziCZgFEVqNBFvYy50ZSAoDsWpheqC9ExC3\/uo49ceWiM1HUIkyYd4BhYr14bJPuSC1iAhuFKyFKh3N\/cnxnNCMj162lcdg6rA9mVl1+eR2PG7OZ9p9LDIoD69Z3JwWEaP1CEnEGcCIWVqMhGXZS5q3StLiB4kmAYTI8eXjyiDT84osienmGcmhKrQwDoOkXrPiqOjTj7oyB4eYXzDl1Y8cnJ5h0MblUBQQ8LllWjJBl9DVWrzuDBP1FR12XYj\/AQuE8gIB06eMgsl8eADl1Y8kh3Y\/avObGKgMDqQKyjffsHQ40xXRol6Tt3nuFIuxgdQnYyHzIokhLyBlb74MFbOQGBz5g5sbiAYEoYWrGRWYFwYA\/LiBHbRTiEXPH3j+OgIFZvREZeVa8KeeHnF8sWPUTXnCtZLSYgcElQ6NK163oOkuKGaNp0Bfn4RMpQYyFP5szx556nBg0WS0wsn8DKRyoXD+lp0w6pV02P2QUEdR1YfOPiEsxmKG4EzC7ARi3EOqSaUMiLe\/fu0YcfruQeD7SqC\/kH60pKlEB4wJmuXLlCt2+bvgDTrAKCPpVDhy6oy6qdON6BAccbNoRbrNlH0Cfp6ekUHR1NW71REzSEihX7js6ckT3FBeHEiXgqVaoHVS3Vgsb17UseK1dSfHy8+lXTYBIBwVPiwoULtGfPHjpw4ADFxV3kSkEEvOrVW8TRYFgfY8fu4etidQh5kZGRQX7KfTS+Uyf6\/rkXqGNxB3IoVodOnbLeBja9gM8W4onJybdp0yYfer9kZZparBitsLOj76pUoRnjxilfN90IyCILCN7sE8eO0S+9e9PI+vXp+0aNaGS\/wfTpp4t40A8CX1gEjMnZWCkpmB70QCAlbs0DN\/X8+WSTnKCg0\/Rzt+60ulQpilNu\/gvKmaacPj175fj6zINxfphQZq2zZUsUr5lcseK41Q56xbDvGbOB33njXdqnCEeG8ru7r5xg5Yx5803y8\/NT75yHQXwpNTWVIiIiaPfu3bR\/\/362Ai9evEgpKSk5xp+KLCBXr16l4Z0702LlzT6lfINHlfNdqSep4hNtqEyZX7mHBS5LePhVLgAy5QkMjOc3zJoHk6BQQTt9+mGrnVGjfHmknTUPJmG1abPWJKdp0wk0rHItilXuJcV34XNTOc+Xc1C+vvKR12ceNFuia9tap27dhVzAhU0A1joYslW2rCPZ20+gGnaVKC3L7\/CKcmZWq0Zubm7qp\/d\/wGWEaIwcOVIRn9G0ePFicnZ2pmHDhlG3bt3o9OmcV2cUWUCiIyOp3ZNPUor6Tf6lHH\/l1C5Wk0qUGMW\/VOysMMdp2HAxVa8+x6oHE+DRLYyx+tY6sPJKl55k1YOp4FizaJrTm3oU+9dDAoLjUKy08v\/5iX\/nzz03y2oH7zu6guvVc7baQQbz66998jjeVPMf1Skqy+8Pltzk2rXJx8dH\/fQ+4O7du8pDcJYiwI2offv2bHlcunSJ4yUQkbfffpsFJCeUv7loRISF0WdZvkmc88p5o9gzyr8OV05ON0jBDlQ1+wfX0gexnH\/\/e4nVDhqk8KQfOdLXqsfZ+ShbXeY8Tk5e1O2N92m3ch\/hgaTcBLRXOU3ffo9cXY9zEeKhQ7FWO+gKD1csaiy3staJiUmmxMRbeZ5Zs2ZTxxIlKEz53Z1WznTFSxj+1VcsDpncuXNHsWKnKw8iB3r11VcpNDSUwxKZwMMYN24cxzhzosgCEqv8xe1ffpldF7zROGuU803rToqpFMgDcIt60FAXHn7NqgeTrxGYstbBDBRkrrCmwpoHNTuYEGfOc\/t2OrmuWEk9FXPbU7mX3JTTqFIl2rZtm\/L1+xwotObRSy0KgqUznJyodf361EoRh68V8YgID3\/o+\/f29lZcn6rKx1b5PSuuTfafDf996NAhjoHkRK4Cgj94\/z7erIdP9v8BcssrliyhtuXLk7udHU1+4gn65JVX6KBiBmVVMkEoCPDJIRhdunSh\/\/73v3TsmHTgFhYICSwJZEuzgs9umzZtqHjx4lSxYsVHvp4fchQQiISXlxeNGDGC+vTpQwMHDqTvv\/+e\/3v16tVclJJVSG7evMl+FV43atQoCgoK4htAEATtcvjwYapZsyZbHwicFoZcLZCEhARq3rw5PaFYFG3btiVPT09q1qwZ2dvbc2TWHFVtgiBYDnd3d3r22WdZQLIHVvNLrgKC3O9LL73Eps20adP42rfffkulSpWiOnXq0I0bstBHEPRMVgHZu3everVg5Cog\/v7+7BshMgt1QhClc+fOZGdnx37prVu31FcKgqBHNm\/eTNWqVWMB8fX1Va\/+D8Q8EYrAP3Mj1xjIjBkz+C9+55136ODBg7RsGWov3qKPP\/6Yy9UlQCoI+iY2NpaaNm3KYQqkarMGUfHv58+fp5iYmDyDqzkKCBQH0Vn8xQ0aNKDBgwezkAwaNEgCpIJZwYMJ1i4C9VlPXk9BoXDgd4rUbY0aNeiFF16ghQsXUnBwMGe8EPNEFgyx0AJbIEj7lCtXjipVqkRjx46lnTt3UseOHblSDX+xBFAFc4GH07lz58jR0ZHatWtHXbt25aD98OHDaebMmZSYmKi+UjAF+Kxv3bqVhgwZQi1btqTevXvzZ37Tpk0cB32ccOcoIKiJh\/uCFA+KSGDCzJ8\/n5555hlq0qQJmzWCYA7gPqO0GiUDCNjjpkY8zsXFhapUqUKdOnWiuLg49dWCKcDnOykpiT\/XqDi9fPkyxziz13zlRI4CgoYaBEvhtqDUFSxatIgqV67Mbk1YmHkHtQrGBnVF\/fv354fYgAED+OaGZdKiRQsqU6YM9erVS1wajfCIgEB1XnzxRSpdujS\/ieDatWvUr18\/fkPr1q3LJqYgmIvAwEB67733+CGGgsbMgD3KCXAPvvnmm2IFa4SHBASqHhISwm8SYiBz585lc3HJkiVUu3ZtdmEWLFjATwhBMBceHh5cn4ADMclk9uzZfG+iPmnDhg3qVcGaPCQgKA6bPHkyZ16g8ghc\/fDDD1yJitqP5cuXszkpCOYCLjPuQdQgdejQgVOJmaDlHAKCrAGawATr85CApKWlUWRkJPf+Zz1nz56l5ORkqf0QzA7cY2ReIBQ\/\/vjjQw+sMWPG8PXXX3+djhw5ol4VrEmOQVRBsBYBAQFcLlC+fHlav37938FSZGYQ1Edm5ssvv5RKaI0gAiJoBojFunXr6Omnn2YRyTq7c8eOHVSyZEmqXr06\/7ugDURABM0AdwVuC7IvX3zxxd\/xD0zJ+s9\/\/kMVKlTg6VlwtQVtIAIiaAZMA0f6FnEOzJaJiorimRWtW7fmLCCyMBLE1xYiIIImQGkAihVhaaBp89NPP+XeK5RVr1y5kq0QiXtoDxEQQTOgpBrB0syD6lNcQ2wkP2XVguURAREEodCIgAiCUGhEQARBKCRE\/w+DDDWz33VIkgAAAABJRU5ErkJggg==\" y=\"1\"><\/image> <\/g> <\/svg><\/span><\/p><p>Theo t&iacute;nh ch\u1ea5t \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c&nbsp;<\/p><p><span class=\"math-tex\">$\\dfrac{DB}{DC} = \\dfrac{AB}{AC} $<\/span>&nbsp;= 5&nbsp;&rArr; DB = 5DC&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$\\overrightarrow{DB}=-5\\overrightarrow{DC}$<\/span>&nbsp;.<\/p><p>G\u1ecdi D(x; y)&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$\\overrightarrow{DB}$<\/span>&nbsp;(7&nbsp;&ndash; x;&nbsp;&ndash;2&nbsp;&ndash;y),&nbsp;<span class=\"math-tex\">$\\overrightarrow{DC}$<\/span>&nbsp;= (1&nbsp;&ndash; x; 4&nbsp;&ndash; y).<\/p><p>Suy ra&nbsp;<span class=\"math-tex\">$\\begin{cases}7-x=-5(1-x)\\\\-2-y=-5(4-y)\\end{cases}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\begin{cases}x=2\\\\y=3\\end{cases}$<\/span>&nbsp;.<\/p><p>V\u1eady D(2; 3).<\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp;&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong> (2; 3)<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2023-05-30 04:23:24","option_type":"math","len":0},{"id":"6876","mon_id":"1158767","chapter_id":"1158890","post_id":"6454","question":"<p>Trong m\u1eb7t ph\u1eb3ng t\u1ecda \u0111\u1ed9 Oxy cho A(3;&nbsp;&ndash;1), B(&ndash;1; 2) v&agrave; I(1;&nbsp;&ndash;1). Bi\u1ebft I l&agrave; tr\u1ecdng t&acirc;m c\u1ee7a tam gi&aacute;c ABC, t&igrave;m t\u1ecda \u0111\u1ed9 t&acirc;m K c\u1ee7a h&igrave;nh b&igrave;nh h&agrave;nh ABCD.<\/p>","options":["<strong>A.<\/strong> K<span class=\"math-tex\">$\\left( 3; -\\dfrac{7}{2}\\right)$<\/span>","<strong>B.<\/strong> K<span class=\"math-tex\">$\\left(2; -\\dfrac{5}{2} \\right)$<\/span>","<strong>C.<\/strong> K<span class=\"math-tex\">$\\left( -2; -\\dfrac{5}{2} \\right) $<\/span>","<strong>D.<\/strong> K<span class=\"math-tex\">$\\left(2; \\dfrac{5}{2} \\right)$<\/span>"],"correct":"2","level":"2","hint":"","answer":"<p>V&igrave; I l&agrave; tr\u1ecdng t&acirc;m tam gi&aacute;c ABC n&ecirc;n<\/p><p><span class=\"math-tex\">$x_I = \\dfrac{x_A+x_B+x_C}{3}$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$x_C = 3x_I - x_A - x_B$<\/span>&nbsp;= 1.<\/p><p><span class=\"math-tex\">$y_I = \\dfrac{y_A+y_B+y_C}{3}$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$y_C = 3y_I - y_A - y_B$<\/span>&nbsp;= &ndash;4.<\/p><p>Suy ra C(1;&nbsp;&ndash;4).<\/p><p>\u0110i\u1ec3m K l&agrave; t&acirc;m c\u1ee7a h&igrave;nh b&igrave;nh h&agrave;nh ABCD n&ecirc;n K l&agrave; trung \u0111i\u1ec3m c\u1ee7a AC. Do \u0111&oacute;<\/p><p><span class=\"math-tex\">$x_K=\\dfrac{x_A+x_C}{2}$<\/span>&nbsp;= 2;&nbsp;<span class=\"math-tex\">$y_K=\\dfrac{y_A+y_C}{2}=-\\dfrac{5}{2}$<\/span>&nbsp;&rArr; K<span class=\"math-tex\">$\\left(2; -\\dfrac{5}{2}\\right)$<\/span>&nbsp;.<\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp; &nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong> K<span class=\"math-tex\">$\\left(2; -\\dfrac{5}{2} \\right)$<\/span>&nbsp;<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2023-05-30 04:35:38","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.