Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Sinh học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Lịch sử - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Địa lý - Lớp 12
    • Ôn thi Tốt nghiệp THPT môn Giáo dục Kinh tế Pháp luật - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm sốBài tập nâng cao
{"common":{"save":0,"post_id":"7512","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5340","post_id":"7512","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$f(x) =\\dfrac{\\sqrt{x^2-1}}{x-2}$<\/span>&nbsp;v\u1edbi x&nbsp;&isin; D =&nbsp;<span class=\"math-tex\">$(-\\infty;-1]\\cup\\bigg[1;\\dfrac{3}{2}\\bigg]$<\/span>. M\u1ec7nh \u0111\u1ec1 n&agrave;o d\u01b0\u1edbi \u0111&acirc;y l&agrave; <strong>\u0111&uacute;ng<\/strong>?<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\max_\\limits{D}f(x)=0;\\min_\\limits{D}f(x)=-\\sqrt{5}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\max_\\limits{D}f(x)=0$<\/span>; kh&ocirc;ng t\u1ed3n t\u1ea1i <span class=\"math-tex\">$\\min_\\limits{D}f(x)$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\max_\\limits{D}f(x)=0;\\min_\\limits{D}f(x)=-1$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\min_\\limits{D}f(x)=0$<\/span>; kh&ocirc;ng t\u1ed3n t\u1ea1i <span class=\"math-tex\">$\\max_\\limits{D}f(x)$<\/span>"],"correct":"1","level":"3","hint":"<p>L\u1eadp b\u1ea3ng bi\u1ebfn thi&ecirc;n v&agrave;&nbsp;s\u1eed d\u1ee5ng quy t\u1eafc t&igrave;m gi&aacute; tr\u1ecb l\u1edbn nh\u1ea5t, nh\u1ecf nh\u1ea5t c\u1ee7a&nbsp;h&agrave;m s\u1ed1.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;<span class=\"math-tex\">$\\max_\\limits{D}f(x)=0;\\min_\\limits{D}f(x)=-\\sqrt{5}$<\/span><\/span><\/p><p>H&agrave;m s\u1ed1 x&aacute;c \u0111\u1ecbnh v&agrave; li&ecirc;n t\u1ee5c tr&ecirc;n D =&nbsp;<span class=\"math-tex\">$(-\\infty;-1]\\cup\\bigg[1;\\dfrac{3}{2}\\bigg]$<\/span>.<\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$f^\\prime(x) =\\dfrac{-2x+1}{(x-2)^2.\\sqrt{x^2-1}}$<\/span>;&nbsp;<span class=\"math-tex\">$f^\\prime(x) =0$<\/span>&nbsp;&hArr; x =&nbsp;<span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>&nbsp;&notin; D.<\/p><p>B\u1ea3ng bi\u1ebfn thi&ecirc;n<\/p><p><span class=\"svgedit\"><svg height=\"153\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"155\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"152.99999\" id=\"svg_1\" stroke=\"null\" width=\"317.99999\" x=\"0.99999\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAArgAAAFQCAIAAADbXZoKAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAALdPSURBVHhe7b13fB3Vtb+d301ucu\/NzU0hCQkJAQIYiAETinEDg2Nwr9i4494p7sYd497kot57Fy4qyLYsyeq994J6744Uy\/19n2gfJidHxZKsciTt54\/57DMzZ86amb3X+q415fzg\/5NIJBKJRCJpBSkUJBKJRCKRtIoUChKJRCKRSFpFCgWJRCKRSCStIoWCRCKRSCSSVpFCQSKRSCQSSatIoSCRSCQSiaRVpFCQSCQSiUTSKlIoSCQSiUQiaRUpFCQSiUQi0S7u379\/586d27dvNzY23rp1i8bdu3cfPHigWtyzSKEgkUgkEokWgUooKSmJjY0NCAjw8vK6cuXK9evXExMTq6qqkAuqlXoQKRQkEolEItEWbt++XVxcbGRkNG\/evJdffvnJJp5\/\/vkFCxbY2tp+9913rNDDpQUpFCQSiUQi0Qru3r2bmJioq6s7ceLEp5566qc\/\/elPfvKTH\/\/4x\/\/5n\/\/5xz\/+cfr06WfPno2Pj79586bqCz2CFAoSiUQikfQ+9+\/fz83NdXR0\/Oyzz6ZNmzZp0qS\/\/e1v48aNGzVq1JAhQx577LFf\/\/rXH3zwgZ2dXVVVVU8WFaRQkEgkEomk9\/n73\/\/u7+9vZGR09uxZPz+\/7777rqAJHx+fgwcPjhw58je\/+c2rr75KOzk5uSeLClIoSCQSiUTS+zQ0NKSlpYWEhMTGxpaVld25c0fMRxNERERs3rx56NChQ4YM+fLLL8PCwmpra8XSHkAKBYlEIpFItILy8vIWH22orKy0srKaN2\/eBx98cOzYsYSEhBs3bqiWdT9SKEgkEolEor08ePAAWWBjY7Nw4cI5c+ZYWFigJ1TLegQpFCQSiUQi0VKESkhOTj558uTmzZtNTU1jYmL+\/ve\/qxb3CFIoSCQSiUSijaASampqUAaurq4HDhzQ0dGJi4u7deuWanFPMVCEAodbvA5TcP\/+fdUCiUQikUi0jHv37jU2NpaWln777bfbt2+fPXv2sWPHQkJCKisrWdSTz0bCQBEKtbW1CDGOMoSFhVVUVPTwgZZIJBKJpD0QnoqLiz09Pffu3Ttv3ryRI0cOGjRoxIgRmzdvvnLlSmFhoXzhUrcQExNz7ty5kydPHj582MDAICEhoeerNxKJRCKRPJSGhoaMjAxi1uTJk996663nn3\/+8ccf\/8lPfkJj69at165dI9ftybr4QBEKQUFBy5Ytmzp16oQJE+bPn3\/p0qUevhlEIpFIJJJ2glaoq6srKSmJjo4muUUx\/OY3v\/nf\/\/3fZ599du3atT4+PjU1NapVu5+BIhQCAgLmzp07evTosWPHzps3TwoFiUQikWg\/\/\/jHP5KSkmxtbRcuXPjcc8899thj48aNs7KyKi4uVq3R\/QwUofDtt99+8sknf2ti+vTpbm5uUihIJBKJpE9QWVmJVpg5c+bTTz\/96quvbtq0KS4uTrWs+xkoQuHy5cuLFi0aPnz46NGjZUVBIpFIJH2IhoaG8PBw9MFLL72EUNi8eTNCocduyR9wlx7+9re\/TZs2TVYUJBKJRNJX+Mc\/\/lFUVGRtbU0Ue+211\/bs2RMfH9\/Y2Kha3M0MrIrC2LFjR4wYMWvWLFlRkEgkEkkfoqKiwtXVdc6cOePHj9fR0cnNzVUt6H4GilAIDAzUqCjU19erlkkkEolEosU8ePCgvLzc2dn5448\/XrhwoZWVVV5enmpZ9zNQhIK3t7d6RcHHx0e+R0EikUgk2gNq4P79+\/fu3bt79y4N5RYEGg0NDenp6UZGRjNmzNixY0d4eHhdXZ1Y2gMM3IqCvPQgkUgkEi0BNUDsz8zMTEhICA0N\/e6776qqqm7fvs2i+vr6iooKX1\/fffv2rVu3zs7OLi8vrydz3QFaUZD3KEgkEolEe0ANJCcnf\/XVV++9996oUaMOHz4s\/tnhH\/\/4R0FBwZUrV1asWLF06VIbG5uMjIwerogP0IqCq6urFAoSiUQi0R5QAPv373\/77bd\/97vfvfnmm8Sszz77bNOmTXv37j1y5MjJkyfd3NwSExNv3Lih+kJPMVCEgvLCpeHDh8uKgkQikUi0jdLSUltb23Xr1o0cOZJQ9cYbbwwbNozp5MmTd+\/eHRERIa5E9DwD6NIDQkG+cEkikUgkWkt9fX1hYWFuM8rLy3tLJYC89CCRSCQSiaRVBtalh7Fjx8pLDxKJRCKRtJ+Bdenhb3\/7G1pB\/s20RCKRSCTtZABdeli2bJm4R0FeepBIJBKJpJ0MoIrCRx999O6778qKgkQikUgk7WcAVRSWL18+fPhwtIKsKEgkEolE0k4G3M2MgFDw8vKS\/\/UgkUgkEslDGVhCQVYUJBKJRCLpEAPoHgWloiDvUZBIJBKJpJ3IexQkEolEIpG0ygCqKMycOXP06NHiHoVvv\/1W3qMgkUgkEslDGVgVBXHpQVYUJBKJRKIlPOgiVJvrBgbQzYyioiBf4SyRSCQSLSEsLOzAgQPbHxl9ff309HTVRruaXhYKd+\/eraioyMjIiI+Pz8zMjI6OjouL++6773Jzc+vq6u7fv19dXZ2dnR0TEyOmNU2ovtwRNB6PlBUFiUQikfQ6BKNhw4b9uYkhQ4YMGjSIxquvvvrCCy8wffHFF\/n4yiuv0Hj55ZdfeuklPtL4y1\/+MnjwYKZ8FO3p06dfu3ZNtdGupjeFws2bNxFTX3755TvvvPOsGq+99hoKKzY2NjU19dy5c3\/729\/eeOMN5g8dOvTYsWOIiU7UWIRQ4Hy8++678qkHiUQikWgDN27cyMvLIxN+RIqKiv7xj3+oNtrV9KZQuHPnDgfI3d2d8D9x4sQ\/\/OEPP\/zhDx9\/\/PH33ntPV1dX\/AO3h4fH0qVLhUpAUri4uFRXV6u+3xFkRUEikUgkkk7Q+\/coIBfy8\/Pt7OzQCk81sWnTpuDgYLEoLCzs3LlzH3744c6dOztXSxAEBgbOmTNH3qMg6dPU1tbm5OR89913sbGx5BD37t1TLZBIJJJuo\/eFwt27d2tqanB\/RkZGH3zwwY9\/\/OPXXnvt4MGDCQkJpaWl9vb269atMzExQSV07u4EQVBQkBAKY+ULlyR9EzFMTp06NWLEiLfeeuvrr78ODQ2tqKi4f\/++ag2JRCLpBnpfKAgaGxujoqJ27tyJE\/zjH\/+4aNGiEydOGBsbHzlyZM+ePeI2RtWqnUK8mVF54ZJ8j4KkT\/DgwQN6fnV1taur6\/Hjx9euXfv222\/\/+te\/\/tWvfvXFF18kJiZWVVVJodC73LhxgxNhZ2f31Vdf6enpBQYGlpSUkP+oFkskfR9tEQrQ0NDg5+e3devWP\/\/5zy+++OKHH344adKk3bt3nz9\/\/hFVAsh7FCR9FHRAVlbW0aNHGRHPPfcco+M\/\/uM\/fvGLX3z++efBwcGyotBb1NXV4Zfy8vICAgKsrKzIcB5\/\/PFXX331zJkzCQkJN2\/eVK0nkfR9tEgooMGLioqcnJwmT5789NNP\/+53v5s6dSoqoXN3L2oghIKoKMhLD5I+xIMHDxgClZWVERER3t7e27dvHzRo0K9+9SuEAomszFx7C4RCYGDgqlWrEAc4K87IL3\/5y5dffvn06dPffffdnTt3VOtJJH0fLRIKgNcTV2EnTpz42GOPMer279+PZlctfgRkRUHSd0ErgHitiKmp6bBhw5599tmlS5cSqBAQsqLQKyAUcFZWVlZHjhxZu3btK6+88utf\/1oIBVlRkPQztEso3Lt3r7i4+MKFC+vWrXvqqad+\/\/vfE90vXrxYW1urWqOzyIqCpB9QU1NjZmY2fvz43\/zmN6KiIO9R6C2EesNlod5iY2PXrFnzpz\/9CQ+jq6srKwqSfoYWCQWGXHl5ua+v7\/r167ds2TJv3rzHHnvsL3\/5yxdffHH9+vVH1AqyoiDpBwihMGHCBCEU5D0K2oC4mfHLL78cNWrUG2+8ISsKkv6HtggFVEJZWRmOz9TU1NjY2NHRkQbZv3hdpY6OTnx8vGrVTqFUFEaPHi0rCpI+ioZQID7JzLXXefDgQXJysnjDrBAKsqIg6Wdoi1C4desWg83GxubgwYMBAQGVlZU5OTl79+4lrj\/77LOMQEtLy0cpKgih8Le\/\/W3s2LHTp0\/v7oqCuJyMv4j7ntwmHv0aimQgowiF5557bunSpUFBQfIeBW1AQyjIioLk0SFzJmTQtVQhJC4uPT2dmb3yYL9WCAX2PCYm5uTJk+fOnbt+\/TreEJF++\/bt+Pj4PXv2vPbaa48\/\/vjChQsvXLjQ6UCrXlGYN29et1YUSCaysrI8PDz4oREjRgwePPiVV16ZOnUqugf1wy6wd6pVJZKOIIQC3Rj1\/MUXXyAU5OtAeh3l0oOsKEi6CgSBvb39kiVLhg4dSgSBt956i4Bibm5eWFioWqkH6X2h0NjYmJSUZGFh8fnnnxsaGhJKGXhiEaqciL5o0aJf\/epXL7zwAlrBz8+vc1qhCysKuICKigqSBhsbm3379h04cEBXV9fNza2goIBtshTdZ2dnt3z58hdffHHcuHGbN2\/++uuvDx48eOTIkVOnTvn6+lZXV0u5IOkEQigoNzPKioI20PzSg6woSDpNfX19WlqalZUV8W7IkCE\/+9nP\/qOJH\/7wh7\/73e+mTZt27NgxBj5KgtCp+k7308tC4e7du7m5uaiEZcuWffTRR0ZGRnl5eUIo4P5wgsHBwWROv\/jFL8RhOnnyJFoBMdHRKNtVFQV0ADE+KyvLwMBgypQpyBe0Hvpj+\/bt3t7e+fn5paWlbHzx4sV\/+MMfJk6caGJiIs5oSUkJNsydO\/f48eNohaqqKikUJB2l+T0K8qmHXkdWFCRdBSqBMe7g4LBgwQJUwrPPPkt8ee211wYNGvTb3\/72v\/7rv\/7v\/\/7vzTff3L9\/f3h4eF1dnepr3U9vCgXx1gRC6aRJkzgK6IC33npr7969SUlJBGOhElavXv3888\/\/v\/\/3\/37wgx+gqn7\/+99PnjwZuZCdnd0h\/9hVFYWGhoa4uDhs3rZtG6IvJCQkJibm2rVrxsbGW7Zs4QQHBARs2rRp6NCho0aNYrXMzExRAsHaiooKT09P9OCJEyeYL66wiM1KJO1BQyjIpx60AYQC2c6uXbvUKwo9me1J+g1EJTJh+tLUqVMPHTpE8klAiY6Odnd337FjB4kuQuF\/\/\/d\/CS5nz57tkjcMtZPeFAqI7vLyco4Cvm\/37t2EXj09vfPnzzPq0EosTU1NtbGxQT2hHgRfffWVrq4uh6+jgr1LKgq3b98uKiry9fXFTpQB5t27d0\/M9Pf3x7BTp04hYt5ugp9jTXU1ILSCs7Pzzp07IyIiZFFhYCKKUoWFhahGOgzdWx28g52dHQJUuQCnwLcUoUCqsWHDBnmPgjbAmSK3wY\/LioLkESkpKSGJ3bdvH8mkcAKk00QZ5l+5coUU9M033xRvCicvDQ8P7zE92suXHoidHAWc3c2bN\/\/xj3\/QIO4yU0RQZZE6HJpODEKNioKbm1tzoYAjRqOlp6fH\/zsIAuZXVlZiG0vx1Kg5kgbFlWNwQ0MDige\/P2PGjEGDBo0cORJZw3c1pAAffXx8jh49evXqVfk3wQMWujpKcfv27Qz4\/\/53fvazn6EyUaJ0OY3SIp1HEQq\/\/e1v5T0KWgLnJT8\/X72ikJiYKCsKko5SX19PR7KwsLC0tExJSSHYKeGDMU7UQzps3ryZJOE3v\/nNwoULCWqlpaU909N6\/2bGnqHtigKnhCPu5+eH7x4\/fvywYcOGfM\/QoUM\/\/PBDnDJbyMzMDAwM5Cza29ujEpSzSLxHZJBGoABee+018e+Xrf1LRVRUlLGxMWJQCoUBC\/0tLCzsiy++eOqpp\/73f\/\/3B2r85Cc\/UeqKSgdT0Lj0gFqV9yj0OniSpKSkTz\/9dMSIEbgXXV1deTOjpBPQkdAHxCZyTkSDau73kF2Qpuro6Lz55ptohaVLl3p5ealXrLuVgSUUWqsocKw5DVeuXFm8ePGTTz75ox\/96Iff8z\/\/8z9PPPHEpEmTnJyc0tLSAgIC7Ozs3N3dNU4kci8nJ+f48eMjR47E++\/bty8uLq7FUxgTE+Pi4uLj45OVlSWFwsCE3lJYWEh\/O3HixN69e3fu3Llhw4Y9TXz11Vf6+vrXrl3DBajWVkP90oN4j4K89NDrkDPk5uZyEt955x2cuHzqQdI5iBd1dXUknOSQxCPV3O9hKd2MJJMQNnjwYIa\/r69vj3UzWVH4JxzukpKSq1evfvbZZ6wzZMiQF198cdCgQWLK+F+\/fj1byM\/PRygQ5jlDGkLh7t27BP5du3bhKVifrIJUT7k2oQ5CAV8vKwoDHFFLpOPhERqaoCEQF9daVJlCKJC5IhTEpYfbt2+rlkl6CYa5xj0KDG3OoGqxRNJuGPUEBWg+\/PEMmZmZZ86cGdrE\/v37CSUD5R6FHkOpKECLFQUcNwOeYB8XFxcbG8s5UGBORkZGeXl5QUEBQsHKysrZ2VldKHBeWUoWOH\/+\/N\/\/\/vdjxoyxtbVFG7bo6\/38\/MgjESWyoiDpKEIojBs3Tt6joD0wzOU9CpLuhlyCMETvevfdd+fOnUsMKi4ubjHEdAcDSyiIi4itPfUg5EKTnmsBFvGVqKgoS0tLGxubwsJCzpz44t27d7\/77rtTp05xChEKU6ZM0dXVJcloXlHIy8tDoxw7diw1NRUX32OnWdI\/UC49KC9ckpceeh3cgsY9CrKiIOlyCDe+vr7r1q0bO3bsgQMH6HI9eXlLVhQ6wO3bt7OyslxcXIyMjMLDw0tLS5mJSigrK\/Px8Vm6dOlf\/\/rXwYMHr1mz5sSJE\/b29sgCda1QW1sbGxtrampqaGjIVxAfqgUSSftQFwpLliwJDAyUFYVehzGek5Ojfo+CrChIuhxGOgnq8uXLFy5c6ODgUFxc3JN9TFYUOsCDBw9wChEREZaWlgT7kJAQZiL0AgICcBMvvvjiq6++unHjxpiYmIsXL548edLOzg7dJ74oVMKGDRuOHTvGF+VLFCQdpa6uLjc399SpU4jRX\/3qV4sXL0YoyBcu9Tr4BHmPgqRbQSVERUVt37592bJl1tbWmZmZN9UenuwBZEWhY9y+fbukpERoBR0dnbNnz+7fv3\/lypVIENwEcsHHx6e8vDwlJcXd3d3IyAivcbiJgwcP0mbq5eXFaZblBEk7ESozISHB1tb2wIEDU6dO\/e1vf\/vDH\/5w0KBB5BbohgsXLpSWliIjZKfqFRBqycnJn376KXnCc88999VXX5ESyIqCpAtJTU21srLavXv3mTNngoODa3r8rb6yotAxOD23bt1CKwQEBGzZsmXUqFFvv\/32yy+\/TGPDhg3+\/v4sxXGgJ\/Lz821sbNAQr7zyysiRIydNmrR+\/XrOMUrw7t27qs1JJA+DLldVVfXNN98sWrSIjvTWW28NGTKETvXss8\/SnjBhgrhgyTpSKPQw+JDCwkJUgqOj48cff\/zkk08+9dRTq1evPn\/+fHp6OmcE9SZLC5JH4R\/\/+AfhhvRyz549ZAVRUVH0up4vIsqKQocRWqG8vDwrKyuiifDw8MjIyLS0NPU7y\/DaN27cILcIDQ318fGJjo7OycmpqKhQLZZI2g19CWcRExMj+hvdiS4XFhZGG8eRmJiIN5EXIHoYHAjJwOnTpxcsWDB06NA\/\/OEPP\/7xj3\/0ox+JN+zOnTvX3NxcvstZ8og0NDSEhIQYGRmdOXPm2rVrxcXFvXL\/sqwodAa0An4Z931XjRbzObHo9u3bTPmK9OaSzkHPEX0JRHdSp4frkBLgjNTU1HzzzTfnzp3btGnT9u3bv2xix44du3btMjAwEPc7S6Eg6TQklmSY+vr6Ojo6np6eZAtEmV4Z7LKiIJFIJJ0BrfCPf\/yjvr6+tra27t9hJnqut9y6pB9A14qLi9PT09u5c6eVlVVeXl4v5pkDtKJw8eJFKRQkEolEooU0NDRkZmZ+8803Bw8evHTpUm5ubk++NaE5A0sojBkzRlYUJBKJRKK1oBIyMjLs7OxOnjxpamqalJTU2NioXpriY3p6enBwcFZWVl1dXQ88YiMrChKJRCKR9D5IBAJ\/bGyspaXl0qVLt23b5uHhERMTk52djTJAMQgCAgJY4fTp05cvX+6ZRyUHYkVhxowZsqIgkUgkEq3i\/v37aAIDA4NRo0b94Q9\/eOqpp15\/\/XXy25FNELzee+89Pg4ZMmTy5MnHjx+PiIj4R7P\/mewOBmJFYe7cubKiIJFIJBLtoaysLCAg4NChQ++\/\/\/7Pf\/7z\/2jiRz\/60X9+z4+boPHrX\/966tSpVlZWBQUFPXO3rKwoSCQSiUTSy2RkZJiZmc2fP\/\/tt9\/+85\/\/\/MILLzzzzDNMBw8ezMdBgwY9++yzTPk4dOjQzz77DFVRXV3dM69VkBUFiUQikUh6mZqamvz8\/Ojo6ODgYERAYGCgmF69evXatWs0BEFBQSEhISkpKXVNb23XiopCeXl5TEyMj4\/PN99849yXOXbs2OzZs8eMGYNWmDx58r59+6ytrVXLJBKJRCLpVRwdHR0cHOya4erq6uTkpPrwPfb29sxUffPfuXDhAnqia5+ofIhQyMzMtLKyWrFixcyZM8ePHz9lyhRlSridMGGCmE6aNGnixIliqjTEVH019a8zHTdu3NSpU8X0ww8\/nDZtmjKdPn36Bx98IKYzZswYO3asmGKGuHagzFFfU9kCq9FgszSAn8CSd955Z\/To0WgF1mQjmMciYTwNYTANYbZosJSGMJ6GsFw02CYNYT8N8dOiodjDVLFTsV9jTov2C+PVj4\/6cWOqzQdfTNW3z7Q9xjNV\/6i+GtPWjGfamvFMFVOZtmE8U3XjmbbHeKatGc+0NeOZtmY80zaM1+g86msybY\/xTFsznqn6R\/XVmLZmPNPWjGeqmMq0v\/Z8Fgn7aYCwn4byK+0xnqn6R\/XVmLZmPNPWjGeqmMpU9nym6lYxVbdZaWgYz7Q145m2ZjxTxVSmGsYzbdH4f\/aeJsTGaaj\/rrCHmUpDsVlpiClLFyxYcO7cubCwsIaGBlUgf2QeIhTS09MRLwgFzBUX+NueatD2yi1OOY7q0\/fff7+dU+Vbw4YNYw4NNjh8+PD33ntPtMV05MiRQi7QFusz59133xWLEBM0RjWh3mC+uOmUxogRI2jwFaXBr9BgU8CvM1Xsac1a9an6+kzFpjox1aDtlVucahjTttnqU+VbbW+\/jakGba\/c4lTdDMWw9kw1vtv2r7Q41aDtlduYahjTttliqvGttrff4lSDtlduY6phTNtmi6nGt9refhtTDdpeucWphjFtm61M3377bdYXX1Hcjrr\/ac9Ug7ZXbnHKr6tPNYxsY6rx3bZ\/pcWpBm2v3MZUw5i2zRZTjW+1vf0Wpxq0vXIbUw1j2jZbTDW+xXZoEEdYKj4SXERUEh+Zijk0RMAS8zUQM+fMmXPixImgoKAeFQqmpqbz5s1D+2CoeDaDQCvCrbCYUCqmBFEFZaaYqn+FqbIppuLoiKmIssqUfWYoKtOhQ4dyNJWp+lLlW8px1zjoiuVijjBDmCfm8EWmSkNsqp0NNsXPKTNBGNNR48VU\/YAwVQ6UsL\/FI89Uddy\/R31Ra0eeqfoPMVU3o53GM1X\/FtP2GN98F1R2N9Ga8UzVN8i0PcYzVTeeqcbS9hgvph01nqn6V5i2x3im6uYxbeP4t2Y8004YD+qLmLbHeKbqZjDthPFMNbbZHuOZquz+nvYYz1T9h5h21Hg+Al9kKr4FYj6NNoxvvgsqu5tozXim6htk2h7jmWKP+i5oLFW+xVTZmobxYtpR45mqf4Vpe4xnqm4e09aOfxvGM+2E8aC+iGl7jGeqbgbTThjPVGyNBktp8yuirW68mMOmaCg7ojK9CcX4jz766OjRo9HR0T0nFAoLC93d3Xfv3j2\/icWLF3\/yySdi+vHHHyMg1OcgZObOnUtbmclHZiorMOUrfFF9DpudPXu2MmfJkiULFiyYNWvWokWLaIvpwoULZ86cqT6HKYeD+epz+BZbYGu0lQY\/J37iww8\/FMedYz1p0iRmih\/FSNoYpo6YqUwxiR0RU36UbSpTtsxGWCT2AhuEwZinGCam6rugbrzSFl9nU+JQsEF+vXlb\/cgrx1y0gQYfmam0WVk55rSFnbTZoNIWx5w2Zqgbr7EjbewCW6DNFlrbBXWzW9wFUDe7tV1QN5u2MJu22AVhXhtmt7YL6mbTVsxuYxfUj3yLu6Budmu7oH7k29gFptOmTaPr4lDEdMaMGWIdsQtsQX0X1M1ubRcUs0VbMbudR77FXVA3W2MXlCM\/valiL7yeqLKyayxiC63tgrrZLe4CqJtNWzG7jV0QZtNu48gL8zSOOV9hyneFwazJZlkTN614fFEEZp1OGN+e499O41tssw5rirbYBbbD1mgrx7yN4y\/Mpt3aLqib3douCLNpY0Y7d0HdbKXNFtR3Qd3s1nZBMVu0FbPbeeRb3AV1s9u5C8Js2mJrbJaZtGmwDr+uGM+U1bCNORipGM8U1M2mvXLlSiMjo9jY2J4TCnV1dUVFRQkJCfHx8VFRUeFqYAeaRfWhiZgmVB+aYAVWU31ogo3ExcWpPjQRGRnJxlUfmoiIiOAXVR++JzExUdX6nuZz+BbfDQkJCQsL4yObZePio56eHsddDOApU6acO3cuICBAfAsLMTu0CbELoi2MV9qYzXZoi12gzZYV40VDzOTjQ3dBvS3MVtpsSrSF\/aLNLyrHn7Zy5NXPgjBeaStHXv0sqB9\/xXjRVgzWML41s2mrm6201c2mrW620lY3m7a62Upb3WzaitlduAvqZre2C+pm01Y3W2mrm01D3WylrW42bXWzlba62bTVTaVreXt741k++OADkZfs3LmT32I+iHX4rvqRb88uqJuttNXNpq1uttJWN5u2utlKG1o88q6urqdPn16xYgW+b9euXYaGhn5+fmIv1M2mrW620lY\/8u3ZBXWzW9sFdbNpK6Zi1bfffnvq1KnPP\/8ca\/G\/ly9fDg4OZj7rsybjPSkpiU3RYCnZCOmgEECmpqZBQUFs5FGM747jD8L45m31469uNm11s5W2utk01M1W2hrHX93shx5\/aOcuKGY\/yi6om01b3WylrW42bXWzlTa0sQvqZittEKGKBtsXv6gYLyD6iL2goZrVhMYupKam5ubmVldXd+GfSD1EKPBL9+7du3Pnzt27d5neVqP5HD42n8Nqqg9NtGcONJ+DGarW9zSfo\/EtPir2XLt2benSpQzgkSNHounOnz\/PcRSL1Fejod5WNtiettIQtG1wa231jdBWjGlPm4Z6W9lUe9rQWrsTZqta\/25ea20arbWVTbXWhtba7TG7D+0CZGZmrlq1atiwYSIUEWv\/\/ve\/q5Y1obEdxYz2tGmot5VNtacN6u3WjnB+fj4e0MvLy8rKytjY2Nzc3MLCwsfHB3cp\/msRNLapmNRam0ZrbWVTrbWhtTarVVRUZGVlkU5cvHgRa62trdE3ePnS0tJbt26xjrJryhfd3NzwLWi44cOHk+FduXKFREusoBim3qbRWlvZZmttaK3d2vFvrd3GNhWTWmvTaK2tbKq1NrTWfsRdUMxoT5uGelvZVHvaoN5+FLPVYb74FaaqWd\/T4kzmKDNp8BPQtX81+RCh0G9g0M6ePVtc+5k+fTreqgf+SEMi6UK+++67tWvX0oFFRYEo27t\/KNceHjx4cKOJwsLCwMBAOzs79M3evXuJvuiDvLw8JAJxt2eeBW8nGFNTU4OmcXd3P3v27P79+x0dHZOSkpBlmIoLVq3XjMuXL0+dOlVceli4cCHJSc+8Xlci6W4GilC4fv36kiVLcK+kYtOmTfvmm2\/wUKplEklfoLKykvDzwQcfEIrQCrq6uloeh4i4pNQIAmdn5xMnTpw7d47U3NfXNzU1Fd1Ayk72o1pVOyAJw2AEmYODw7Fjx8zNzdEKkZGR+fn57Xn\/Hepn1qxZ4sa0jz76iORECgVJ\/2DAVRTEpQf5ZkZJn4NwNXfuXISCuLFOaysKhNva2tqUlJTQ0FAkgq2tLRm5lZXVpUuX4uLiSkpKlOqo6gtaADZXV1cnJycHBASgEgCzg4KC0tPT264iqCMqCu82PdW2YMECWVGQ9BsGilD49ttvycYYwGPGjJk3bx4+SwoFSd+CTHflypXDvn+ETE9PT9vikMjICwoKEATffPPNoUOHTp48aWJiQgTNy8u7ceMGQffu3buqtbUDRACyRrw619ra+uzZs2fOnPHx8WEvOLztKSQoiIqCKFvKioKkPzGAhMInn3wiHkidMWOGvEdB0udAKCB23\/\/+8UhCmvbEIVFFyMnJcXd3P3XqlIGBgYWFxYULF2JiYjC7qKhIq+oHClhVWVkZHh5ubGwsbL5+\/Xp8fDxZRCcMRht9\/PHHI5pe0iArCpL+xMASCuLxSHmPgqQvIioKyuOR586d04Y4dLvpcYaEhATEt2MTenp6Dg4OwcHB6APC8N27d7VQJdy6dUs8heHp6WnbhJOTU1hYWHl5OXukWqmDqF96kBUFSX9iAN3MOG\/ePHmPgqTvIioK4mbGsWPH9q5QIPbX1NQgBbDq6tWrurq6Bw4cwCTaiYmJLMI27ZQIWIV52dnZPj4+ZmZmhw8ftrOzS05OLiwsxOZHMVi59DBixIg5c+awfSkUJP2DAXQzo3KPwvTp093c3KRQkPQttKeiQKytqKgIDQ01NDTU0dExMDBwdHS8du1abGxsSUlJpzPyHqCxsRGJ4O3tjdkY\/80330RFReXk5FRXVz+6prl8+TLZCCrh3XffxdvISw+SfsOAu0fhvffemzt3rqwoSPocSkVBvHCp54WC0AdJSUmBgYEuLi4k4jZNMLhSUlLKy8vb\/4BAD3Pnzh2kABIhODj4woULVlZWtra2xPW0tLSampquqnzgVSZPnqxceuAoabNmkkjaz8ASCu+\/\/z5jeMaMGbKiIOlzKBUF8eBDjwkFoiyDhUCbm5sbEhJClCUdP3ToELE2MjKyoKBAPM6gtRIB48vKymJjYwnkx44dMzAwcHd3T01NFe9Y7EKzUR4ff\/wxpwYZh5Px8fHR\/jdiSSTtYYDeo8CQlk89SPoWvVJRINBWVVUlJSW5urqeOnXq9OnTlpaWXl5eUVFR+fn5GKCd+kAgjEci2Nvbow9MTU09PT3j4+OLi4u7Q9mIigLZiLxHQdLPGHD3KDCMp0+ffuHCBfnUg6Rv0cMVhYaGhqysrODgYA8PDwKtubm5jY2NeFMhCbrWlhAESITS0tKEhIRr1645OTlhv4ODg7+\/PxKhtra2myz\/5ptvSEKEk5H3KEj6EwPxHgXEvrxHQdLn6IGKwu3btxkXZOG5ublxcXEMEx0dncOHD5uYmPj6+qIb6urqtLyKwC5gf05OTmhoKOLg7Nmzpqam4llNcoNufRBD\/T0Ks2bNko9HSvoNA\/EehZkzZzKkpVCQ9C16oKIgHgq4evWqubn56dOn0QcXLlyIjIzMzMx8lBcM9BhYiMQR9uvq6trZ2aFvML6ioqIHxI0QCjgZ8e+R8tKDpN8wQO9RkBUFSZ+jmyoKt27dYiwUFxdHR0cTVlEGtra2NjY2RNlr164Rd1mhWxPxR0fsQl5eXnBwsJeXl729vampqaura0xMTE++8UmpKMjHIyX9jIEiFIKCgtD4o0ePRu\/L\/3qQ9EW6vKIg4mt5eXlWVhYSgeB6\/PjxU6dOubm5xcbGFhUV3bhx446W\/cFjc9iLiooKdoHArKend\/r0aexPSEiorq6+efNmT+obb29vfIsoW8pLD5L+xEARClevXkXjI\/bJxuSlB0lfpGsrCsTX\/Pz8sLAw8m+Cq66urrOzs7+\/P1k4EqGHQ2znEEInOzvb3d0dlWNpaenh4SHs75Vnmi5evDhlyhSEAmdn\/vz58tKDpN8w4O5RQCvISw+SvkiXVBSIoJWVlWlpaUFBQWTAjo6O5ubmtra2np6eUVFR4tUC9+\/fV62trWAke5GSkhIQEHD+\/HlUgrW19eXLl5lz48aN3rKf4zl79uzhw4fjZ2RFQdKfeIhQoKOXl5fjoTK+p6CgoKam5lEKknfv3iVIK3TinST19fWqLzfx4MED1YLWEUIBpc8Ynjt3rrz0IOlzMAwXLVrUuYoCo0wMlry8vMjISCcnpxNNIBECAwNzc3Nra2sbGhq0\/0IDQoe9KCsri4iIsLOzO3nypIGBASE5OzubXWA3e1HliIqCeDOjrChI+hMPEQoodMbh6tWrycKnNbF7924\/Pz8Gaqd9irgzGfnv4eHBaGfYqxa0G5QKNjAsGYoVFRXtcQ3+\/v7Lli0bNWqUvPQg6aMgFFasWNG5igL5d0JCAkNGX1+fLxJi3d3dQ0NDMzMzq6qq0O6q9bQbVAKeJyoqCn1jbGzs4OCARIiPjyeZ0QaJIyoKnBpknKwoSPoTLQsF+jdZe3R0tJWV1a5duzZu3Lhy5coPP\/zwmWeeeeWVV\/jo6elZWFioDM5bt26xvngwiWSFqbhZWiwVsDLrlJSUBAcHM87JZuzt7XFenbgUilAICQkxNTU9fPiwm5sbaqaurq5tuYBJc+bMeeedd8aMGSPfo9C14KY5j+np6UVFRX0l5PRFOlFRqK6u5lvh4eFIamdnZ4IrODo6MgZzcnLEvYraf6EBkAgFBQVxcXHffvst3sPc3JzdwQngT3r9WklDQwOeLTk5WVdXd\/z48e+\/\/\/7IkSPl45GS\/kTLQgEPQqpx4MCBL7744uzZs7gVkg8G54QJE\/74xz8+\/\/zzX375ZWBgYG1trVifYI9LIhivXbv23XffXbNmDWqa+KGuFW7fvl1cXHzt2jWUx5IlS\/bt2xcUFNS5gYR3w0IvLy82xS+SJGVkZLStFfz9\/T\/55JMR8mbGbiA1NdXCwkK8kwenqZor6WraX1EQQp8BmJaW5uHhcfr06VOnTllaWnKC2EhlZSWdv9fjazu5efOmeKiBIUzecubMGYRCZGQkzoS96HVhSodHH8fExCBctm3bhlDg1OBk5OORkv5Ey0IBb0LaMWPGDIQCuhhBgKJHOujo6KCX\/\/znP3\/22WfXr18nNov1cTqlpaUuLi6ME5TElClTGDaMZGWcENrLysouX77MWFq3bh3SG+XBHLG0cyBN2ODx48dXr16NpomKiqqpqWnN9yFiFi9ejPGyotDlhIWFEYqOHj1KHJKesftoZ0WBmdnZ2Sh1U1NTwir6gN7OaCXl7a3HAToNKiEnJwf7zczMSFRELQRH9NAKYs+AShDvr6T\/I2J27949depUshFxM6P890hJv6FloUAX37NnD\/5oy5Yt4eHhhOR79+6hBqKjo42MjLZu3cqoIIlX7kNkKT7I2toaNf373\/9+0qRJtAsLC5XLCkgNXNXBgwdXrlyJ8xJBvRMXHTQg2GPq\/v37P\/nkE\/wmul69hqGOuJlR3qPQHcTGxnJOEQre3t6yotB9tF1RoF1eXp6UlBQQEEBvRx8gFOzt7RH6iYmJVVVVBK2+cqEBx1JfX5+fnx8SEnL+\/HlbW1scjqenJ3vHPrKnvb4X4nIbJtnZ2XGQUTD4SdTMxIkTxc2M4t8j+5Ysk0haQ1MoMAgZovT+hQsXDhkyZOPGjYwHxq14soClFRUVeXl5jBNmKsOV8IzwxzcxQp566imRsiv1BtxTamqqjo7O8uXLd+3aFRQUxE88ukoQEO89PDzWrVvHxsk5SkpKWnQiyuORY8aMmTZtGl+RY7irkBWFnkGpKIwePVq9ooA4KysrQ5ejxRkCx44d43S4uLjEx8eXlpaKxxm6arh1N8L\/MIrJQ1xdXfX09AwNDb28vIREYMz2rtbBNuBoIwscHBwOHTqEgvHz8ysuLuYgYzBJCD5Q3qMg6WdoCoW7d+8S4MlFxo8f\/8ILL2zYsKE92T9LGTyMk9mzZ7\/55ptr1qxh8Ih6AwMbb8VQZ+bcuXNJDkgUxLe6ivT0dF1d3XHjxm3fvp0B3OIFCPWnHhAKpCky9+0qYmNj6TDHjx+XFYVuRakoDB8+XKkoINw5\/mS0BgYGzKEh\/uAxOzubkNaeJ4e1ihs3biQmJqJykAgk6OxLTEwMmQn70utVBBCVUZyYkZGReMV1WlpadXW1sI3+j28hG8HJfPTRR\/KpB0m\/oYWKAurY2NgYUfzyyy9v3ryZ0EvW\/lCPw0gmayetZ5zwLYY36gGVwMinffDgwYULF+7atSs6OlqpNHQVlZWVly9fnjdvHj+Br8zNzW0uazSeerhw4YK89NBVhIWF4dZJZGVFoVvRqCjs3r2bI3\/p0iUiFnktYdXZ2TklJaWqqurWrVsMvT6kEug2ynUT9sLa2tre3l48moFj6d0qAmAD2U5cXJyHhwciBk3GlAwKV3b79m3lOHMuxN9M4zw\/\/vhj7Jf3KEj6B\/8SCoxVxkNWVhbKgOzwzTffHDRo0Jo1axgbeJ+ioiLx1jbV2s24efMmWfvGjRunT5+OICAtYCbr80UnJ6dPPvlkyZIlDDA+qkdxBhKbZSa\/q4BDxGuQm+IdWFpSUsJMMiTagJGqL38PfgRdv2HDhilTpvAriAakg4ZWEE89oBLwsPIeha5F3qPQM4iKwogRIwhFw4cPX716Ncf81KlTNjY2fn5+pN0VFRWNjY19q4og3A7JSWRkJHIHz2NhYeHj45Ofn88IxT\/0okTgSGIbFBQUhISEGBkZcbTxZuizsrIyurrGodaoKKCb5fVNSf9AJRTo9ERr8uxPP\/101qxZQ4cO\/dWvfvU\/\/\/M\/L7zwwvjx45mzefNmQ0PDzMzM1p5HIjDHxMSQ5eC\/EATp6enMZIwx\/nfs2IHEXr58OdtXLyfwFTIGVuZHEeBz585dvHgxDYK9paUlW8BZkF4gPpYuXcp8VAs+MTU1tbkrZE19ff2pU6e+9dZbxsbGfFdDy4uKAgN41KhRjGFZUehCUJbyHoUeAKGwdu1a+jBid\/To0Z999pmbmxspOCOiqqqqeRVN+xFuh8zbzMwM9yJewZKUlITi0YYXcqBRcCyIMHwUKsHV1TUwMBDfgltrUY2JioJ46mHevHnyHgVJv0ElFEjKycI9PT23b99OnCaaPvnkk\/\/3f\/83ePBguv6iRYsI9uJJhzaKaQwhMsuvvvoK\/yVuRCgpKSHSE+NffvnlL774grRePePkR\/F9bHbTpk3vvvvun\/70p1\/+8pdPPPEEqkJHRwdRUlhYyNcREC+++OKQIUNosOW0tLTmoxTjz58\/v3DhwqeffhpnirRnMKuWNfHtt9\/Onz9\/zJgxjGH5CueOwgEvLS2Nj4\/\/5ptvrJtx8ODBTz75BM+4ZcsWOzs7W1tb1YImXFxcQkNDy8vL5buYHhEhFJSKwpEjR7KysujnDMkW45Y2gx8gSSC1uHbtGurf1NRU3I6AblBune4t+HWcQ3FxMQrmypUr4h0hqITExERxtFXrNYPRga9DyXGCZs+eLe9RkPQb\/nXpgbBNXpKdnS0eOHz99ddfeOEFUnkPD4+EhARR+afft1EJRBxcvHjR3t4+KCiInIA5fOvYsWM4tddee+3QoUNsR10oMCBxCrgGAgmr4QF\/9rOfIVCWL1\/u5eXFbwHGIBoQLhs2bEAKsFn1LSjU1dWFhYWtXLlSvMXB0tKypqZGtawJ+Xjko8BJRyWQ802dOnX8+PHvvPOOmI4bNw6FN2zYsOeee+6ZZ55BzJHpMpPphx9+yPSDDz7AY5KQkSaKm1slnQahgGRXKgpnz56l2\/dFiSCe0RBvetDV1UX9R0REICV7V\/TQyXE49+7dI71JTk7GYxw9elRPT4+kggSpNc+jjhAK5DmyoiDpZ7RwMyNDAgWNP3rppZc2btwYHR3dzittuC2yBLIcxjwDHuXBeNu3bx\/xA9lx8uRJdEPztJI5\/CLJBGu+\/fbbjz\/+OH6QmJSbm1tdXY3y2LVr17Zt2y5fvoykUH2nGfwWen\/nzp1PP\/00PhRtgWpRL8YKocBOIUcQCvLSQ4fAd+PZOUdOTk6Ojo6kgOrTAwcOLFy4cM6cOV9++aWZmZmDg4Otra0yJRWjC\/XR2rhWIe5R0HjqQbWsj0CsTU9PJ\/QaGxuTqTs3\/bF1Zmbmjd77y0cF+icOp6CgwNvb29zcXF9f393dnZwHn6aRdbQGTmbatGkIaFlRkPQzNIUCERdBLZ56ePbZZ8njw8PD25kLMtL4OoiQgLwIDQ397LPPXnnllTFjxpDlE7ybaw6CEF9BZFy7dm3t2rXPP\/\/8n\/\/85zVr1lhZWaESDh06hEpgyKESWE31nWYwIBEorDx48OA33njj8OHDGqJEqSgwjOWlh07QdGLv4Oib4+vre+zYMeQCHrayslI1V41bfeRtwVoOQoE+3Pw9Cn2CsrIy7A8ICPDy8jI1NSUVQfrHx8cz8Hv90gmdEzPQK2FhYd988w2eytra+urVq\/gceq\/o+apV20Tco4BKEE89yIpCcwgNHGp6Ar7Czc2NXELBzs4Oh49wFHeyq74g0Q40hQKQOxoZGZF8E7OFUOjcWxSJxAwVcqCXX355woQJJKOlpaWtXahmrFZUVCDhFy9e\/PTTTw8bNmzBggXLli3buXMn47ZtlQAsRYWcOXOGIfrSSy\/xrYSEBHqkYjb9b+nSpewUkoXBLC89dCExMTHyqYceAPe6fPnyvlVRQAHUN72hSLwdAUFJsk4MFjdgsqjXJQI9Fv+GuyDMGxoaclQ9PT0RDbW1te3UBwqioqA89SArCs3hkOLMEQT4+TfffPMFNfDbJHLr1q2LjIzk4Ku+INEOWrj0QMRFKBBxxXsUUP3M7GhGSIdAGJI0LFmyBMEhhAJzVItbAg2BKzQ2NiZh+vOf\/0zXmTNnDiqBQfvQEYuFeXl5+vr6b7\/9NmZv27YtKipK3Q3hm+bOncsAJhVD7MtLD10IUlIIBfkvON1Kn6soMPrIDfD7JIsWFhYiZSQkFxQU3Lp1q3clApBFVFdX49\/wBrgOGxsblG5oaCgZS0clgkBUFEbIpx5ahwNLfMGrv\/POOz\/72c9+oMZ\/\/Md\/\/P73vyc\/vH79uhQK2kYLlx4YxqKioNyjwGnraEWB9YnE5PGLFi0i5E+fPh2hUFxc3MbtDjgO1H1sbOyOHTvoRr\/5zW8QmEQgvqVao3Uwu7Ky0sDA4I033uDntm7dilBQ\/y1hCWNYiH1ZUehCYmJiTExM5JsZu5u+UlFgIKPRS0pKiMEIdMKwnp6ei4sLAUBIhDYeHOgZ8E41NTWpqalIW2dnZyQCoQsXkZWV9SiHVNzMiIeR9yi0BgmneLvl119\/vWbNGuTUzJkzmc6YMQP\/vGHDBhRbcnKyFAraRquXHpR7FDpdUaiqqkJTc\/oRHLNmzXJzc2NwtnbpQcAALioqsre3X7p06RNPPPHrX\/+azsQAfmj4wUL0BJ0MbfHcc89t2bJFQyhgydy5c9EfY8aMkRWFriU8PFy8mVFWFLoV7a8oiEo+IysvLy8oKMjY2JiOYWVlFRYWhvEM\/96VCLgXzLtx4wZOJi4uztXV9eTJk9bW1iEhIUgEgtMjHk\/51EN74CxwqPPz87Ozs9FqiYmJYpqenk4nUe4LUa0t0Q7aukeBiItQ6HRFobrpb6CXLVs2ePDgKVOmkFKUl5e38W5HITYjIiL279+\/adOmcePG\/fznPx8xYsSBAwdiY2Pb1gqiooVQYIg+\/\/zzCAVkKR5BMdvPzw\/JIt7MKCsKXYu8R6Fn0PKKAuNX3I7AWLO1taVLMOS\/\/fZbYgC9oterCCA8DN3V2dnZ0NAQIzEvJSWltLS0SyKTrChI+iuaQuHmzZsa9yiQLxJTO1pRAAYJLkPczIh3Q7m3fTMjCQcy397e\/vjx4+QiZ8+e\/etf\/0rUnzRpkrm5eUZGhmrVluC3SGJOnDgxdOhQfm7fvn2kCI1qr7MVFQXG8DvvvCMfj+xa5D0KPYNSUXj33Xe1qqLA4GU0kQui8r28vAjDlpaWjo6OSASyDm2QCLiC4uLitLQ0f39\/zPvni8CsrYODg\/FImNdV+ausKEj6Ky3co1BZWWliYvL222+\/8MILGzduJAx07lU5ZPOI9w0bNrzxxhujR4\/Gr+Xk5LRWUWC4ZmZmurm5oRLwNQxpRMP69esJ\/E8\/\/TTyvO3\/e8RsvnLw4EFsxvIjR440fzxSvJkRrTBjxgxZUehCOMskZ\/r6+kFBQfKtSt2HUlEY0fRyRm0QCkgERiVpelJSEkOMBAOrGKqxsbHi3xB6VyXgAbABUAkkLVZWVqdOnbKzs0PQIGvq6uq6SiIIhFDA18mKgqSf0UJFQbxHgXA7ePBgUVHotPdPT0\/fvXv366+\/Trw\/efIkHxm0qmVqMFyzsrJsbGwMDQ0ZbHl5eegJHI23t\/e6desGDRr0zDPPIDiIQy1+HRiQ2PnFF1\/86U9\/QtGfPXuWXEH9tmq8GNnYO++8g1CQ9yh0LcSJjIyMhIQETllHL1FJ2o+2VRQ41+LBwosXLzJyydER+oGBgXSG1sZpD4MbKSgoCAgIcHBwMDc3d3R0vHz5ckpKSkXTe2O7HFlRkPRXWqgoiKceREVh06ZNBGDcQecCQG5urq6uLvr6pZde2rZtW2RkZHMPwi+yGi6GFchKU1NTb9y4QYxnkFdWVpKqMuQee+wx7Nm6dSvJa4s+iOQAF0C+9fzzz0+bNo2taegAIRRQCfI9Ct0BJ5HcUV2ZSbocLako4AoYg\/gEUclHJZBXWFhYkLIzeFnUtWl6J8AAzCBVwF2QbOBDMA+fkJiYKF4a2\/Yt1Z1GVhQk\/ZV\/CQX6NKMLlUBOsH37dlTC008\/vWbNGi8vr+ymP3pQvzewnRDpPT09Fy9ePHjw4FWrViGxNcI8GywpKTl\/\/jwiYMGCBQiUvLw8fohFRB2cEb++YcOGX\/7ylz\/72c9efvllU1NTBj+jXSMmIRRcXFzmzJmDItm7d29ERITGc5iyoiDp62hDRYEBW1tbyyBlGJKm6+npmZmZIRcyMzMZrb0eF4VEqK6uxh5fX19LS0sDAwNXV9fY2FiyEczrJokgEEJh1KhRsqIg6Wf8Sygwxsj4T5w4sWLFijfffJPA\/NOf\/pTYPGPGjPXr1xPCExIS8BEdGmmMk+TkZB0dnYkTJxLFCfPiQWqxFKeD\/iBm84uvvPIKYgIZbm5ujkNktCMX+MVjx44R3X\/84x\/\/4Ac\/+MlPfkL7iy++wENpXFlAKOA3+QkcqLOzM45MI62RFQVJX6fXKwoM2KqqKryEvb09MRguX75MDEbr93oVQUB6gCBAItjY2FhYWJA8+Pn5ked0t0QQyIqCpL\/yL6Fw8+bNsLCw48ePf\/rpp8RUgi6dfv78+UuXLl29ejXCPCUlpb6+vkOPP+BZxIuZ161bR3g+cOCA+m0KOBd0A0u\/+uorfohf3Lx5M0KBgX379m3GWHx8vAj\/WCJYuHDhjh07HB0dkSyKUGDNxMTEDRs2sCZL2QtEgEbJQVYUJH2d3qooEGJR7YWFhXFxcdeuXXNycmKQ2tnZBQUFodcZqr2uEjAAh4BEiI6OZqSjEoBGUlIS\/qcHJIJAVhQk\/ZV\/CQUGfE1NDUGa0UXc1YAcvaMqQcAYzsjIMDQ0RAqsWrXK39+fpEQsYmsMpPLycn40ISEBN5SZmYl0EEqCpXVNfx\/C4FcZ0QRbKy4uVtcBJDQMUVQC23dzc8NfNPdcsqIg6ev0fEWBEMtgxC0wMJEI6IPTp08jEcLDwxmnxOZelwh4LSzEpaSmpnp7exsbG5PSXLx4EWdSWVnJ8ekxlQBKRQEnM3v27KtXr0qhIOkfaN7M2B2gMIKDg3fu3IlW0NPTw+moFnQRbHz\/\/v2zZs06efJkSkoKjkOjnACyoiDp6\/R8RYGhlJaWRsATf9bg7Ozs6+srbjdWrdGroBJQA+LJTJum1zCTJ+ANcnJyRLLRw6hXFObOnSsrCpJ+Q08IhXv37pF\/ODo6btq0aePGje7u7iUlJa29UKFDMA7z8\/NJdJYtW8aWPT091S9JqCMrCpK+DkKBft4DFYU7TX\/7zsiKjo5mtBKAra2tPTw8CMnV1dW9XkUAUf7MysoKCQk5f\/48IgahcPny5R67HaFFZEVB0l\/pCaEAjY2NjGFbW1vC+bFjxwjb5eXlGg8mdBQGIZ4C\/fHFF18sXbqURmbr\/zMpKwqSvg5CYfHixd1XUWDssEEoKyuLiYkRzz2ampp6eXmlpqaKa4K9qxLILoSFFRUVsbGxly5dIkmAa9eu4V4qKyu7JP3oNLKiIOmv9JBQgJs3b+JuCOdfffXVtm3bHBwcGNuqZZ0iMTERX7l8+fJNmzaR9GRkZDAsWywngBAKQuzLioKkL9LdFQWEO\/JdvEBJBGD0NCl7fn4+Abi30nR1sAE1gIXnz59HxJB4IGLCw8OxUBteCapeUaAhKwqSfkPPCYX79+8zmHNycuzt7Xfu3IlcIHiTu6gWdwSGH67BxcVly5Yt27dvt7GxKSwsxM21phJAqSgg9mVFQdIX6aaKwu2mJ4zI0dPT0wMDA52cnExNTRmkfn5+\/GJDQ4M2SASUSk3TK56CgoLc3NxMTEzINLC2oKAA41l6TwteCapUFBAKsqIg6U\/0nFAQMKSJ8QwhhrqzszPZQCcuQOAy8Be4M0tLS5FPPNRNaFQUyEikUJD0LbqjooBKEI8+Mo5Q3gYGBubm5kIiVFdXP+LFwS4Bj8FuIgiw0M7ODguZBgcHM+rxA9ivWk8LkBUFSX+lp4UC3L9\/Hx+U1ER2dnYnrnriO7KysmJiYjIyMm7evNlGIUFBVhQkfZ0urygQZfPy8kJCQpAI6AMnJydiW2xsbGnr\/\/LawzDSkQhY6OrqSmrh6Ojo7e3NwK+qqtKGEoIGsqIg6a\/0glAAtAIuADp9b5T4OrRHJYB6RWHWrFmyoiDpc3RhRaG+vj43N5eIKx59NDQ0dHBwiIqKEvcDaoNKaGxsLCkpSU5O9vf3t7W1NTU1dXZ2joiIQMSw11qoEkBWFCT9ld4RCj2PrChI+jpKRYFu3LmKAiKAr9TW1qampnp5eRkZGSER3NzcIiMjCwsLb9y40esSAX2AhdXV1Tk5OQEBAfb29hhJAEYiFBRoxSue2kBWFCT9lYElFGRFQdJ3USoKI0eO7ERFAZVQV1eXkpLCWCBHt7a2dnBwuHbtGqKB+aqVepvbt2\/n5+f7+flhnoWFhaurq7e3d3JyMhbe7\/hrYXsYWVGQ9FcGYkVh9uzZsqIg6XOoVxQ6JBSQCDU1NRkZGZGRkUhkc3NzGxsbwlhWVhajgKW9XskXhYTi4uLExERfX18nJycjIyNMRSJUVVXdvHlTm1UCxldXV3Mw9fX1Z86cKSsKkv6HrChIJH2DTlQUxLWG8vLyqKgoxLGBgYGpqemVK1eIx+L\/nFTr9SoEWozJzs729vbGPIz09PSMjo4uLCxsaGjQZomAguHw5uTkYK29vf327dunTJny7rvvyoqCpJ8hKwoSSd+goxUFVEJBQUFMTAyy2MTEhEh28eLFkJCQoqIivqgN9wMqgdbDw8PBwQGV4Orq6ufnl5GRwfDU8msNGF9SUhIYGOjs7GxpaWlnZ7dz584PP\/wQlcAJkq9wlvQnZEVBIukbtL+iQI5eU1OTkJDg6+vr6OhoZGRkZWUVEBCghRIhMjLS3d3dwsIClXDp0qW0tDRxNURrVYKwnCOJ5ZcvXzY3N8dyW1vbsLAwjvOUKVPwMO++++6CBQuuXbsmhYKkfyArChJJ36A9FQUhEXJzc\/39\/YlbxDDy3ZCQEPFXCNrwyIAItOTiSUlJHh4e7AUi5sqVKykpKcxkkZZLhOLiYg4mlhsbG585cwZxEx0djeKprq52cXGZOnWqqChIoSDpTwy4igJCQVYUJH0RhMLSpUvbqCigEvLy8ry9vZ2cnMzMzEhzSXnj4+ORDtoTfWtrawm0xFf0gY2NDSMxKCiosLBQS17x1AYcRsQNOYb4s8pvvvkGr5KZmdnw\/f\/ae3l5zZw5U1QUcDLy0oOk3zCwhAIDWFYUJH0UhMKSJUtarCgQfYuKimJiYohVlpaWpqam9PDk5OTKykrW0QaVQDpeVVVFWI2IiEAl6OnpoWMIpfn5+RivnVUEwr+oImA5eis8PNzZ2RkFhvGBgYHIHaQDKyjvfPPw8Jg+fbq8R0HS\/5AVBYmkb9BiRUFca0hLSxN3LBobG6MVoqKiCgoK6uvrtUQiYGdxcTFWEWiNjIww8tq1a+yOeM1iO1+u2sNgFbZxbFFgAQEBmK2jo2NjYxMcHMzRZj5HXsPyb775RggFeY+CpJ8xQCsKUihI+hzNKwpkuqmpqSSyVlZWpqamLi4uZLpk7fRtbZAIItZWV1cnJiZeaHo4k0DLSAwNDcVy7dQHAmxraGjgSPr5+dnb21tbW9vZ2bELsbGxKJ7Wjq144RJnB60gH4+U9CfaKxRwPXl5ecnJyaQF4X0Nhre+vj76QFQUpk6dqquri0tVLZZItJ6EhAQC1Zw5c5SKwpdffnnp0iUTE5NNmzatWrXqyJEjCAVfX9\/r16\/HxMRERkaqvtl7hIWF+fv7owyQCNu2bVu5cuWpU6eIpsxkkWolrQTzOJJmZma7d+9euHDh3r17LS0tvb29ObbQovFxcXE6OjrTp08nG0EoTJw4kVMTFBSkWiyRdDPR0dEZGRmVlZXd8X6U9goFVAJ+av\/+\/Z9\/\/jkDfs2aNWKKh1q9erX6VOOjMlW+okzXrl27YsWK5tN169YtX75cfbp+\/fply5ZpTMV8jTWZiu2wSGkwc\/78+RMmTBAVhbFjx+JwsYFFoG6n0tCYdrnxyi5orN\/iNplq\/DrTFu1kqvGRqcYXlWnzH9Iwhqkwsv3Gi6nGlpv\/urBKw06mGh+ZanxRmWr8BFMNY5RpO40XU41tMm3x15lq2MlU46Mybf51jZ9QpurGYKSwkyk2b968mT48efLksWPHiorCzJkzmT9r1qwpU6Ywf8aMGfyc2BRbEF9XED+tNJrbqfFRmXbOeGUXaGD2ggULJk2ahJE0xHyxzj8ta0L52HzLGr\/OtEU7mWp8ZKrxRWWq8RNM1c1WplhLvB87diwHmb0QpiooNosGzJ07d9y4caKiwLf4ChtnBfVfF1Zp2MlU4yNTdYPVp+00nik\/3Rd7vpi2ZnyLu9B8m+K3NH6daXM7NT4qU40vMtX4CWWqYQzTFo1XdkFj\/Ra3yVTj15m2aCdT0di1a5e1tXV8fHx31LHaKxQyMzNtbW3ZVUaCyMvVp++1gsZqylRcxms+xf0JJ6gxHTt27KhRozSmLa7JlO2QcokNqjcUA\/jIFmiwEebQVpn776gbrDFlC82NZ9qiSS0aL6Ytrs+0te23Zo\/K4ma0uDLTFjfOtEVjmErjW7SEqcrWZrS4MtMWN860RWPotDTULWcODaYs5aOyprJH6ptljmiLn1YfAmKqsrUZGqupT9W3r\/FbijFiqlirGM8UhPGso7EXfGxxy2Lamj0qi5vR4spMW\/sJxWzFeGGwmGKb0hAzFZuVr7ARZRc09oX1W7RHZWszWlyZqfo21aeKDRpTxX71aYtrMm1xy0xbtISpytZmtLgy0xY3zrRFY5h2q\/FMVeb+O62tzLS1n2jNpObGd+0uqCxWg+z36NGjoaGhvSwUbGxsli5dilBgB8SBwziM1phqfBRT5SsaU46RONbKlKMpjrL6lOMrhqjGtPmaTFnExtmU0mDLLKIhfhSThAHCPDFHMVVpqE\/FFzWmis2ds7\/FNVvcZou\/3qKdGh\/FtMWvM23+Qy2a1KLxTJuvybT5Npm2+OvN7WSq8VFMW\/x6iz\/UokndYTzT5nZqfBTTFr\/e4g8xVYzBSGGPhuVikWKtxo5obI3fUqZ8S92YFk3V+CimGpaLqfqvKFN1S\/g50VA3Xn0XQHxFTNU\/qm+zxV9n2txOjY9i2uLXNX5CmWoYz0ym6jbTFg2xSGmIL\/KR7bMdpcHSFg1o0VSNj2La4teFtRpTxQz1afODz7TFNVvcZou\/zrS5nRofxbTFr7f4Q0ybm9Si8Uybr8m0xW02\/3Wmze1kqvFRTFv8eos\/1KJJPW\/8zJkzT506FR0d3ZtCIT8\/39XVdePGjR999NHUqVOZzpgxY8qUKUobK4E5INoCVmAOK4jVxNeZM3369FmzZompmDNt2jTaTGfPnq3MEW1lDtOPP\/5YmYo5LBVrMmWO2Ij6VKyp1EI4YRMnThQzsVDsiLCWhkZb3ebm9jdvC0uat5mq29zc\/uZttsmWm7fFkdRog7rZos0KtDXMbnEX+NEWd4Fpa7vQfWaLtrrZGrugmKqxC4qpGrvQ80detDu3C4rxTJlJQ7FZ3eNMmjRJzBRrahjPlDn8Im31KSvQaM1ysUFlDquxEX5I3XJmMnwUm5mywgcffIBVH3744eTJkxloiv3KOmIXmPJRfaky5YeE5WJ99bZisGjzE6ysvgsaDWE2qylmM4etaZgtrkUKs8UcpnxRMUnMFDa3YT9fYSZbHj9+PFsTjp4Gx0T8rob9GpYzU30X+Njcco1TwGoYr+wLBrBUOexiDm32S5jNHKa0maMYzBzafIvvKnPYJltm++oHn1\/no\/ouYCENDbNFQ8xhZbbZds9hDks5aOpms1QYKeYwxWyOpPqOCLNZU91stqNuNnP4LXH0xByxI3xF7Aio2y8awuy2ew4fWb\/t48+UtobZLR5\/zOa76jvClpubzUdhtpjT\/PjDihUrTExMevnSQ3V1dUpKire3t6Ojo729vV0TNJS2oHNzoGvnWFhY2NraKm1nZ+f9+\/dzuIUu4yjv2bOH+awAVlZW4q5mEHPa34YeaCsfu6MNPdBWPnZHG3qgrXzsqja01qb30j\/d3NzMzc1Vs+zsdHV1cSjEISEU1q9fz2AUXV2soL4F+Ocv2dtbWlra2NiIqZijvlSj3aGGaLPlQ4cOrVu3Dle1ZcsWchpsxiTFcmVlgfgoliptsb9iR9TXp618VNqP2OA48FtmZmY7duxYtGjRvHnzPvvss9OnT\/Pr7AvHXDFerK\/eANFW9lHd5l27dhEJRI6It\/nqq6\/YIIvEUqWh3u5cQ7R7oCHaXd4Q7R5oiHaXN0S7Bxqi3Z4GXLx4MTw8vKioqDtewNpeoXD79u3GxsYbN240NDQwrW2C9t\/\/\/nfRFtQ3ofrQBCuwmupDE2Ijqg9NMAcRpPrQRF1d3c2bN1UfvgcDVK3vab4O2+G7SluYSuP8+fMIOoTC6NGjkWZIh+Li4rbtZ5F6W7FZ3X51y\/ld9ba6bept9b3QWEfd8uZ7AfyuelsxXt1s9ba62Rq7oJiqsQuKSRq7oG62xi48itkt7gIz1dvqZre4C\/xoi7sAre2CxjpatQsK6kbW1NSg1MV7FETR8vjx41VVVYq1oG48qNsveKjlSkOxXzFesVyYzU\/jkjIyMoKDgx0cHPT19Q8fPsywSkhIYB11NIZta0deQd1s9bZivNLAQqWhWKs0hLVKQ9hfXl6elZVF1nXt2jUUw7Fjx3R0dBAHmZmZrIMxGuaJRms9R0EceRcXF5ScqB6TLHp6epaWlvKjYhcUswEjNSxXGs13QVguGvyQeoMfVRrCMPVdaG6\/+iLWVG+IXRANYbDSaL4LWKj99jc3uwfsh+Zm94D9wBx+qJte095eodDXke9RkPR1vvvuu7Vr1xKEhFAwMTHBy6iW9SD37t0T3i05OdnDw8PIyIgE3dvbm+ibl5eHa1Otp00Im\/GziJvAwEAkgp6eHqmYj48PWgf1cOvWLdWqjwDKgCREXGCWL1yS9CcGolCYJd\/MKOmDKEJBXHowNjbu+ThExEUKZGdnEwUdHR2JuE5OTgEBAaTpXRJruwlUAkcPOx0cHCwtLVE2ly5dioyMLC4uVq3RFQihMLLpkYc5c+bIFy5J+g0DRSj4+vqi8cU9CjNnzmRIyzEs0TYePHiAfk1MTCTrJcyQ70ZHRxPhGhsbWaq8mVERCj1ZURASIS8vLyYmhijLrxNxkQu5ubldlZF3OdhcV1eHhVFRUe7u7mZmZgYGBq6uruxCRUUFR7VrzRZCQdyj0IZQYCYmIVP8\/PxYJygoKDk5mWOoDf\/tKZG0iBQKEolWQFQjehE\/Dhw4sGjRollNN3Vv2LBBV1c3JydH5MQIhZ6vKIi6fU1NTXx8\/DfffGNubm5iYnLlyhUEDeGNRVqoEu7evVtfX19aWorNbm5uZ86c4XAx6hMSEgoKClAP3fH2OiEUUAmcoNaEAnMyMzPt7Ow4s\/PmzZs+ffr8+fN37dr17bffSq0g0VrkpQeJpJe5f\/8+8aOkpISsd+fOnR9\/\/PHSpUv37t27devWlStXIg5MTU1FaYH5ilA4e\/ZsDwgFVEJ1dTUpL8rAxsaGCEfcJRUuLCzU2msNGIZ5YWFhFy9edHR0tLa2dnFxIXEnj+8OfaCg\/l8PLQqFhoaGuLg4IyOj1atXow\/QCpzutWvXogu3b9\/O1\/Py8qRWkGgh8mZGiaSXIRijEi5fvrxly5bhw4cjDpycnIqLiwkbFhYWfJw6deqxY8c8PDwIP8pTD+p\/M90diLp9dnZ2aGio+EsnjAkJCem+jPwRUaoIiYmJvr6+9vb2enp6iJuAgAAO5s2bN7vb5raFAgogLS3NxMRk5syZkydPPnjwIFIGwzi8R44cmTdvHoqB846akVpBom0MFKFw7do15dLDjBkzpFCQaA8EhpSUlH379k2YMOG9996ztLRMT09nPqE6Pj7+1KlTKIMpU6Z88cUXKAZRTuhWoSAiblFRUXh4uIODg6GhIXk5oTcjI6OiokI7JUJjY2NlZSWH8cqVKwgac3NzNze34ODgzMzMbvqbnOYolx5wMmQjGkKhtrbW1dV1xYoVKInPP\/+cpVVVVcwvLy93d3dfv379+PHjP\/30U1IadJj4ikSiJQwUoRAUFITGHz16NGOYxqVLl6RQkGgDBLmysjJvb29iDP1z5cqVCQkJ4u7FBw8eEOSIHLNmzXrjjTfQB9DdQgF7CGDR0dHkx6Tj1tbWNKKiojBStYaWgcHiJROXL19W3kBFG41FbFat1CMoNzOOHDlS4\/FItGBqaurevXs\/+OCDiU1\/LIkOw3IW3bx5Mzk5+dChQ2jEcePGnThxgjW7SQJKJJ1jAN3MOH\/+fMawvPQg0SqIExEREUeOHBk6dOjkyZMJGEpIRig0NDQQ8FAPCIUnnnji9ddfRyJ0k1BAnZSWlqalpQUGBjo5ORkZGTk7O6MYSkpKeqBu3wmIvkiEjIyMkJCQCxcumJubm5mZeXh4EGjROtjcwzV8fhqhoDweef36deU2jsLCQg7mxx9\/TKKybNkydCFnViyC8vJypMOECRM4yytWrPDx8UEgqpZJJFrAgLtHAScrLz1ItIcbN24QQmbOnPnMM89Mnz6daKdeeb5\/\/z6BcOvWrYSQ\/\/7v\/0Yo0IG7XCiQ2tbX1+fk5KCnLS0t9fX1Sc2Dg4O\/++47zNNOicD4LS4uDgsLE++FtLa29vPzS0xMROv0vEQQqD\/1QAN7FKGA3tq9ezcn8c0339y0aRNmq98Kyr64urrSB1588cVx48axL\/n5+aplEokWMBDvUZCXHiRaAjqAaKejo0P8+MMf\/jB\/\/nx3d3d1ofDgwYOCggJWIMb813\/911\/+8pcRI0aQs3ahUCCs8hMk5W5ubuK5BjLjnq\/btxMUQGNjY25urr+\/P8EVg+3t7S9evBgaGtpNb7lvP+JmRjyMxs2MWIW1K1eufOqpp5B6x44dS0lJURcKnAIc1PLlyxEKnOivv\/4axaNaJpFoAQPr0gNCAbEvLz1ItARS+ezs7EOHDg0ePPi3v\/3tqlWrIiIiNIRCZWUlWT6x57\/\/+7+feeYZVEKXVBRExK2oqEhISLh8+TJZrJmZGRGXEFVVVdW7EbdFMIkxi0TAYHJ3rNXV1XVwcCBZF69z6HWbW3vqob6+\/ttvv120aBFacNiwYUZGRt99952GUAgPD9+xY8crr7zywgsvbN26NTIyUgtPgWTAMrAuPYi\/mZbvUZBoA\/fv3yeEJCcn79mz5\/nnn\/\/Nb36DUIiKihJ3MgoQCoRtb29vOu3\/+3\/\/D6FASjpixAiEQqdfuCQkQnV1NeGKYGbRhHilMWH4xo0b2haihMGlpaWxsbFIGXbc1NQUrcCxysrKYkfEXYG9jrhHAZXw7rvvcr4UoVBTU4PDmTZtGloQGWFgYJCRkaEhFFA\/hw8f5uQ+9dRTa9asCQgIeBQVKJF0LQPr0gPZmLyZUaIlIBTq6uqIdmSQzz33HFFk5cqVQUFB6iFECIXAwMCFCxciFJ544om\/\/OUvqATiDfGSAKNaryMQgfLy8vgh8YyAnZ3dlStXiLhaKBHg9u3bJSUlcXFxSBlbW1tra2um4s+ckFmqlbQD5R4Fzo7645FlZWX29vaTJk36+c9\/jshD5WRnZ6ufZQ47u6Ojo\/P222\/\/7ne\/mzNnDptCAGnh6ZAMTAbcpQfxN9NSKEi0ARJlhMK2bduUikLzSw8IBQL5okWLEApEkZdeegmhgOQ1MjLqUNJJ1KHPE3RJXr\/99lsrKytDQ0OSYO38owH0AdZWVFSkpqYyeG1sbM6dO4emIdXOzc1lESJJSwoJCur3KNAQQoEDW1xcjFCYPHnyL37xi+HDhyMUNC49sCOZmZmnT59+4403fvWrX82cORMH1WOvf5BIHsqAu\/SAh5U3M0q0BCEUlIoCQiEyMlJDKJA3IxSUisLgwYNFRaH9fzNNrOKHEBwEXZSBnp4eEoGclTS9qKjoxo0bWhVxiY5YS5hEwVy7ds3c3BxrnZ2dr1+\/TjRF06iHWK1C\/R6FuXPnCqHA7iB3HB0dlYpCi5ceUlJSdHR0Xn\/99ccffxwHdeHCBdEN7t27x9FQkNJB0isM0EsPuMsOZWMSSZdz\/\/59gnTbFQVoaGhwcXEhAmlUFNr5Xw+oBCRCWloaccvJycna2lq8ZpGklsCjWklrEGGVqImFiAMbGxsLCwsvL6\/ExMTq6mqipmo9rQSvMnPmzBbvUeDIT548mVP89ttvo3s0Lj0gFGJjYw8ePPjGG28oD7+Ip044IIWFhew+X0E8aa1IkvRvBtylh7Fjx06bNu3SpUudu74rkXQVCIW\/N\/2p9K5du9qoKBAeCJaIA+VmxnY+9UCMYfs5OTlokfPnz+vr6xsbGxO9xB8faFvdHmvZ06ysLI6Aq6uriYmJubm5t7d3UlISEgGDtVwlAIJm+vTpze9RwH5RUXjiiSfENaMWn3rYunUrKvCpp56iG1y\/fl18l73mDKIbOBRhYWF8EdknSwuSHmbAXXqQTz1Iegy8PAk9Pp3YD83jOtGaTPHw4cN\/\/etfSTfFzYzqiT5CoaioyMrKSggFAglJ50OfeuAX2QhxNy4ujq4u7lhEKxN0UQlalZViDKbeuHGjoKCAfXd2dkYfWFpaXrlyBWtLS0vr6+u1XyIIWrxHgfnswoULF+bOnSsej0ThEe\/VhRpCISQkZNOmTS+++OKgQYO2bNkSERGhSIHa2lokAlJDT0\/P3t4+NDS0sLCQ7iS1gqTHGKCXHhi3UihIuhuiIPkfUiAwMPDy5cvkyhqh\/f79+zh9HR0deiZRZOHChSSO6gEAoZCfn3\/06NFRo0b94Ac\/eP311xEKqIS271HgR+Pj49mUtbU1cdfJyYk4hODQwtBCwGMHg4ODXV1dbW1tkQguLi4BAQEcFm27v\/KheDT9vafGPQrMpxug0lasWPGnP\/2J03fkyJH09HR19YOSoHuwAkKQU3zw4MHU1FTVsia5WV5eHh4efvHiRYQCmo9GbGxsSUkJ\/UfKBUkPMOAuPcinHiTdB2kiUYH8GCeem5ubnJzs7+9vY2Nz+PDh3bt3E7arq6tVq35PTU2NlZXVlClTfve7302aNIlIQOxULWsSCqTan3\/+OQHmv\/7rv4giopzQ4j0KxAwkQk5ODkkn4oDMlbhLDCbo0ttZWXtSc3GUKioqOEQEVILfmTNnnJ2d0VIcOgInIVC1al8Ag9kXzt20adOUexQ49UpxCN22bds2dMBrr722efNmoj5HQCwC+oCbmxva4oUXXhg7dqyFhYXGK5w5cZw+Og\/6wMHBgTPLb\/n5+WVlZWmn\/pP0MwZWRUGM4ZkzZ8qKgqQLEfqgoaGBOJ2XlxcREYHf19PT27dv35YtW9asWbNo0aKNGzc6OjoSUVTf+R7moGJ37Njx7LPPomKJl8R1sQiVcLPpVTyffPIJQuHpp59WyglM1e9RIFRgADEDWWBubs4ikZdnZmYiO7SqdI+dUFZWxn65u7sbNeHp6an8tUTfkggceTwJcsfLywst+OGHHyr3KAQGBrKnYjXUHqINEYDUW7p0qVJsADpPaWmpmZnZxIkTWbps2bIrV66Ul5eLpepwHjmbnNOgoKBLly5x3ExNTZELQgjyW1IxSLqJAVpRwENpZGMSSecgayRCp6SkEBgQoDY2Njo6Ort27Vq5ciU9bfLkyVOmTFm8eLGBgUFcXJwSORSIE6SPpNTEmPfee+\/zzz8nggqPT8gsLi6+fv06i0Z8D8Fm5L\/\/1wMrEyrINQm3JJoIhfPnzyNWUC1aJRFASISkpCRMRTYR6qytrYmL2dnZhLo+JxGQNeIBDVtbWwsLi+3bt48bNw6hwDni1DNfqSiwd5x9VCPnjv7AaUIKiLODFkxNTT1y5Aje6YMPPqDBxzZCPt+qqanhGCJNkBf8NKLB398fLaJei5JIupABV1FA7M+cOZMx1tr1XYmkbQjtDQ0N1dXVuOasrKyYmBh0J+H566+\/Xr9+\/apVq5YvX44yoL+RVs6aNYvGgQMHNKrN6jA\/MjJy586d06dP5yt0TlFU4Ieio6NNTExeeeUVOu2SJUuQHQQhoBuLSw+oAWygexOoDA0NERwEpNraWhZpWyGhoqIiIyMDOUWYREsR5DA7Ly+vz11oYF+QCOIBDfF\/3Hp6eug5pNvEiRNHjRqFn0EoELzVzzjR3cHBgY6BmDh48GBUVBQbYX5lZeW3335LtyGHWb16tYeHx0PjPWeW88tZRi7Q99CgpqamPj4+ycnJ4mZV9d+VSB6dgSIU\/Pz85s+fL8awfOpB0lHu3LmD8yWk4dzx7HhkehTJ3KlTp\/bv3\/\/ll19u3LhRqAT45JNPiPcC2qxAAk1EVG2rGYRJ4v3Vq1fZCP1z165dRFDCKk7fxsYGfTB8+HBmIgLmzJnz7rvvIhRITI8fP56fn0\/aSqzS19d3dnYmBmMY8UN74q4IWhw0dv\/y5ctWVlbin5yCg4PJm8mqkVwPHjxQra31iN1BICIRlAc0iNDiAQ3mfPzxx8LJqD\/1ILh9+3ZaWhqqQmhH9B\/fKikpCQoKQjdMmTKFk8sG0R9tlBPU4SxzYLOzszmYyAtjY2PEIg16RVlZGXaq1pNIHpmBIhTE45HkYe+\/\/z5jWN6jIOkQRF+y4bCwMKIdnQcvf\/To0R07dqxcuXJhE0uXLhUqYfny5YSBuXPnivlr167Ffefm5rbtuHH6KAMXF5d169YRMNAchw8fJn7QIK4cOXIE6UBcIR8V1x3QCl988QXSgVQSMXHx4kXMI2xoVWqOAqiurk5PTydkij9z4rhdunQpNjaW0deH9IGAM0gMjo6OdnNz48hzWoU4Q8+J4o14PHL06NEIBToAAkJdKAAKICYmBoVHD6HD7N69GxG5ZcsWTisnGs3BKdb4ykMRcgF5Qc9EuVpbW7u6uiIfmfNPUSPlgqQrGFhCQYxhWVGQtB9RSyAXJA\/GxW\/evBm3jgJgiiZAGRDaP\/vsMwSBUAnz588nSCxZsoT26tWrifcEjJqaGtXmWocfysnJ8fLy2rRp06QmyDLXrFlz8uRJ4hPx47vvvlu2bNkHH3yA3kUo8BM6OjpEheTkZK2SCCiAxsbGuro6Mu+EhATC6unTpw0MDIijiIaGhgb2pc9VEZBxRHF\/f3+U2alTpzjsoaGhpaWl7I5y5N3d3WfOnImSw8lo3KOgQE9ITEw8d+4cp2\/69OmcZTrMl19+6enpyU9wZNpZTtBAyIXU1NQrV65gnpGREcoMg+k5zFetJJF0loEiFHDWqHjGsKwoSDoEQaKyspJ0jeQPNYA+mD17tigYELYRB59++umGDRvQBCxSVALzWYqqwF8XFRWxEdXmWgdfX19fT+yJjIzk5wCnHxQURHAVK7AdNo5QGDFiBFph37594eHh4h+StEElEPsJcliCRMBU4ijSyszMzMTEBPVDIp6Xl0dYVa3dRyDSc0bEdRNzc3N2B7kTHByMpCOuaxx2dlO8mREZ1\/weBQGHSGi+gIAAcZbRExwctqZao7Nw\/Dm8WBsVFXXt2jVLS0tDQ0O2Hx8fj1YQlrSnH0okzRlY9yigEt577z3GsKwoSNoPfpbgbWNjo6+vT7p28ODBPXv2kPevXLlSVBdASAQaK1asWLduHULh888\/J40mq+tcjtgcYoAQCsQhtAJhoKqqSntSc3E3PqJKhEBiKpGVzJugxUzVSn0Ejiox9ebNm6g0coxLly4ZGxvb2toi+9LS0tBzLR529UsPze9R6DE4Efn5+UhMqyYcHR3ZhYyMDERP36rlSLSHgVVRYACLpx5kRUHSIQgbREHSPhwuCaWnpydRcO\/evWgFutOUKVOYLlq0CH2wfv36Tz\/9dO3atUePHsVZt+eiQzshDUWXiJsZmZqammrDkztKTEXHJCQkkB8TU1FIhCjUVXFxca8Ey0eBPRK3pLA7Hh4ep0+fFoWEh143EUJB3MyIpMPn9Mq+Yx6\/i6kFBQWcDoxH4GJbVFRUYWEhqpcVEK+t7YVE0pwBWlGQ71GQdA6hGIqKihITE728vI4fP444+KiJFStWiDsVYPPmzU5OTqzWVeUEEPcoiJsZR4wY0c5\/j+w+7t+\/z9HAhpKSkszMTMQT2gWJQNodGhpK5l1ZWdmHRhmBk90R5zc6OtrBwcHQ0NDFxYX9Sk1Nbc91E3GPAiph9OjRs9T+PbJXYHcwuLy8PC4uDu+Hbjt58qSbm1tsbCwyiH3UhstVkr7CAK0o4OLlexQknaa+vj4pKYl009ra+vDhw8uXL\/\/kk0\/WN0Gbqa6uLsGma+OEqCh88MEHoqig\/mbGXuHu3bsVTe9gvnLlCqrIxMTEzs6OkZWdnd0XBxe7U1xcHB8fjzJAJaB4OLkoHtSeao2HodyjMGrUqI8\/\/ri3KgoaIBc4TSEhIWgF9svR0ZEdTEhI0KrHaCVazsCqKIiqIMnfN998Iy89SDpBY2Mjbpe0jOTM3Nz88uXLNDZs2IBQWLVq1dq1a9esWbN\/\/\/6AgADy6S4sJ4Dy1MOIpr976BWhIKoIHITq6moEAWLI2dlZT0+P5Bu5gIWY1LdUApk3BpN5Z2VlBQcHi8zb0tJSnEF2p\/0HWf0ehdlqfzOtDWAJiiciIsLCwoIdRAMhHcTLHDmb8jKEpG0GilBQ3qPw3nvvMZjlPQqSToBLJTqSKZI6ow\/Cw8NLSkpIOr\/88kshFNavX79z504bG5v2vzan\/RCG+ZVerCigEvjFqqqq3NxclLeZmZmxsTGHwtfXNz09nfl9TiJwjki4xUsIjIyMUH7sjnLdRLVeu1HuUXj\/\/fd78R6F1sAYNG5qaqq\/v7+TkxOKAbkQGRmZk5PDIo7GnTt3pGKQtMjAEgqoBFlRkHQC8drmuLg4T09PcmhHR0eSM\/GEekxMzPbt2xcsWCAqCqdOnUJA1NbWii92IQiF5cuX91ZFAZXA\/hJTw8LC3N3diTEIBQcHB45DcXGxaqW+A7tTX18vXmt48eJFdgfRg1vgFHf6qIp7FDg12nCPQhuggcT7LXR1de3t7S9dusRJZCY9XF6MkLTIwLpHYeTIkbKiIOkoJMqlpaWxsbF4VfHKXnEDvFgaFRX1xRdfECEQCjt37vTw8Ojyiw6CXqkoEDnY\/bq6OtRAdHQ0MVVfX58Aw27Gx8f3uSoCu8Op4bhxQtEExEg9PT0kAruTmZnJTNV6nYKOMXnyZDzMqFGj5s+ff+3aNe0UCoBh4oYM8dCvkZFRQEAAKrCmpqaxsZFDJBWDRJ2BdY+C8tSDrChI2sOdO3cQBLm5uUFBQUgEFxeXkJAQPhI47969K9aJiYnZuHHjlClTPv30U9xuWlpaN8XOnqwo3Lt3jx0kWjBM2F8yzvPnzxNOOAjkzZGRkfn5+d1RNek+hETgbJaUlKSmprI7pqamJiYmV65cCQ8PLygoYNEjnrhvv\/12+vTp7zT9Cfi8efP8\/f0Juqpl2gedh11G8tKl6dgcCjMzM+QCZ1boP6kVJAoDqKKwcOFC5akHWVGQtAcSrKSkpKtXr9rb29vZ2UVFReFDFYkgEBWFjz766MCBA7Rxvt1RToCerCgIhUSGjQzy9vZm94kiVlZWBJK8vDxtjn+twUkR\/3DN2XR0dDQ0NLS1tSW05+TkdJWwU79HgWzk+vXrt\/rCmxDZ\/eTkZLQCpxil6+npKYQgHUBqBYlgYFUU3mtCVhQkbUOYJK5UVlYmJiaiKc3NzS9dupSZmdligIyNjd26deu6deucnJxITFVzu4EeqCjcu3dPpN3i1VLEVEtLS37IwcGBvFMEj76lEgh1GFxbW4vxxD8kgq6urqmpaVBQUG5uLrvTheUfIRRGjx7N2Zk9e\/aVK1e6T8l1LRwEDkV8fDz9\/OzZs\/r6+jhMRBXdgKMn5YJkwN3MOHLkSAYz40EKBUmLoBLEJflr164RV0imRRrdWnaIUDh48CDRFFWBt1XN7Qa6u6KASsD+8vJyIgTjxcrKihST4Ofb9FeE1dXVfU4iIHrq6+s5d8gCOzs7ExMTFA8hEA1UVVXV5bsjhIL4Q5l58+Zp21MPD4VTzLEKDw\/HPVpbW1tYWHCslFPPwZSKYcAysC49yJsZJW2DSiCEZGZmohLEM5Bk0mVlZQRR1RrNKCoqoneJiw6qWd1D91UURCGhpqYmLS2N2ODi4oJKsLS0JGCIvxRSrdd3IKQxwPOb\/hXa09NTqARkX2Rk5CPesdgGfbeioA6aIDc3V7xMjD4g\/kqbEUH30LjoJhk4yEsPEokKVAJRRBRgjY2N3d3d09PTa2tr21AJIGr1fFf1udvojooCu3bz5s2Kiors7OyIiAgnJ6fTp08bGRkR5Nh3Usk+cZVdHVEXEXcsovbQB+wR0S4xMbE7qgjq9PWKggJHiWNFl7h48eKZM2dMTU29vb05nuXl5ajGHujqEm1DXnqQSFQ3JRBdwsLC7O3t3dzcfH19yatwi22rhJ5EqSgMHz78ESsK7BQ5N9O6ujriQVBQENk22sjBwYEdT0hIQDD1LYnAvnAGRYRLTk4WN2CSE1+4cIFzSkLMnqpW7TaEUMDJ9OmKggIHs6ioKDY2FrlgZ2dnbm6OdOZjWVkZi7RnXEh6gIElFEaNGsUwZjDLSw8SdYgiWVlZpIDES3wigZMkW9tcoVJRGD169CNWFBAB7HJ+fr54e5KFhYWBgQH7Hhoayo6rVupTELrId9PT0\/39\/V1dXa2srNgpT0\/PjIyM7r4kpNBvKgoa0PGQj+KQ4jmvXbuGFHtopU3SnxhwFQX5ZkaJgigk4PJQCW5ubqampgTLtLQ0gqgWOsEuqSgIiVD6\/euG9PX1z549S2Tlo3g3HwdEtWpfQBQSMLuwsDAyMpI9MjIyMjQ0vHz5MuexurqaRT1WGulnFQUFRBiHEVmJ9EEu0PHoMDExMcy5ceMGx18qhn6PrChIBi6ETNLQgIAA2yZCQkIyMzO1NlV6lIrC3bt3ceg3b94sKCiIiIhwdnY2NzcXD83zkS3X1NT0LYkAnCbOIBIhOjraxcXF2NjY2tqakR4fH19SUtLzl076a0VBwPEsLi5OTExEhDFYLC0tnZycoqKiGEFCX0q50I+RFQXJAAUnnpeXhzjA61lYWAQHB5OAavMDYI9SURAXGnDrV69eJR00MTFBKNBGN\/TRe9OITKVN79X28vKys7NDJQipR9xSrdHj9NeKgjrIBUSYv7+\/GDVoBdrp6ellZWVd+EYKibYxECsKc+bMkRWFgQyhsba2Njk52cPDw8DA4NKlS+RJzNHyx8Q7UVG4e\/cu7hsBlJqaiixAHOjq6pJ2i7cn1dTU9DmVQNrKHmF5RkaGr6+v2CMXF5fw8HDy3fr6+l6si\/TvioI6yIXCwkLxr9xnzpxxbPqPNGS3eCZClhb6H7KiIBlA4MWgqKgoKCjI3d0dN3ft2jVCDgm39r9MBqGwYsWK9lQU0AdiT0mv09LSvL29Ra344sWLfn5+CQkJFRUVLFWt3Rdgj8RjGlVVVZwvYrCdnR17RIi6fv16dna2Nlw6GQgVBQW0QmlpKQI0MDCQs2Dc9IfjCFAEBKOJMyXOl2ptSR9HVhQkAwgyztzcXDy4g4ODs7MzKSmhVPslggChsGjRovZUFOjbSAECqr+\/\/\/nz5y0sLMzMzDw9PXHr1dXVffG1OQ0NDewU546whNwxNzdnjzw8PBITE7XnfVADp6KgDj0qPDycAWViYoJW8PLyio2NZVg1Njb2\/G0ikm5iIFYUZs6cKSsKAw0SaLx2cXGxu7u7np4eOVBSUhKpD9LhwYMHqpW0m4dWFEQhgY6dk5MTHR2NEjJowtvbOzk5ubKykp3tWypB7BFmFxUVxcfHu7i46Ovrs0cIfU5fVVVV715rULjZ9E\/cNjY2s2bNEhUFGv27oqAOp4DeFRcXxwnS1dVFw4m3ntfU1Eit0D+QFQVJ\/wdHVlZWRqIjngW\/fPky2TaZaF+RCIK2KwrEVAInSigkJIT0ztDQ0MnJ6erVq1FRUbhs0jvVen0H9ohzVFpaiujx8PAg\/HDuxGMa4nYEbbh6gpGohPT09GvXru3bt2\/ixIkjRowYUBUFAUMMWUAXRSKgws3NzW1tbcVby+h7nKm+pVAlGgwsocAAlhWFgQYujAw7PDwclUCwwXkRZvqWRBC0UVEgVonnHunn5LW4aTs7O1x22\/9Soc0QV0pKSgjAnC9nZ2fLJvz9\/ZmpDfoAMIPjz0kJCwtzc3MzMTHZsmUL5wUnQzby0UcfDZyKgjrscmpq6vnz58VzKCi8yMhIOmdd978ZU9J9yIqCpN+CK29oaMCVX7x4UVynT0lJ4bz3RZUALVYUkAhVVVWxsbGEJT09vRMnTri6uvJRlOX7okogAa2urkbbXb9+3dra+uTJk+ie4OBgclN2VrVSryIkQn5+vnI1BCN9fHx0dHSmTJmCVhDviR9QFQV1OD41NTWMNfST+NPqq1evpqWlMZMzKEsLfRFZUZD0N9ABuCpxV3Z0dDTeimSUOJqVlUXsVK3UB1GvKKAVcMHsYGJi4qVLl3R1dR0cHNjT8PBw8WdOfU4iED84awQSThMnC4lgY2Pj6OhIuE1KSiosLNSGqydCIhQXFyMRxD2VGOnl5RUVFUXS7OTkNHnyZJwMMm5A3aPQIpxK1F5YWBgHigFoZ2d3+fJlOqd44kbKhb7FAK0o0HelUOiv3L9\/n0hZUlISGBiIezIyMvL398ePqxb3WURFgQ5MHEIr7Nu378KFC4RSdlBPT8\/b25sQqw139nUCwkZdXR1xJSIiwt3dHZWA9CHuxsXFNfTUPzU8FMIbQQ5NgDJAlonDTh+ja4mwh2LDt3CC\/va3v82fP3\/AVhTUQS5kZGR4enoiqgDHyxHjRPfRp28GLLKiIOk\/iFpCfX09MTU4OJhg4+zsjGdnTp+uJQjYqbVr144YMUJceli4cOH+\/fttbW0DAgKIVTdu3GAf+8qjngpEC2JJYWFhdnY2usfAwEBfX59wEhsbW1lZqQ11EXoUcHjRYfQlKyurI0eOIEAJeJjNfOWYo9Vmz56NhsPPyIqCAqcYWYBc4PhwchFYHh4eSUlJRUVF8kpEX6HDQoGh29jYiEtihAiQ\/Ldu3dLwUHwUA0zQ0QEvPL7Co3cmWVHo99Bn6IclJSWkoYQcMzMzcWW0H0gEAWpAXHoYNmwYWmHXrl14XnawuLi4L3pbIRFQA+wCkcPS0pKMk0ZERER+fr54aY9q1d4D51NeXk5I8\/Pzs7a2Js65u7tfu3YtPT2dw65h4aVLl6ZMmfLuu+\/KioIGnOva2trc3Nzw8HBcsYuLC3rL09MzOTm5qqqKgMLglYpBm+mwUKioqGAki+u+Fk0wclJSUhjY6lqBc4\/LRkUCurujA4ZN0YGQ8DgREik6mWpBZ5EVhf4NjoYul5eXJ66JkmfjtUtLS\/uNSgCG3ty5cxEK4tLD2bNnmcOOqxb3KYgKSITExMSgoCDOl4mJia6urpeXV05ODrFZtVKvghm3b98mtoWEhGAYjs7U1NTOzo5UmOyoxcOObps3b96IpscjZ8yYgVDQhvsqtAqkPIcUpaWnp2dsbOzq6hocHJyamkqA0J5rTJLmtFcooJ0ZOTU1NQEBAfv37\/\/oo48Qzm+88cbzzz+P2zp16lRkZCRLCfDAKUcc+Pr6iqEVFRXVCaGAH8HX05nQnqgN4vqjSE5ZUejH0Fs4m8hKuhwO3dHRkcSFRFC1uL8g7lFAKIjbFJq\/cKlPwCjmZBUUFMTExDg7Ox87dgyJwIlD5GlJFQERgAcrKirC7eCCEGTHjx\/38PAg\/UUiID1bE2ekH8ornBEKuMo+estIt8IpFvej+Pn54dtPnDhB2on8YsDSMbqkfizpctorFBgejBwEIAP74MGDZ86cQRLu2rVr5MiRf\/zjHwnAR44cYeTTAwA3ra+vz1IG2JUrV\/hiJ5Q1PYaRid\/\/8ssv2Q4ilPyp031IVhT6H\/hrkfbV1tbS93A3Tk5OZHXx8fH9TyUAQkG59EAo6ltCgTMFN2\/eLCkpIYKKf7C0trbGP4hHBno9PCjdiYRH\/Jmyubm5paUljYiICJGrqFZtBSEUREVB3qPQNhxnkkk8PAPWxsaGnuDg4BAWFkb3YDhLraBttFcoVFVVIQDXr1+\/du1aTio+i4w\/MjJy27Ztr776Klph6dKlnp6eDCeGPSnC4sWL16xZQ8aAC1BtouPQmYKDg3V0dPCPX3\/9tb+\/f35+PoNZtbgjCKGArJEVhX6DSE2QofhxepqxsbG7u3tWVpZqcb9DVBQIQmPHjqUbo8X7UBwi+hYXF5NC+Pj4mJqaMqhRdSEhIdVa89fedKeysrL09HQvLy90zNmzZ8mFCPaErnZewMKr4Fs4QfIehXbCMSeOBAYGElOMjIzoEr6+vgSR0tJSlkq5oD20SyhwOpOSkgj\/kyZNImYzAMTIYZBfvXp106ZNo0eP3rBhA9KbXOHkyZOrVq06dOgQUlGc706Dxr9x40Z2drahoeHnn3++fPny8+fPd+61ekpFgTEsKwr9AHGFCyceGhpKRkLmFxMTg6Pvx1c6EQorV64Ur2UcNmyYmZkZCbpqmbYiqgiMNUYxQv\/cuXMEYHt7+4SEBBQeo7vXVQLOhIQExYljIfOhLx0+fJhji5ejd3XIg+HxlKcexD0K2n+Ceh1x3ZBENCgoyM7Ojh5iZWWFdCgvL3+UErKka2mXUEAWIAg2b95MHvPpp59ev35dCIXGxkb0YHx8\/KVLl\/AC5AeoQpTEF198wfosevR\/BBFaISUlBZmCSN+9ezc\/RN\/qaAeSFYV+A12Cs49nj46OvnDhAlHHxcUlOTm532dvCIWFCxf2lXsUOEeoBNw9OTregJRRlHwIn2lpaZy+Tsj9rkV0JGJ5bm6uuLsFI4lVWJiZmYnoVK3XbvAqU6ZMESUfeY9Ch8Cl19bW4ufpKm5ubuLWNNSkuCYlUK0q6Q0eLhTu3btHqCaV\/\/jjj4cOHaouFNRhHQbbli1bli1bZmJiwthTLegKsIEf3bRpE8PvzJkzeJmampoOORpZUegfcNLx7CSjUVFRnES8CbGHwKNa3K8RFYU+cY8CAbK6ujo7OzssLIyhd\/bsWVw\/PoQzhaPodYkAoiMRh+Li4ry9vZEIp0+ftrW1pV91QiIIREWBU4OfGbD\/9fAoIBdw7CScaAUdHR0HBwcyAdRDcXFxRx2+pGt5uFCgr1dVVSG0GQAvv\/zy+vXridmEavWaIalDRkYGp5Zxsn379sDAwEd\/oFEdfgvlwTBGqn\/++eeMQAZzJ4SCrCj0aYRmpSf4+fnp6+s7OjqStHXarfc5REVBJKzaeY8CQxJX0NDQkJ+fj0PAaSDrjx07RgRNTk7WhhGHheSmQsekpqZ6eXlhoa6urouLCyKmtLT0US5doVzFK5xHjBiBk\/GR9yh0HE4Q\/YT4kpiYaG9vr6end+rUqaCgIDo\/8+ldsrTQK7QlFPDLt27dYuRwkoyMjMaNGzdo0KAVK1YQp8WzTI2NjaxDFC8pKUEDfvbZZ\/PmzWNNdLr6RQfWYU3GTL0abJZ1xNdZiroXM2kzX6M30HuIEBEREYzDGTNm7Nq1C5nZobKerCj0aYR\/J6uIjY0l6iARLl++TC6IShg4vphhuHbtWnGPwptvvmllZaU9l8DFCWLkFhYWxsTEML4sLCwsLS05WdHR0WSEvT7chIUcsfLy8qysLCQC5pmamnp6evr6+hKWHkUiCNjrjz\/+WDgZ+dTDoyAcPtItNDQUuWDThL+\/f1FRUUVFhbyg0\/O0KhQI4fjlhIQEkm9G1OrVqwcPHvzEE0+MHz\/+4MGDzLl06RJCDw3OGcV9E7ynTJmCIyMkq\/svdADrBAcHMyDJMIATj6NnUEVFRXHWkfbh4eGMW2aKAICjaf54G9thMG\/atIl0asKECaj1DhUVZEWhT4N8RIzSzZydnc3NzVGl2dnZA80Lk6aLSw\/0Ya26mZFhiERgmCPfGWiMcXL0c+fOEYA5a6qVehuiC94GiYAvOn\/+POaZmJi4urpmZmY+ukQQCKEgHo+UTz08OkIupKeno4nJPxn4QneSpqonopIeoFWhQBcnD3BwcKDHE5tfeOGFn\/70pz\/5yU9++9vfvvLKK\/gpkvvdu3eT5XPaEAFEX7KczZs3h4SEqPsvzmhkZORXX301derUv\/zlL0899dTTTz9NY9SoUSdPnkxOTkaLnDp16sMPP2SzaJHp06fTIVJTU1Xf\/x46TVVVFc4RlcBG+ApfRM2oFj8MjYoCkUYKBe0HdUgWiEogk8C\/29raolBpoCMHoAsmzok3M2rJPQoMSc4OAbi2tpYATPJnbGx85MgRJycn2kiEei14LSZGiqshHD08BkIT14GOQcRgM06gC4+hrCh0E5wmNKiHh8exY8dQDIQb5B0ZprgSwSlWrSfpNtq69EAvJ5DT+w0MDEhlRJhnDOzcudPU1BQxfv369YKCgvj4+KNHjw4dOvStt946ePAgH9WFAn6Eda5evYosYBQ988wzCA62s2DBAnd3d7QIDuXSpUtsf8iQIagEPT29Fu8nojfQM1gT4fLYY4+tWbOGfkNHUS1+GOoVBbytrChoOUgEQGVWVlYmJSWJv0nkjNO76AaqlQYY4h4FLXnqgfGIgEOx5eTkkDqT86ESGFYEYOU5+N5FqEwOUWFhYXh4uIuLi4WFBVqT+I1i6I6LVrKi0H3grsVLevAD4q8iiAXZ2dn0QLyElAvdzcNvZiRrJ2Ows7ObOHHiSy+9RIRWf+qB0RgZGbl9+\/ZXX311+PDhSIrc3NzmdSEiel5eno2NzUcfffT0008\/99xzGzduZDtsua6uLjAwEBmxdOlSQ0NDekOLlUAhFOgoq1evRiiMGTPG2toaFdLOooJ6RWHGjBmyoqDlcGbpBpxxfDoegXN9\/vz56OhoLSm29woIBW146oGRKAKw+Fdo1JuZmRl5nr29fUxMjDZUEQC\/RP8hCUlNTfXz83NwcOBwkd7gashbVCt1NeoVBfnUQzeRlpaGAjt9+jRnkwMeGhpKxKmqqmp\/dVnSCR4uFOjr5P14avKYwYMHi6ceFHfAUnIIgjcaYsKECegJVmaUiqXqsGZycrK+vv7o0aN\/\/etfoyrOnDkTFxeHzjhx4sTWrVtdXV1bUwmAe7px4wbrf\/75548\/\/jgbOXv2LCtjSXu0pKwo9CFELYGOFBAQQOpAIhgSEkKSOpBVAvRuRYFRhi\/m1DDiODWMZaQbyh6Jf\/nyZUYuA6q1wduTiM6DxCTdpP8YGxsfPXrU1tZW3PnUrV1IVhR6ALofPQ25gA5DnhJESCTS09M545xczj69tD0RQdIhOlBRwD09\/\/zz6hUFzgrB++rVq\/ivv\/zlL+JpAhx684qCgBMZGxt7\/PhxwvzTTz89ZcqUnTt3Hj58+ODBg0T9h954TB7D4D927Nhzzz33+uuvHzhwoLCwEBtUi9tECIUxY8bIioI2w9nkLHNqGPmcMkdHR3d3d9LW7nbxfQKlovD222\/3cEUBz9vY2Mhgxx0j1sW\/KdrY2Hh6epKjMyp7XSKInnPnzp26ujo6z7Vr10g8sNDZ2dnf3z8pKQnLVat2G7Ki0GMQgEpKSkgyvb29OcWkE+R+9EzOPtATVOtJuoh2VRQKCgo4E\/R+9fcoCN9BbkHQJfQOHjyYSOzh4VFVVdVG8OaLjNtt27YhLJAdxHtGlI6OTnh4uGqNVuDn8FNCKLz44otDhgxBKKArb7fvURmlooBGkRUFrYUehdBEMhKK6HIuLi6pqanakKdqA0pFgVDUwxUFpD\/nJSMjIygoCPXGgCWZww\/k5eWp1uht6DmVlZUcorCwMMQlOsbAwACtkJKS0mP9R72isGDBAllR6G6EXECtMhaMjY2JRMhW+gDz25lAStrJw4UCcDLw2hMnThw0aNDq1as5GYxJcSMhDU7PnDlzCPzz5s3Dv4u7S8QXm8O32Nr58+fRBwiFJ598kqGFvGjPC5rQCkIoIC+wRAgFIVlUa7SOrChoMyIdpNtUVFSEhoba2dnR30jIUKicJmKAar2BTc9XFBhZDFgCrXjqxNLS8syZM2ZmZkgEMgRtiILqPSchIQH\/gz7ASLQCchNfRP\/psVqUrCj0CqJ\/+vr6mpiYHDp0yMnJKSoqStQg6b3tiQ6Sh9IBoUDvf\/bZZxEKERERDABOAKO0qqqKqD9t2rSXXnqJSHz16tWHqjm+GxMTc\/LkyQkTJvz+978n6p8+fTorK+uhtQE8AhmMuPSgVBQ6dDOjrChoJwxpOlJ6ejrJAeP8UtMrOgbOKxfbSU9WFBjdjCzGcm5uLrLA2traxsbGwcGBLLmbHhnoBPgZRrEoQdFnUDAWFha4o7CwMCRmz+tLjYrCtWvXpFDoGdAKdIO4uDjEGR2V7sq5QC7QDZRQJRXDo9CuexTIHkRFQTz1oFQUGIrV1dWId4QCwXvevHkeHh5t3KMAnC3OXHJysqmpKZrj1Vdf\/dWvfoX6dnFxQQS0EfX54o0bN8gbhFB4\/vnnOyEUZEVBC0H\/0YvE3Uk4ek5NUlJSXV2darHke3qsooBXRSLgZMXtCCRqyHoEHB\/Rc6qVehul2ygPNRgZGZFW4n9Ua\/Q4sqLQ6xAgCE8IBfqDo6MjiWtqairOBCUhSuCSztGZexQiIiJIAYVAY6ySnc+cOXPw4MGLFi1CNLR9jwLaIisry9nZeevWrXv37l28ePGTTz45ZMiQjRs3BgcHt+2GcA0aNzNmZmbKexT6LvQTNKUoazO2jY2NGdj5+fltCM2BDEKBPLX7KgqcDmQ3A4phKF6gcvr0aX19fRrx8fFlZWXacD8pRoqrIeQVhASUpfgzp6CgIHoOuUQvXqgSQkH8zbSsKPQWHHMyW\/qDubn5mTNncCy0S0pK5JWIR6Ez9yhcv34d4SYEGmcFFb9s2bKXXnppypQpLi4unKQWHT1niEjPpjw8PAwNDUUZk+m4ceP47ogRI9ANMTExrVUI+HpNTU1GRsbXX3\/9zDPPvPXWW8ePHyd7wDW059zLioJWIWISpwC9jz8lW4WQkJDCwkKpEloDobBq1aruqCiI01FfX19eXs4ZEQ814GEZqoxusvZelwhYyDBnWltby3HABZFsWFpa2tjYXL58GZvxSL3ec2RFQUvgsBMXELskHhcuXDA1NaW3hIeHiysRdHUpFzpKZ+5RYJTiU8Qi9Dsf169f\/+KLL7IC\/oWTwXgWS9UhU2ERZ44MwMDAIDExkXOZmZl5+PBh0qOnnnpq0qRJZmZm\/FaLWoFTW\/3vL1yys7Mj9WnnKZcVBa2CwINnJwJ5e3uTDqLbYmNj6Q+qxZKW6L6KAqcDiZCVlRUWFka0MzY2Rsq7u7vn5uZqQxUBGhoa2NmysjI8AH2GZFFPTw\/vT2qhPVepZEVB2yBA4FiISkZGRsQLzgiakhDDeZFaoUM8XCgQ9YuLiznWEyZMUJ56IMoqB5qQv3379ldeeWXo0KFHjx5NSkpq7lzYiHgw8tChQ5wzckchNdAZDPW9e\/e+8cYbTz755Pz58x0dHXEHzbWCEAp8cenSpQgFVIWrq2s7rzuArChoCfSEO3fucPYZwGSEJiYm5K\/Z2dmykPBQuryiIM4FG0G0EYCJu0LEM06RCL1bxhdgIa6AviFkJZGYvT5z5gxeIi4ujpkYqT09RwgF4WRkRUFLIBgRUIgy+PyTJ0\/Sw318fBhKNTU1hA86mGo9SZs8RChwHGtra8n7Ob7Dhg175plnli1bFtT0p5FofFHDKSwsNDU1HTduHPn6nj17IiMjNYQC66Dsrl+\/jozYuHEjAb6goEAIhbt376JCXFxc5syZ89vf\/va5555DK5AxcGrFpQ0FsREHB4fx48f\/5je\/2bFjB66txdpDi8iKgjZAd8KzIws4HU5OThcuXAgNDaUDtF\/wDWS6sKIgAjBDIC8vD\/HNACQTYHB5enpyRvLz83tdIgBGYiFqICEh4fLly1ZWVmZmZufPnw8ICMBsOpK2dRtZUdBaSDLpRb6+vrgdGxsbRAPt9PR0OhgDAaRiaJtWhYJwJUKLMUTXrFlDFH\/iiSfwU0eOHGFIMB8Xj0MRiT4roCTWr1\/PCUAEKMedAM\/JCAsL+\/rrr6dMmTJ58uTjx48nJiYi6Ng+QoGfID9ggD3++OM\/\/OEPn3zyyU2bNnEik5OTWUFsBNhOeXm5rq7u7NmzX375ZXNzc\/xm+8+urCj0OpwsugqDU9xIT1giKVSuYUkeSldVFDgRdP6SkpKUlBTlkQFLS0tGMUNMtVJvg5GVlZVIFlwH4oAOY2BgQM9hjtbKSllR0HLIYFNTU52dnfX19VHGHh4euCCiGMFIVjTbplWh0NDQgGb39\/ffsmULWfhLL730hz\/84amnnkIuvPrqq3irL7\/8EmnPOhz9nJwcQjhjY9asWaampgUFBUpRgROAP8ITTZo06dlnnx0yZAhxWkdHh4BRW1uLSiBXWLJkyZ\/\/\/GeEAvzxj39EcKDHyR7Urz4iKfjKxo0bEQqsHxUVxddRD6rFD0MIhREjRsiKQs+D079z505VVRVOn7DEKMWHZmdnS5XQIR69osCJIMpyIrKysq5evXr27Nljx47Z2tpGR0eTuGuJr2Sks1+lpaVBQUEkf6QlhoaG169fp8NoZ9wV3Rvb6Nt4J1lR0GYITKjhtLQ0IsLp06eJRN7e3qhPfJG8EtEGD7n0gALw9PQk2yBsA76JQSvaHGilAIgiIzXZvXv3tGnTmCLT0BliCyxFskVERDg5OfF1vmhvb0\/ugiNgFOGbCP\/iZSkKaD1yCKSAEssRBDgydMnMmTMZgVZWVvx0h06qrCj0Cpyje\/fuIfjw8vQQUi7OLA1On9bmhVrLo1QURDDjRIhbwV1cXKytrV1dXckE0PGMYtV6vYfoKhiZm5vr6+vr6OhI3EXE4BxwBTgibQu6WCuorKzMzMwk3uzdu3fq1KmyoqD9kGSilYODg+ld9DFzc3MPD4\/UpjcuoFOlXGjOw29mbA+NjY2IMgb20qVL169fz9Ev69LX6nHmcGcIwHHjxgkh0tFzKSsKvQIHmfw1IyMDuWlkZIT3Dw8PZ5SqFks6QqcrCgwWcacRA8fLy8vY2FhXV5chgK\/UhnsRAAvx0WQUSUlJxFdEzPHjx0kYwsLCtHacYjC5KX4vNDSUo3rixIkVK1ZMmDBBVhT6CnR+BgXnTr8JtAIJLSkNullqBQ26RigIYmJivvrqq+XLlx88eJAkoKsqOWj2+vp6\/BoqZMmSJVZWVh266CCQFYUehlNPdiiSLfJXS0vLy5cvp6enS9fZaZSKwtChQ9tTUeAUMHYYhsSz+Ph4Jyeno0eP6unpIdqQ3ZwaUQ5Urd1LiH6ChUVFRXhqFAz5AB0Gl02yQXqnWk9r4JBiMDEGWYPqpWNjMOeC7k2wwbdwavAzM2fOlBWFPgGjAB919epVMhnOo6ura2JiYnV1NUODcy0Vg6ArhQID28fH5\/Dhw9u2bSMnSE5OVr+rsXOIux39\/Pz27t07adIkNpuQkNBRlQCyotCTcNIZfgQ2f39\/Z2dnOzs78aQMHla1hqTjKBUF4lDbFQUhEejhjJ3Y2NhvvvmGU2BjY0OD2MZ2lCuDvYiQCHjkrKwsYqq9vb25uTkWBgQEMIf52qYSOKQgKmTBwcEIL0ILQuHSpUtxcXF5eXmOjo74qPfff3\/48OHz58+XFYW+wq1btwoLC0NCQkggzczMGCnoBuSCeP6Wky7lQlcKBSDXJy346quv9uzZY2try4jiQKuWdRxOD3lGaGjozp07CfPbt29HJdR16v0qsqLQM4gRVVNTw8BDJRCfjI2No6KixJ+DiHUknaP9FQUhEXJzczkFeL0TJ06cPXsWtU0SrCVngX4iHoEhxHp7e5OLHz16lGQOj6GdN68IiVBQUIAL8vLyOnPmjJ6enqGhYUREBPNFt1d\/6kFeeuhzIBcIN0iEpgsR+ghBQg+aFd8lb7vuYqHAsS4vL\/f19d21a9e6devwZYwrfFMnFBkjE5Fx4cIFnOOHH37IsBQvc1Qt7iCyotADcJY5QWSrnHQSRM4+qhHFIG4RUq0k6SwPrShw\/DnON5veMENefurUKSSCg4NDWFhYSUkJZ0EbVAJG4iWwMCUlBb1+8OBB7Lx8+XJ2drZ4ZFq1nnaAtZjU2NhICElNTTU1NdXR0Tl9+vT58+cJIRjMUVWcG85KvEcBJzNz5kx2SgqFPgc6lXONqibiHD9+3MXFBS1bUVHBfE60cq4HGl0sFAREi5CQEA40fooRlZaW1tEBw\/lAcAQFBZGP7t+\/39HRMTk5+VGKE7Ki0N1wynCa4joRo4vsCr2YmZmpJbfL9QParihw\/MnRCbc+Pj7Ozs5mZmbioQbcnDZc9Pmni2261oDPRbigIAm65ubmly5dCgwMZNe0pNShgLWiikCXxpshfG1tbS0sLNzd3fFLubm5tbW1rKNau4krV67MmTOHU4NWIBthIChPiUv6EGiC4uLimJgYhhKhh6FEFIuPj6frquvCAUW3CAUgaSBjwB1AdHR0RwcMJwOhIL6OMH8UiSBQryjMmzdPVhS6Fs4X2RVpK+LAwMAAfxoaGsoZlIWELoRoOn\/+fOLQ2LFjkbwIcSEUOPjiVp6IiAhRxkdDWFtbJyYmao9Ko3vQHzCJKIvnPXjwoKWlJTqmsrJSCz0vJqG66M8JCQkYSbpy9uzZI0eOXL9+nR1p7R4pxPHEiRPFMylkIwgg7byMImkPnDs6AN1V\/M26g4MDepGkl45B99DCTtutdJdQALQC+gs6J6s5E+Lrj64SQL2iMH36dFlR6EKIUiReDCGyQ0IUsSojI4M5UiV0LQiF1atXi5coDB06FDXW0NDAQSbR4eBfuHCBYKajo+Pi4pKamqolNwMyiu\/cuYMrIEVDO2LeqVOnkAika3l5ec2T8t4FY+41\/bUEBzY3N9fT05MIsX\/\/fisrKxJK4Y7auJNa\/R4Feemhf0DvRcty9lHeqFsjIyP0HwJCS8ZXj9GNQkGrkBWFLke4eEYLLjU8PJy45ezs7OHhQUjAn2rbxeZ+gKgofPDBB6KicPr06fz8fDTZlStXSHlJ09EKpLxZWVmEOtV3eg8RdHGymZmZpGUkZBh5\/vx5eghpeht5eW9BT8b7C0Hj7u6ur6\/PIUX7BgcHJyUl0aVV67WOEArDhw9\/7733Fi5cKG9m7B+gFUpLS5G2vr6+rq6u5ubm5JmRkZEoXfoM\/Vx4wv7NwBIKKH2QFYUu4caNGwyh9PT0kJAQUi49PT0fHx9teO6uvyIqCuJmxqFDh+7Zs4cDjufiyB8+fNi76a\/UtESfiaBbVFSUmJiIdiEvP3PmjK2tLRKhEy9B6W5w9Ldv3yYYIHn9\/Pzs7e1PnTp15MgRLy+vgoIC1UrtQFYU+jF06aqqquTkZLrHsWPHrK2tr169mpKSwqCjS6tW6r8M0IoCiYIUCp1GiGh8K8mieOEMwou2tt2P1s9QKgqohPfff3\/lypW7du0yNTUluSHCkaNrg0oQHQPvKV7VKkr3DDdRuletpDVwxBobG5EI4l31+vr6WIugCQwMRCJ09KKnEArDhg2TFYX+Cr2Fjo1ccHZ2Pn78OGoSZZmdnc18UV1QrdfvkBUFScdgMKCgKyoqIiIiGC1WVla+vr7EMMaJag1J96BUFMaOHYtW2Lp16\/nz52NjY5Xn+HsXbEApIhGSkpI8PDwIt0rpHt+qPSrhwYMHmApC0CQmJrq7u5MmOjo62tjYXL58mTBQVFSkWrsjKBUFTpCsKPRXRGmBvAghSCfHBzo5OV29elU8Liu6lmrVNlHWbOf6vYusKEg6RnV1NRlYaGiohYXFuXPn1F84I+lWREUBpSvuUWj+HoVeRNzzlZeX5+\/vT9A9efLk4cOHydE7VLrvGXD04hEMrI2Ojia6kxoePXoUj5+amqpaqVPIisKAAqGZnp5Oznn27FldXd0rV67Qf\/CN7bxFl07IkGHg3Gh6+aNqrrYiKwqSdvFP9duUMoqxcerUKdyiIqJVK0m6E1FRUJ56OHPmTK\/HIU49Pu7mzZuk4ARdAwOD\/fv3k5d3rnTfrYhCAioB\/15RUUEU19PT++qrr\/T19UkHxWvBHtEnCKHA2ZEVhQECnZ\/EKbPpv0NxieJNXGgFOthDr0SgU6OiovLz8\/vEY+SyoiB5ODhZBAG9PywsjMTLxcWFA0jckiqhJxEVBXEzI6Go1ysKRNyqqipCbEBAgJ2dnampKQrSy8srKSmJmaqVtAAhEW7dulVSUpKcnOzr64uUsbCwIK5jLc66q17QKysKAxChFbKzs\/39\/ekA5ubmDg4OaMSMjAzmC\/fYopNMTExkvKBT6SeP\/qdI3Y2sKEgeAj2YwYBMDgkJIRjgYd3d3YkQ2nbver9HuUfhrbfeohv3olAQcbe4uBhn5+PjY2RkRC5lbGyshf8KTS9tbGysrKwkdUMTkPDp6uqKCw1dKBEEsqIwkLl79y4j9OrVq19\/\/TXDgQ6GKhUPIrV4gw5L6YqLFy\/es2cPbTyqNtcVZEVB0hb0cpwsIYF+f+LEiQsXLsTGxmq5+O2v9G5FgYgrIO5WVFRkZWUxiMSTmeJ\/qx+9dN+1YCq9FylQUFAg\/g\/65MmTBgYG3t7e6enpWNvl\/\/QjKwoDHBxjTU0N4xT1fOrUKRQAbjMtLQ1VLZ4Io0+KNQHlam9v\/\/nnn69atYqV6ZOspr6CViErCpKWEYWE8vJy0kRHR0eO2MWLF8Xb9LS2N\/dverGiwBnHizFkQFTvbW1tCb0k6OTNuELtGU2YStcFDk5OTg7R2sHBAWttbGwQNKGhoRkZGd30tg9ZUZAAbjM3NzcuLo60yszMzNDQkOiDVEUr4DxZKlYrLCy8fv365s2bV65cuWnTJiRFYmKi1naYgSUUxB+7yYrCQ8HPIo3F5QZUwpkzZ8Rb7lWLJb2BUlEQoagnhcLt27crKytJzaOjo11cXI4ePUp2TiDMyspSraEdoBIaGxurqqpI1\/DUV69eNTY2PnjwoJWVVWRkZEVFhWq97kFWFCQKdEUcpr+\/\/+nTp3V0dFCr6AA8KuMI78oKN5r+OnHLli3Eo+XLl+\/du5f+g8JgrIktaBUDrqKAh5UVhTagfwOdFcHLQTM1NRUvukcLa8+j8AOTnq8o0BNwanebXrMYERFhaWl54sQJAwMDHx8fukeXl+47jei0mNrQ0FBeXp7c9Pq8Q4cOIWguXryYkpJSXFzcA+8MlRUFiQa4zby8vNjYWHKt3bt3IxfCwsLoiuKZCJT39u3bV65cybgmB6C7Ii4ZWV2lFfiJW7du0Qn5xc7Bd4UxsqIg+Rf3mu67oXMgdenT5ubm+FmEsJQI2gBCga7bMxUFEXrFc4+hoaGiem9tbe3h4YFiYKZWqQTsRMrgYbHtwoUL2GljY3P+\/HlfX9\/s7Owei9ayoiBpEbQCuRZBRzwTATjY0qb3ga5fv54+s2HDhrVr127atElHRyc8PJxF4p6GRwR9zG8hUDY2wa+03cAAGsqUOQcOHPDy8mJTsqIg+Rf0zrKysri4OBIy4pB4Gl61TNLbIBTWrFnTAxUFEXpJzTMzM8VDDV9\/\/bWFhQVhmJmqlbSAJjHzgLynoqIiNzfX39\/f1NT08OHDenp6SAR0g2q9nkJWFCRtQLqFR9XV1d23b5+dnV1QUBASfOvWrStXrly1atXq1auZgoGBQXR09KML8cbGRjz5tm3bXn\/99TfeeGPkyJGvvfbam2++OWrUKBrMURrvvPMODVZ79913\/\/rXv4opGTVTYiXWsjVZUZD8k\/tNN3+lp6fjYekZpI+JiYla9cIcSXdXFETcpSfgpLKyskjNjx8\/fvbsWScnp8jIyJ6p3rcHjBRT7EQiZGRkMJwxleyHfhsTE1NSUtK5v7Z\/RGRFQdI2aIXa2tqEhAQbG5uTJ0\/u3LkT6T937tzly5dv3rx57dq1yAXyeBMTk0d8CILvlpaW4sw3bdr02WefhYeHo6Q7gbh7nQ0O0IqCq6urFAoKd+7cwbeGhYV5eHiYmZkxTUpKkipB2+i+isI\/BUJTFaGqqio7O\/vq1avW1tZWVlZEPi8vL\/ya9gQ87ESvkC2Vl5fHx8czrtExuF17e3s\/P7+0tLRevOVWvaIwY8YMWVGQaCAGGl2UMcUQ27Nnz\/z582fNmrVs2TJRTiCuE6d27Njh7OzMSKyuru7c\/QoIhczMTEdHR37i9OnTZWVlqgWdRVYUBjT0WlQC2jM2NtbBwQGV4OLiIu9I0E66r6IgJEJBQQGh193dXU9P79SpU7iqrKwsrZIITOvr6ysrK3NyckJCQiwsLA4cOKCjo+Pt7c0c1INYs7eQFQVJ2yAR6L0ZGRmpqalubm7Hjx9ftGjRhAkTZs6ciVZQvwaxcePGCxcu5Ofnd1ooxMTEnDx58uDBg2j9R7+QISsKAxckApqACEGPxNuSloWGhtbW1spagnbS5RUFQu\/9prdlMBZIcdCIJ06cOHv2rI+PD9kMPUGrVAJGYg+GMZbRMXhAhIK\/v7+ojvauShBHEtc\/e\/ZsPAxnR1YUJAL6BkMMZ0vIJ8u\/evUqo2zdunVNFYRV4roDCQA9B5YuXYpEEEv37Nnj6emJfxYSuUMwWBgmu3bt0tfXDwwMfPSLhrKiMECh14p\/BOZQ4HDFy\/WkeNJmurCigOsB3Id4UuDixYvW1ta2trbkxL5NfxreK9f4myPsJAaXlJTEx8fTS52cnKysrByaXqePuOn16pewEDNycnIMDQ05O++9996wYcMIALKiIIGampqoqCj6rYGBweHDh7dt26bctygQH+fPn\/\/xxx8rcoE5K1euPHLkSHBwMJ3\/1q1bqs21Dzy5nZ3dggUL7O3tu+QGZFlRGIigEkpLS\/GzBAZdXV1vb+\/i4mLVMom20lUVBQIbEoFMhVw8LCwMF3b8+HEyDz8\/P23rBgxS7CQGBwUFnT9\/Xvx7NYM3Kyuro66zO+BI1tbWihdau7u7b9myZdKkSXgYkBUFiQCh4ObmtnPnTrSjIgWWL1+ODhDXGsRtjEzXrVunyIUlS5bQXr9+PX0erYC7bv81CKFczc3NJ0+eTALQJfcgD8SKAidgIFcU8LAFBQWkOyhcU1NT5IJUCX2CLqkokJ3T8+kAyAIdHZ0DBw6YmZmFhobiiXr9Gr8Cnk5cEykqKkIiiAsNdFc6LZYTm7VEJRADOCm2trb79u1DaTEdM2bMe++9x9lZtGiRrChIgO7q6+vLKNu1axeBn+iDYlBYsWIFgxrd8M\/aQlMVAZgzYcIEEloUA18h2GdkZDA86XKqjbbJjRs34uPjT58+zWbphKq5j8bAEgpNWn\/stGnTBmBFgU4G9fX1KIOLFy9aWFigliIjI+nHA7m40od4xIqCOPtpaWnXr1+\/cOGClZWVvb094yIuLo4+oFqpVxFdFPB04qKYk5MTHRU5K57EKS8vb39e1U2oTHzwIDc3lwCAJ3FxcSFlDA8PR8rMnDnz7bffRivIioJEga7CKEOaA0PP0tIS3QB0bMTljh07UAPiAgQS4ePvaSo9\/JN169bRtej\/1dXV7ZHIDB964\/Hjx7ds2RIWFqaaq4bowGhxDcR8UK2nxoCrKLz77rsDsKKAeyX7IWtEaeLaEJvnz58vKSlRLZb0BR6lokBvz8\/PFy9QwumcOHGCGCzSFNUaWgAODldYWVmJlmWEHjly5PDhwzY2NtjZ6\/pAgXFUVVWVlZXFCDp16hRH0svLi6F079498dSDyEZkRUHSBnV1deJ1jf7+\/vRwHDKK4fPPP0cTwNq1a0kJFi5cSHcSF7NYRHaH4GiPUCgsLCQN2L59+5kzZ5AXqrnfI97IzjpoiNDQUGWKtiCLwEXQw5trBVlR6P9w1ule+DLxDyXkkVFRUfSGR39mRtKTKBWFN998s50Vhab04J8JekpKConvwYMHdXR0yGmIxGVlZVpSwweMJKHBnuDgYD09vd27d7N3169fRyJUVFQw\/05XvNH2URBHEiM5CyiAvXv3GhoaXr58WRxGVALrXL16FSUnKwqS9sPYpP8ICgoKcnJyGJuenp5ubm4MBLoZEuGjjz6iO3366adEMdZXfbN16KL4+R07drARNqia+z0MJbzBrl27JkyY8Nxzzw0ZMuTZZ59l+swzz7z44ouLFy\/28\/NDkajW\/h5ZUejnEAnQj+hEOh+hgh2Pjo6WKqEvolQUhN59qFCgh3Pqk5OTPTw8nJ2dLS0tHRwcAgIC0tPTtarzi0cGULH4NTMzM\/Gf5iEhIUjbXtcHAiQCQ4aDiURgEJmamjL18fFhWJGfqVZqeo8Czlfco4BnR\/Roif2SPgSeWSiGxMTEwMBAd3d3hoONjc3FixfbeQ9vamrql19+uWHDhpiYGI07GemQ+fn5tra2EydO\/OMf\/\/j\/1PjJT34yYsSIjRs3tngtUlYU+jNCJZCWnT9\/Hn1qbW1NkOiSm2AlPU\/7KwpCIlRVVYWFheEUDhw4cOjQIYZAYdf9MV2XgD\/CSBwT\/ZMc6Pjx46TpfKysrFQPwL0LKoGDmZ2dHRUVdeLECRMTE1QCY0pUEdQRFQXhZGRFQdIr0F1jY2NXr1796aefNvf2N2\/eZHzhOkiYX3rpJTzJoEGDaLz11luvvvoq2gJd0uIjx7Ki0G+hx5SXl3t7e+vq6pKo0XvIiqRK6Lu0p6LASQfxsIC+vv6xY8dQh+QlzOHsa49KwEjswWeJv67GTvG\/lKWlpdojEeD+\/ftIGRQA+gAjkQhkdegG7FetoYZSUXj77bc5U\/IeBUkPQ2bICPL09Fy3bt3Ro0ebv0GhrKzM2NiYpeJvIXP+nfz8fNV6zZAVhX5IY2MjXjgtLQ3nKy43hIeHd8lrNyS9CEJh7dq1bVQUbty4kZeXFxAQQMTivFtYWNABOPWoBO2pgdfW1hJo\/fz8GIPOzs5IWKZXrlwh+6msrGyepvcWSATsiYqKwjZ8K9aCeP1+iyoB1G9mlBUFSc+DUGAcOTg47Nq1i\/xQw+fjBAgKJ0+e3Lhxo5OTU4f+XlVWFPoVSISbN2\/ii1NSUs6fP3\/mzBlHR0fyNllI6AcgFObOndtiRaGuro4Alpubi0rAQZD7GjT9Wa2WvGARUK6iisBekGrjrTASgoODcWfaow8AiYCdFRUVaCwjIyOMNDU1xezW9IGCEAriZkb51IOk50EoREZGnjhx4uDBgwhcdbePSiBh8PLyWrdu3YIFCy5evBgbG1tQUKBa\/DBkRaG\/gY8LCQnBtRkaGl6\/fp2sSLVA0sdpraJAAGPAu7u76+jokEkQriIiIkpKSrTqMr+QCIy748eP79ixg6QHIwnGzCcwq9bTAsS1BhIvRSLExMRgJKjWaB1ZUZD0LiQM+IHt27ejFZDgGkIhKyuLLILO+ctf\/vKPf\/zj1KlT6eFkFy3elKDBwBIKw4YN68cVBXyZuMXd2traxcWFfIg50lX1G5pXFHAEiYmJvr6+FhYWxsbGjo6OBKfU1FQteTuC0AfV1dXR0dE+Pj5YCM7OzlevXs3MzCQea5VEuHfvHiZlZGSQijk5OZmYmLi5uYk7e1RrPAxZUZD0LoR8c3PzxYsXM8pQ4aq535cTPD09ly5d+sQTT\/zgBz\/40Y9+9Lvf\/W7UqFHr168\/ffp0YGBg23JBVhT6Azdv3sSdEUhQCWfPnrWysiJ+SCfVzxAVBfFaxjfffHP\/\/v0hISHitT87d+68ePFicXGx9tTwUQlIhOzs7MjISPTB0SaIwaQ1WqUPgIPG8KmsrExPT2cE7dq1y8zMzN\/fv\/lDYm0jKwqS3oVgb2BgMHv27AsXLjS\/7oCLQL8iDv785z\/\/6U9\/+r\/\/+z8Uw49\/\/OOXX355y5Yt8fHxbWgFWVHo8wiVEBAQgDsWt7jjoFXLJP0I5dKDCEWzZs06cOCAoaEhfbukpIQ+oCUqQbnGT6REHOzYscOl6a0DdEvmP\/RKfw8jVEJhYaG9vT3W6ujo+Pn55eXlqRZ3BFlRkPQihPnY2Nhjx46tWrXq+vXrqrlNIBTo5OXl5UhhBEFCQoKpqSl6QmiF\/\/zP\/0QrbNy4kdih+kIzZEWhb4MnIkW7evUqvhiCgoJIK7XnFjZJF6JRUWBgE9vE8yzaIxHQB5GRkUgEkybok4w18Y4v1UraxK1btzIzM0NDQ8XwcXNzQ3B3tJCgICsKkl6krKzM19f38OHDGzZs0BAKILSCiHp3794tKCi4ePHi3r17J0+e\/OSTT6IVXnnlla+\/\/jo3N7fF\/j+whEJ\/euoBH8SJRyVwvs+cOWNra5uSkiIlQj9G3KMg4hCcPXtWS641iKQckCwIF0dHxyNHjuzevZvAmZOT86AJ1apaA74STZOamurl5aWrq\/vVV1+5u7vn5+c\/iqmyoiDpRei9ZA779+83NjZu\/g7m5jAE8vLyLCws8Co\/\/\/nPf\/rTny5ZsgSFIYVCv6oo4OY4qUZGRufOnUNIykJCvwehIN7MSB9+6623UIda8tQrQoHu5+3tbWBgsGfPHnNzczqkeOUA6kG1kjYhMipPT09DQ8PTp097eHggaPCPjyhoZEVB0otkZGScOnVKPPfUzmtnDISioiI3N7d58+Y99thjf\/nLXzZt2tRiUUFWFPoYxAacb2ZmJm5I1EtDQkJw01r1N4CS7gChIN7M+Oabb44ZM8ba2rp3pSFeprKyMi0t7cqVKyhvJycnU1NTnFRc07vitbCKAHfu3GGwBAcHY7CDg4OVlVVAQACioUuslRUFSXuoq6vDhwcFBZHjIax3\/jtHjhy5cOECkZ6+qvpC+0hISNi6deu2bdvCw8PVH3lom9u3bycmJp48efL9998fOnTokiVLxPhVLf4eWVHoYyAUCgsLSYZMTExsbW3j4+OJFtrplCVdC87loa9w7hmQCBijlO7F39whXHAxzNdaiYBtqAQctIWFxf79+52dncVD5F1lsKwoSNpJfn4+o4bY\/NOf\/vSHavziF7945plnvvjii9DQ0PLy8g5phcjIyBUrVmzevBmR0aEujVaIiYn5\/PPP33rrLYJji8\/7yIpCnwGJwPnDzRkaGuLp\/Pz8cnJyZCFh4MDpFu9RaO0Vzj0DzqukpIREXOiDM2fOeHh4fPfdd1orEQBXiNuNiIhg7Ojo6Dg4OJBFVVVVtedPe9uPrChI2gPaFIWqq6v717\/+9bHHHkMf\/ECNQYMGbdy4MSQkpP2dhyhQWlp68eLFpUuXHjhwoP3lBAEjOjk5mYE8a9YsoqQUCn24olBfX19YWOjr64vlZELiCS6pEgYUSkUBlUA37nmhwM9lZGQEBwe7ubk5Ojqam5vTuH79etfm5V0Oxy08PNzb2xt9gMJ2d3dPSkpCInS5wbKiIGkPdDwicWxsrJmZ2eHDh7dt2\/bVV1+JqfijV\/oq3r795QQCQVpamp2d3ZdffokU7ujbeO\/du1dQUIBwWbFixZIlSzBMVhSGjx49um9VFJAInDb6Abugr69vaWmJ+pOXGwYgSkVBPCHZM\/cokIsT7URGTscjyp49e3bPnj0mJiYk5fTM+\/fv0xW1sDfeunUL8zA7Ojraysrq+PHjKBt2AU0jbFat13XIioKkndD96IR3795FDTSHyN2h\/olQCAsLO3HiBCLDx8eno\/c4K0Jh1apVGzZsQPc3\/3VZUdB2EApRUVH29va45qtXr3IWZSFhYKI89YBKQCsQsHsmDtEDY2JiyH7IePT09NAKCQkJFRUV3ZGUdxWohJqampSUFOQUB4pkKygoiLHDqO8+m4VQEPUeWVGQ9BgI4gsXLuzbt8\/AwCA0NLSjvQ5pEh8f\/+WXX+7cuRMx3eITE7KioKVgHnozKysrMDAQN4dQ8Pf3z8\/PxwOq1pAMMJSnHlAJY8aMIUvuvoqCSMfJM8LDw1EGhFtnZ2cCoZ+fH0m5kAhaqxIwLy0tDVWNuLG0tPT09MQPlpSUdLfNsqIg6VpycnJsbW0PHDiwp4kjR47QmZtHAYaqoaEhXY6Vy\/\/9r6Ufyr179xD9AQEBO3bs0NHRISVga6plagwsoSDE\/vTp07W\/ooB5uGmSEl1dXdx0dHR0tyZDEu2nurpauUehWysKuKGysjJi7fXr1wm0x48f19PTI+4WN73fqZvq9l1CY2MjliMLSLCwWV9f38fHB4nQMzbLioKka0lISCDRJyt4+eWXX3vtNTTo2rVrg4ODa2pq1LUCoZ0Yj3Pw8PBoscvduXMHNZCZmZmUlFRYWFhfXy\/mM5yrqqpSU1MdHR1PnTpFGtDaLckDsaLAAdXyigK2paSkkA+hE8lLhISUKmGAo9yjQBwiGnVHRYFAi9PJyMhwdnY+fPjw0aNH7e3tcUy5ubnafKFBUFdXh7hhaJ88eVIMnB42WwiFYcOGyYqCpEug93733XfJyckE+IiICPEKUQsLi8TEROUCNAM2Li7u4MGDQkO02NsrKysdHBwWL148fvz4PXv2+Pr6EmKESmDLJiYm586di4mJIRVpbbDIisKjcvfuXZKYkJAQY2PjQ4cOIc1EbVa1uINgVUFBAVuztbXFRwcEBCAAOX9IQtUakoGKuEdh6NCh3VFRwO+UlpbiccTTAdbW1k5OTp6enmQb9EltriIAxqMJ\/P39GTJYfuHChdDQUEZlD5stKwqSroXeSx8WMAyjo6OJ6Dt27HB3d0cWi3VqamoI\/OJlTbGxsWKmBogJvoJQeO6554YMGUIv3bt37759+\/bv33\/69GmUB1to++0LsqLQSYjcHH3xZjrx17SvvfbaL37xi8mTJ\/ORYK9ar92gLdhgfn4+plpaWiI7oqKi6uvr6SLa7KMlPYa4R4EgBESjLnk88ubNm\/Q6yMnJIbgiEQ4cOIDv8PPzQzcggrW5+2H8raabFpX3PiGeGD4MIkZ3z5utXlFYuHChrChIuhD6M7364sWLy5YtY+wT18XVB0aunZ2duNE4PT1drKzB7du3s7OzTU1NJ0yY8Prrr\/\/1r38dPHjw22+\/\/c4776xatYqARS7KSFet3RKyotBJEAr4IxyrcA3PPPPMj3\/849\/+9rcffvghKoRFqvXaDf0Af4c+MDIy4sxx+quqqmQhQaKgPPUgHo\/sEqFArysqKmJ06OjoHDx40MrKCrlAdo4C1pI\/kmgDdr+kpCQkJAQXqaurSwaPaq+oqMDyXhE3sqIg6Vbo1cnJyUeOHGGo0rvKysqYmZKScuLEib17954\/f761uEMcId7V1dUlJSUlJiYmNEED0BZtXHFQkBWFTsKhLy4u9vX1PXny5Oeffz5r1qwnn3zyiSee+Oijjzw9PUnRVOu1gxs3bnCCg4ODbWxsUB6BgYH4O7KlXnF2Eq1FeepBhKJOCwW+RYaBDI2JiREXGmxtbZ2cnC5cuCDeEi+qCFrb\/YT96Bs0DbGZdArjr1+\/XlBQICRCb1kuKwqS7iYvL8\/NzW3Pnj0oe1E\/YBRv2rRp165d8fHxbYh7MS4Y2s1pz3gZoBUFjvUjCgXgECMX6uvryf7xEePHj3\/uuefGjRvn7u7e\/ksPqATOPeKAlAiXh1zAsHsdfOGGZCDQJRUFvlLT9JcH0dHRLi4ux44dIx2hQW5BV7x79672dzx2AfsZMiYmJsePH0flYLw2XKRTryjMnDlTVhQkXQ6dnHCzb9++Tz\/9VPwlNMnqkiVLdu7cmZWV1X39TVYUugCclIeHx9SpU19\/\/fUPP\/yw\/RUFXDM+Dn2APBQXLOTTDZLWeMSKAiuTiKNKfXx8+O6RI0fMzMwCAgJyc3PLy8t7q1zfUSorK4WqFn8PHRcXh\/FaIqxlRUHSAzAErK2t9+7da25u7u\/vT\/hYtWoVI5r53TcKZEWhC8DJent7L1iw4I033kAouLu7FxYWqpa1TkFBAS7vwoULzs7OXl5efKyursblqRZLJP8OQmH16tWdqyjQRTMzMwld9DcbGxsczcWLF1EJbFNc5NKGQNsG7KmogjBSxD9NYH9KSopW6RtZUZD0APfv309OTtbT09u0adOhQ4fwA9u2bUM0VFVVqdboBmRF4VERj0ciFMghhFB4aEWhrq4uPz9fvM3G1NQ0ODhYFE5BtYZE0gyC+vz58ztUUSCO0tkIsZGRkejRo0ePiid4CbH0\/zsdf6t8zyN2oaioKCIiwsLC4uTJk0zj4uKwX9sulMiKgqQHQNmjCTw8PBYtWoQeRS4cPnzY19e3WzvbgKsoQNdWFPBWFRUVQUFBilB4aEUBGWFra2tmZoZVaENRO1Utk0haoRMVhdLSUuIrycexY8dQpVevXs3IyGAmX9RyfaCAnUlJSS4uLrq6ukgcdicvL6+yslL9zXRagqwoSHoARgQpZWpq6v79+9955x1U6b59+xgXCAjVGt3AwBIKI0aM6KZ7FLy8vNAfQ4cO\/eijj8TdBqplLYFQ4LyGhYWlp6fj72QhQdIelIrCmDFjHlpRoE\/GxMR4enraNEGfDAwMzM3NxZvQ3\/qKSsjJyfHx8Tl\/\/ryzszO7wB4VFxc3NjZq5y7IioKkxygoKKC\/LV26FElqZ2dHttmtI0JWFB6Vu3fvkt8EBQWJexTGjx\/\/UKGAm7vTBN9VzZJIHoZSURAvZ2xbKNC96YempqY4EVRpYWFhQ0NDn3uaJjMz09LS0srKyt\/fv6ysjCGjzSpHVhQkPQZjubS0FCewefNmRkd39zRZUXhUCPacMJxC++9RkEg6QYcqCkRT9CuBlsyD1fpQFUEdcYNFSUkJCZMWXmvQQFYUJD0JvQufwBi\/0f1\/aCIrCl0Am1K\/mbGdTz1IJB2iQxUFwHeQdvRRiSDAcuwXaP9eyIqCpCcRAxx6YGjIisK\/aGxsJIMhd0Gj\/fPllmqkpaXl5+eT2TQf+Xf\/\/amH8ePH+\/n5tX3pQSLpBB2qKEh6HllRkPRXZEXhX9y8eTM3N9fW1nblypUffvjhO++8g6oge4NRo0bNmTPn9OnTCQkJzQc\/c9SfevDw8JBCQdLldLSiIOlhhFAQMk5WFCT9CVlR+BcIBfEHG8OHD\/+\/\/\/u\/\/2ziR0384he\/ePvtt3fu3BkdHV1fX6\/6QhOioiCeepAVBUn3ISsKWk5ISMiWLVuWLVv22Wef7dmzJy4u7vbt26plEklfRlYU\/gVCITs728jIiGxgyJAhzz333KBBg5i+8MILgwcPnjJlypEjR1JTU5sLhYqKisDAQOXNjLKiIOkOEApbt26lg9E\/kQuWlpbd+uS0pKPk5eV904R4cWROTs4d+e+vkn7BAK0oMIybC4UHDx4Q9YuKiqKjo8PCwkLV4GNUVBSeWjygpfpCE3yLTV25ckW59ODp6VlTU6NaLJF0EVVVVYaGhjo6Ol9\/\/fWpU6eCgoJkwqpViJyhtLS0pKQEn8BH7b8BUyJpDwNLKIwZM6aNioIAHfDPVxy0xL2W3p8oLj3Ipx4k3Q09MyUlBdmKRAgJCcnIyKDvqZZJtIN\/Pp7RhJQIkv6ErCg8KqKiIJ96kPQAqNVb30NbNVcikUi6k4FYUZgxY0bXvkehoenfI+VTDxKJRCLpfwzEisLcuXO7sKJw7969srIyT0\/PqVOnvvDCC2PHjrW3t5dCQSKRSCT9A1lR6Dx3796trq7OyckJDQ3V0dF55513fv3rX6MVDh8+HBISUlRUdOPGjS6sW0gkEolE0vPIikInQSVUVVVFRETs3r0b5fHyyy\/\/93\/\/9w9\/+MP\/+Z\/\/+etf\/\/ree+9t2bIlLCxM\/umDRCKRSPo0sqLQSR48eHDr1q3s7Gw7Ozu0wvbt2zc1sXnz5i+\/\/HLXrl0GBgaZmZlSKEgkEomkTyMrCp0HrXDnzh22U9mMqqqqurq61p6olEgkEomkryArChKJRCKRSFpFVhQkEolEIpG0ykARCtevX1+2bNmkSZNmzJixePHiFv8USiKRSCQSiQYDRSikpqaamZl9\/fXX+\/bt09XVjYuLa2xsVC2TSCQSiUTSCgNFKNTU1MTGxgYEBERERISHh5eVlcmXsUskEolE8lAGilCQSCQSiUTSYf6\/\/+\/\/B9ata94GfDZoAAAAAElFTkSuQmCC\" y=\"1\"><\/image> <\/g> <\/svg><\/span><\/p><p>V\u1eady&nbsp;<span class=\"math-tex\">$\\max_\\limits{D}f(x)=0;\\min_\\limits{D}f(x)=-\\sqrt{5}$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-16 04:20:32","option_type":"math","len":0},{"id":"5342","post_id":"7512","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{x+m}{x+1}$<\/span>&nbsp;(m l&agrave; tham s\u1ed1 th\u1ef1c) th\u1ecfa m&atilde;n&nbsp;<span class=\"math-tex\">$\\min_\\limits{[1;2]}y+\\max_\\limits{[1;2]}y=\\dfrac{16}{3}$<\/span>. M\u1ec7nh \u0111\u1ec1 n&agrave;o d\u01b0\u1edbi \u0111&acirc;y <strong>\u0111&uacute;ng<\/strong>?<\/p>","options":["<strong>A.<\/strong> m &gt; 4","<strong>B.<\/strong> 2 &lt; m <span class=\"math-tex\">$\\le$<\/span> 4","<strong>C.<\/strong> m <span class=\"math-tex\">$\\le$<\/span> 0","<strong>D.<\/strong> 0 &lt; m <span class=\"math-tex\">$\\le$<\/span> 2"],"correct":"1","level":"3","hint":"<p>S\u1eed d\u1ee5ng quy t\u1eafc t&igrave;m gi&aacute; tr\u1ecb l\u1edbn nh\u1ea5t, nh\u1ecf nh\u1ea5t c\u1ee7a h&agrave;m s\u1ed1 tr&ecirc;n \u0111o\u1ea1n [a; b].<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;m &gt; 4<\/span><\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$y^\\prime=\\dfrac{1-m}{(x+1)^2}$<\/span>.<\/p><p>&diams; N\u1ebfu m = 1 th&igrave; y = 1,&nbsp;&forall;x&nbsp;<span class=\"math-tex\">$\\ne$<\/span>&ndash;1. Kh&ocirc;ng th\u1ecfa y&ecirc;u c\u1ea7u \u0111\u1ec1 b&agrave;i.<\/p><p>&diams; N\u1ebfu m &lt; 1 th&igrave; h&agrave;m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr&ecirc;n \u0111o\u1ea1n [1; 2].<\/p><p>Khi \u0111&oacute;&nbsp;<span class=\"math-tex\">$\\min_\\limits{[1;2]}y+\\max_\\limits{[1;2]}y=\\dfrac{16}{3}$<\/span>&nbsp;&hArr; y(1) + y(2) =&nbsp;<span class=\"math-tex\">$\\dfrac{16}{3}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\dfrac{m+1}{2}+\\dfrac{m+2}{3}=\\dfrac{16}{3}$<\/span>&nbsp;&hArr; m = 5 (lo\u1ea1i v&igrave; m &lt; 1).<\/p><p>&diams; N\u1ebfu m &gt; 1 th&igrave; h&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n \u0111o\u1ea1n [1; 2].<\/p><p>Khi \u0111&oacute;&nbsp;<span class=\"math-tex\">$\\min_\\limits{[1;2]}y+\\max_\\limits{[1;2]}y=\\dfrac{16}{3}$<\/span>&nbsp;&hArr; y(1) + y(2) =&nbsp;<span class=\"math-tex\">$\\dfrac{16}{3}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\dfrac{m+1}{2}+\\dfrac{m+2}{3}=\\dfrac{16}{3}$<\/span>&nbsp;&hArr; m = 5 (th\u1ecfa m&atilde;n m &gt; 1).<\/p><p>V\u1eady <span style=\"color:#16a085;\"><strong>m &gt; 4<\/strong><\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-16 04:27:10","option_type":"math","len":0},{"id":"5344","post_id":"7512","mon_id":"1159285","chapter_id":"1159288","question":"<p>T\u1ed5ng gi&aacute; tr\u1ecb l\u1edbn nh\u1ea5t v&agrave; gi&aacute; tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a h&agrave;m s\u1ed1 <span class=\"math-tex\">$y=\\dfrac{x+m}{x+1}$<\/span>&nbsp;tr&ecirc;n \u0111o\u1ea1n<\/p><p>[1; 2]&nbsp;b\u1eb1ng 8 (m&nbsp;l&agrave; tham s\u1ed1 th\u1ef1c). Kh\u1eb3ng \u0111\u1ecbnh n&agrave;o sau \u0111&acirc;y l&agrave; <strong>\u0111&uacute;ng<\/strong>?<\/p>","options":["<strong>A.<\/strong> m &gt; 10","<strong>B.<\/strong> 8 &lt; m &lt; 10","<strong>C.<\/strong> 0 &lt; m &lt; 4","<strong>D.<\/strong> 4 &lt; m &lt; 8"],"correct":"2","level":"3","hint":"<p>S\u1eed d\u1ee5ng quy t\u1eafc t&igrave;m gi&aacute; tr\u1ecb l\u1edbn nh\u1ea5t, nh\u1ecf nh\u1ea5t c\u1ee7a h&agrave;m s\u1ed1 tr&ecirc;n \u0111o\u1ea1n [a; b].<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;8 &lt; m &lt; 10<\/span><\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$y^\\prime=\\dfrac{1-m}{(x+1)^2}$<\/span>.<\/p><p>- N\u1ebfu m = 1 th&igrave; y = 1,&nbsp;&forall;x&nbsp;<span class=\"math-tex\">$\\ne$<\/span>&nbsp;&ndash;1 (lo\u1ea1i).<\/p><p>- N\u1ebfu m&nbsp;<span class=\"math-tex\">$\\ne$<\/span>&nbsp;1 th&igrave; y&#39; &lt; 0, &forall;x&nbsp;&isin; [1; 2] ho\u1eb7c y&#39; &lt; 0, &forall;x&nbsp;&isin; [1; 2] n&ecirc;n h&agrave;m s\u1ed1 \u0111\u1ea1t gi&aacute; tr\u1ecb l\u1edbn nh\u1ea5t v&agrave; nh\u1ecf nh\u1ea5t t\u1ea1i x = 1, x = 2.<\/p><p>Theo \u0111\u1ec1 b&agrave;i ta c&oacute;:<\/p><p>&nbsp;<span class=\"math-tex\">$\\min_\\limits{[1;2]}y+\\max_\\limits{[1;2]}y=8$<\/span>&nbsp;&hArr; y(1) + y(2) =&nbsp;<span class=\"math-tex\">$\\dfrac{16}{3}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\dfrac{m+1}{2}+\\dfrac{m+2}{3}=8$<\/span>&nbsp;&hArr;<strong><span style=\"color:#16a085;\"> m = <span class=\"math-tex\">$\\dfrac{41}{5}$<\/span>&nbsp;&isin; (8; 10)<\/span><\/strong><\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-16 04:38:50","option_type":"txt","len":2}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.