Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 6. Vectơ trong không gianBài tập trung bình
{"common":{"save":0,"post_id":"7582","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5590","post_id":"7582","mon_id":"1159285","chapter_id":"1159392","question":"<p>Cho t\u1ee9 di\u1ec7n \u0111\u1ec1u ABCD&nbsp;c&oacute; c\u1ea1nh b\u1eb1ng&nbsp;a. Gi&aacute; tr\u1ecb t&iacute;ch v&ocirc; h\u01b0\u1edbng&nbsp;<span class=\"math-tex\">$\\overrightarrow{AB}(\\overrightarrow{AB}-\\overrightarrow{CA})$<\/span>&nbsp;b\u1eb1ng<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{a^2}{2}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\dfrac{a^2\\sqrt{2}}{2}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\dfrac{a^2\\sqrt{3}}{2}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\dfrac{3a^2}{2}$<\/span>"],"correct":"4","level":"2","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>D.<\/strong>&nbsp;<span class=\"math-tex\">$\\dfrac{3a^2}{2}$<\/span>.<\/span><\/p><p><span class=\"math-tex\">$\\overrightarrow{AB}( \\overrightarrow{AB}-\\overrightarrow{CA} ) =\\overrightarrow{AB}.\\overrightarrow{AB}+\\overrightarrow{AB}.\\overrightarrow{AC}=\\overrightarrow{AB}^2+|\\overrightarrow{AB}|.|\\overrightarrow{AC}|.\\cos(\\overrightarrow{AB},\\overrightarrow{AC})$<\/span><\/p><p><span class=\"math-tex\">$=AB^2+AB.AC.\\cos(\\widehat{BAC})=a^2+a.a.\\cos60^0=a^2+\\dfrac{a^2}{2}=\\dfrac{3a^2}{2}$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-01 03:44:48","option_type":"math","len":0},{"id":"5593","post_id":"7582","mon_id":"1159285","chapter_id":"1159392","question":"<p>Cho h&igrave;nh ch&oacute;p S.ABC&nbsp;c&oacute; AB = AC,&nbsp;<span class=\"math-tex\">$\\widehat{SAC}=\\widehat{SAB}$<\/span>. T&iacute;nh s\u1ed1 \u0111o c\u1ee7a g&oacute;c gi\u1eefa hai vect\u01a1&nbsp;<span class=\"math-tex\">$\\overrightarrow{SA}$<\/span>&nbsp;v&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{BC}$<\/span>.<\/p>","options":["<strong>A.<\/strong> 45&deg;","<strong>B.<\/strong> 60&deg;","<strong>C.<\/strong> 30&deg;","<strong>D.<\/strong> 90&deg;"],"correct":"4","level":"2","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>D.<\/strong> 90&deg;.<\/span><\/p><p><span class=\"svgedit\"><svg height=\"300\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"302\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"296.99999\" id=\"svg_1\" stroke=\"null\" width=\"317.99999\" x=\"1.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWcAAAFXCAIAAADxoBh3AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEbiSURBVHhe7Z0JXI3598dvpRKlxVIiwkQRSraKNvtaCDNTQ4Uh\/tYsmWg0ZsgMWX+2acpQGMuMfcukpChLpSjZl0SkaFFS\/ufO+Xqkbmnv3uee9+u+zOf7vY\/Rcp\/Pc77bOTIfPnwQEARBlBtZ9l+CIIjyQa5BEETFINcgCKJikGsQBFExyDUIgqgY5BoEQVQMcg2CICoGuQZBEBWDdnkRXyA\/P\/\/Zs2fJyclv3rypV6+elpaWtra2qqqqjIwMvAufn6tXrxoZGcFbeD3Be8g1iFIpLCw8f\/78sGHDcnJyFBQUFBUV5eTkwERyc3ObN28eEBDQpUuXH374ISYmJjQ0FC5gf43gOzRCIUplxowZ1tbWYBkeHh7Z2dmvX79OT0+HiAPQ19eHtzQ0NLZu3dqjRw+yDOkCYg2CKImrqyt8PGAYsmvXLtb1OatXr8aP0LVr11gXIR3QCIUQwcuXLzt16pSamqqmpvbgwQNVVVX2RhFgqNKuXbusrKwXL17AyIX1ElIAjVAIEdy+fTsjIwO1rKzoD4m8vPzXX3\/t5OREliFtkGsQIgCnwCWSzMzM8PBw7CyJurq6kZERaxBSA7kGIQJ9fX1wBBAFBQWTJk16\/vw59hfD2NjYysqKNQipgVyDEIGqqur8+fNRP3361NTUNDk5GZtFGTx4cKtWrViDkBpoNpQoFWdn5x07drCGQABDFTMzM9YgpBiKNYhS8fPzGzt2LE5wAObm5ocPH6bHDEGuQZQK+MW+ffvc3d1ZWyCws7Pz8vIi45ByaIRCfJmgoKBhw4bl5+djc\/z48YGBgbTgKrWQaxDlIjIysm\/fvpxxHDx4cPTo0agJaYNcgygvW7ZsmT59OmsIBM+fP2\/WrBlrENIEzWsQnwgNDR01ahRrlMDV1dXHx4c1BIJt27YxRUgZ5BrEJ0JCQvT09FhDFJMmTWrcuDHqV69eoSCkDXIN4hP37t0TuZuLQ1FRUVdXF7WKigoKQtqgeQ2CAZ+Epk2bNmnSJDExkXWVIDMzs0OHDikpKaBv3rxpYGCA\/YRUQbEGwbh7925aWhqEGzBOYV0l+Pfff\/FMyrRp0\/T19bGTkDbINQjGH3\/8AX\/m5+ePGjXqyJEjJYPQ8PDwMWPGFBYWmpiYrFq1itszSkgbNEIhhIBZfPXVV+rq6u3bt79x4wYMUnr27Dlx4kQtLS05ObmsrKzTp0\/v3r0bPi1OTk4bN26sX78++5uE9EGuQQhJT0+fNGnSnj17FBUVofno0SMIPS5evPj69evc3FwlJSUVFRVzc\/OZM2dyayiE1EKuQRBExaB5DYIgKga5BkEQFYNcgyCIikGuQRBExSDXIAiiYtAaCvEF1q2LCw1NefAgE7Suroqdne7Eie3xLUI6IdcgSiUk5Kmzcyj6RVHAO\/75Z6CREW3ckFLINQjRxMSkWVsfzch4B1pV8NZI8DhD0CBW0BLfVVNTiI4eA\/aBTUKqINcgRGNnd+bw4QcgbAWxOwQ71AQ5oB8IGtsJpqN32NrqHjo0UHgpIWXQbCghGrQMYJngKFoGoCtIgybq0NCnKAhpg1yDEAEOTBBwCqb+A4YqKIpeQ0gV5BqECNTUFFq3Vka9Q2CKAlkmGIGia1eaDZVSaF6DEI2X19Vly66idhJEGAmeZAiUQgQdQgRs2dXf38rJiZZgpRFyDUIEaWm5ffseSUjIYG1RhIaOsLBozhqENEEjFEIEjo7n0DIUFeWaN2+AnUjDhvVQODuHvnjxFjUhVZBrEMWZOjXs1Ck25blnT7+nTx2bNGGZu8BBrl4draamAPrevTdgHNhPSBXkGsRnrFgRvX17Auq1a01HjRLWMVBWlseelJScN2\/y\/f2tsHn8+KMFCy6hJqQHcg3iE4GBtz08LqOeO7fznDmdUcvLf\/qcHD360M5Od8WKnthcvfq6n98t1ISUQK5BMMLCnjk6nkM9enQbH5\/PFlw5jhx5CH8uXmz03XesStukSaEXLwrLHRBSArkGIeTRoyxHx2DUJiZNAgJsUJckNjbt5s10EDBO6d69KXY6O4dmZOShJngPuQYhBCwDjANE06b1AwNtlJTksF8kMEiBP+XkZPz9LXFJ5datDJoZlR7INQihZcDwBDVEGR06qKEuDRykAIaGGtzM6KFDD374IQo1wW\/INaQdD4\/LgYF3UG\/fbjFwIDsLXwYREc8fPmRJN8aObevl1R31ypUxu3bdRk3wGHINqWbbtoQVK6JRL1liPGXKF0q3ammxHV9cuAF4enb7+ut2qJ2dQ65ceYGa4CvkGtLLqVOPp00LQ\/3dd3rLl\/dAXQbduzdBgVMbHDBOwcNsBQUfnJ1Ds7PzsZ\/gJeQaUkpCQjq3zmph0XznTmvUZWNiwhZNgoKSX7zIRQ3Ury\/n72+poCD8OMXHv6KZUX5DriGNZGe\/B8tISxPe9rq6KoGBpa6zFqNTJ3VtbTZIKRZuGBs34WZG9++\/9+OPV1AT\/INcQxpxdAy+du0lCBkZQUCAdcuWDbG\/PIwY0RpF0akN5Ntvv1qypBvqn366tnfvXdQEzyDXkDrmzIk4dIhl9wsIsDE310JdTkaOZK4BsUZOznvUHMuXdx8zpg1qZ+eQ2NjP8oAR\/IBcQ7rw8Ylbvz4e9cqVPSE6QF1+hg5tpaoqPPNaWPihZLgB+PlZdeyoDiI3t8DZOfTduwLsJ3gDuYYUcfDgfTe3i6inTevo7m6EuqJwg5RiUxtIo0by\/v6WMPYBoqNf0swo\/yDXkBauXHnBnTQZOlRny5Y+qCtB0UEKimL07NmMmxndvfvOzz9fQ03wA3INqSA19a2DQzAMGUB36qRexuG08gCxRr16wk9OZmZ+acYxcWL7RYu6ol669AqEOagJHkCuIRU4Op5LSnoNQllZHixDXV0R+ytH\/fpyXww3AG\/vXtxlzs4heFKW4AHkGvxnypTzQUFPUAcG2lRLfdYy1l+L4udnpaenCgKiEmfnUEptzQ\/INXjO8uXXfH0TUW\/YYMY9\/KsI9\/95\/vxtcHAy6pI0bqzo72+JOioqlWZG+QG5Bp\/ZuTPJ05Pt0XRz6zJzpiHqqqOhoThoEDsde+TIIxQiMTfX+v13C9R\/\/pm0alUMakJyIdfgLSEhKRMnhqAeO7bt6tW9UVcX5ZnaQCZP1p83j6UgdXePKntQQ4g\/5Br85P79TG6dtWfPZlVcNBEJN7Vx796bS5dSUZfGmjWmQ4booHZxCbl9Wzg1S0go5Bo8pLDwA1hGcnI2aE1NpYAAazyNWr3o6Cj36cN2o38x3AD8\/Kx0dVVApKXl0QSHREOuwUMcHIIjIljS8MBAG1zFqAm4QUp5Bh1aWkrczGh4+LMpU86jJiQOcg2+4e4exR02\/eMPy379WqCuCTjXiI9\/FRf3CnUZWFlpb97M9qT6+ib6+FxHTUgW5Bq8YsuWm9wihaeniYtLB9Q1RIcOat26ic7uVRqurh1nzuyE2s3t0smTrDQkIUGQa\/CH48cfTZ9+AbWTU3svLxPUNUo5t3sVZcMG8\/79WQTk4hLy4AFLXExICuQaPAHGCNyiibW1Nnd4rKbhBimRkan37r1B\/UX8\/KxatBCmAnr27C3NjEoc5Bp8IDMz39HxXEbGO9Dt2jUqf0a\/qgMjFK5+SvnDDR2dhn5+bGY0JOQpFyIREgG5Bh9wcAjGrFn16skGBNg0b85Se9YO5d\/uVZSBA1uuX2+GesuWmxs3slxBhPhDriHxzJwZzt2uAQHWvXs3Q11rcFMbwcFPYcSBujzMmmU4bZrBRx1x9myp51kIsYJcQ7JZvTp206YbqH\/9tdf48ayaUW3St68WjDhQVyjcALZs6Wtp2Ry1i0sI7kwjxBxyDQlm3757CxZEop4xo9OCBSwLTu1TiZUUDj8\/q2bNlEA8fpxNM6MSAbmGpBIZmcotmgwf3nrTJnPUdQI3tXHs2MPMzIoVXmvbVoWbGQ0KejJ7dgRqQmwh15BIUlJywDLy8wtBd+miERhYrsppNcegQToaGiw\/WCXCjWHDWv32GzuSu2FD\/NatN1ET4gm5hkQClnHnjnBzhKqqQkCATaNGwlIDdQs3SKno1AYyf36XSZPYTlZX1wuhoSmoCTGEXEPycHEJDQ5+ihoso3NnDdR1S9H118LCymT68\/W1NDPTRO3iEpKaWoHlGKI2IdeQMJYtu+rvfwv1\/\/5nPnx4K9R1DsQaiopyIHJy3ldikIL4+VlhJuR79zJpZlRsIdeQJMAvvLyuol64sOv06ewYmDggLy9bue1eRenQQZWbGT1x4tH8+ZdQE2IFuYbEEBycDGMT1OPHt1u1qhdq8aEq668cdna6K1b0RL1mzfU\/\/mCpkgnxgVxDMrhz542DwznUpqaatXnSpPxwscbLl7lcLYVKsHix0YQJeqgnTz7PZRgixARyDQkgP7\/Q0TH42bMc0NraDQICrOXk\/iujKmaoqioMHcrmWaoSbgB+flY9ejRF7eISkp6eh5oQB8g1JACwjMhIls4Xooy2bRuhFkOqPrWBgC36+VkqK8uDvnXrNTc0I8QBcg1xZ8GCyH377qHescPKykobtXjCTW08fJgVHl6lkYWhoQY3M3ro0IPFi6NQE3UOuYZYs2nTjdWrY1F7eXWfOLE9arEFBlBWVuw0WhXDDWDs2LbwXaP29o7ZufM2aqJuIdcQX+CumzkzHPWkSR08PbuhFnOqZSWFA77rr79mB3ldXEIuX36BmqhDyDXElNjYNAcHdjitf\/8Wvr4sVhd\/ONdISEiPiRHmCqoi\/v5WWNG6oOADGEdWVsVOxxHVDrmGOJKR8c7R8RweHtXTU62Jymk1B3zB3PJH1QcpQP36cn5+lrjxND4+nWZG6xxyDXHE0TE4Pl5YXgRulcBAG01NYfoJCaJ6BymAsXETbmZ0\/\/57XMlrok4g1xA7pk+\/cPw4q9IeEGDNPbclCG799cqVF9VV0vXbb79asoTN7Cxffm3PHlYpiqh9yDXEi1WrYrZsYdklVq\/ubW\/fFrVk0bVr444d1VFXV7gBLF\/efcyYNqhdXEKqZdKEqATkGmIEPD\/d3dmuhFmzDN3cuqCWRKpru1cx\/P2t0I9ycwvAOPLyCrCfqE3INcSFiIjnjh8z+tna6nJZ\/yUUbmojNDSlGnMIq6jI+\/tbysoKN9RHR6fRzGidQK4hFsB9BZaByWyMjBoHBNRxRr+qY2amqaurgrp6w42ePZtxM6O7d99ZvvwaaqLWINcQCxwcgu\/fF5Y71dBQDAy0wfMXkk61r6RwTJzYftEiI9SenlcOHLiPmqgdyDXqnokTQ7g0mQEBNtw8oqTDTW2cPPkYq0lWI97ePbn\/v4tLyI0b6aiJWoBco46BR+XOnUmot27tO2SIDmoe0L9\/i6ZN66Ou3kEK4u9vpaenCiIzM9\/FJbRyyUqJSkCuUZf4+iZyw\/LFi42mTmXlC3lDzQ1SABjN+fuzCY6oqFSaGa01yDXqjKCgJ1OmnEf97bdfcWnv+ETR9Ves3lK9mJtr\/f67Beo\/\/0zy9o5BTdQo5Bp1Q1LSa0dHltGvTx8tyTppUn4g1mjQoB6IvLyCmgg3gMmT9efNYxtbFi+OOny4Rv4VoijkGnVAbm6Bg0Mw1vvQ0VEGy5ARx4R+1YCsrEwNbfcqypo1vbn5IBeXEHBk1EQNQa5RBzg6Bl+5wvJEBARYt26tjJqX1OjUBoe\/vxVuD3n1Ko8mOGoaco3axs3t4sGDbH\/Brl3WFhYs8xVf4WKN9PS8U6ceo652NDWVuJnR8PBn3IQRUROQa9Qq69fH+\/jEof755x6Ojix\/P49RVpavnXDDykp78+Y+qH19E318rqMmqh1yjdrj0KEHc+ZEoJ4yxcDDwxg176mFqQ3E1bXjzJmGqN3cLp04UVOhjZRDrlFLXLv2kjucNmhQy+3b+6KWBrhY48mT7PPna7ZY\/IYNZv37t0Dt4hKC+\/SJ6oVcozZIS8sFy8jOfg9aX1+Nr+uspaGpqdSvH7uTazrcAPz9rVq0aAji+fO3NDNaE5Br1AaOjucSEjJAKCnVA8to0oTts5YeuHCjFlyjZcuG3MxoSMjT6dMvoCaqC3KNGmfq1DBu7SAw0MbEpAlqqYJzjVu3Xl+9+hJ1zTFgQEsuQcmWLTc3boxHTVQL5Bo1y4oV0du3J6Beu9Z01Chd1NJG27YqvXs3Q10L4QYwa5bhtGkdP+qIs2eTURNVh1yjBgkMvO3hcRn13Lmd58zpjFo6qZ3116Js2dLH0pJth3F2DnnypNpSikk55Bo1RVjYM+6kyejRbXx8TFFLLdz6a3T0y8RE4SxPLeDvb9WsmbAuBFgGzYxWF+QaNcKjR1ncOquJSRMeZPSrOoaGGp07a6CutXCjTRsVbmY0KOjJ7NlsvwxRFcg1agSwDDAOEE2b1g8IsFFSEp77JGptu1dRhg5ttXp1b9QbNsRv3coKRxCVhlyj+oGBCQxPUINl6OuroSa4qY0LF56hq9YObm5dJk3SR+3qeoHLt0hUDnKNasbD43Jg4G3U27dbDBzYEjUB9OrVrF27RqhrM9wAfH0tzMw0UTs7h2CaAqJykGtUJ9u3J6xYEY16yRLjKVPY843gqP2VFA5\/fyt1dUUQ9+9nOjvTzGjlIdeoNk6dejx1ahjq777TW768B2qiKNzUxpkzT9LSclHXDu3bq3IzoydOPJo\/\/xJqoqKQa1QPCQkZ3DqrhUXznTtp0UQ01tbaWloNUNfyIAWwtdVduZLlZ12z5voffySiJioEuUY1kJ393tExGJ+curoqgYHSdTitotThIAVwdzeaMKE96smTz0dEPEdNlB9yjWoALOPaNeHZChkZYUa\/li2FBy6J0ii6\/pqbWwflnWGc0qNHU9TOziHp6XmoiXJCrlFV5syJOHToAeqAABtzcy3URGkMH95KRUVYkvL9+w91Em7Iysr4+1thWcykpNc0M1pRyDWqhI9P3Pr17DwlDJi\/\/fYr1ETZ1Ml2r6J06qTOzYwePvxg8eIo1ER5INeoPAcP3ndzu4h62rSOMGBGTXyRup3aQOzt2\/70U3fU3t4xXN1M4ouQa1SSK1decCdNhgzR2bKF5bklygPEGnJywhowb968O378EXbWPkuXdvvmGxYewjjl8mVWboIoG3KNypCa+tbBIRhn8iDWpUWTiqKkVE8cwg0AxilGRo1BFBZ+cHYOycrKx36iDMg1KoOj4zks8KWsLB8QYIM7DokKUedTG4iiopy\/vxX8CfrGjXSaGS0P5BoVZsqU80FBT1CDZeCTiqgoXKyRkpJz7txT1HUC\/Aa5mdEDB+55el5BTZQGuUbFWL78mq8v21C4YYOZrS376BMVpUmT+tzRvroNN4Bvvvlq6dJuqOFXvGfPHdSESMg1KsDOnUncg8jNrQtXsIeoHFy4UeeuAfz0U3d7+7aoYZwSE5OGmigJuUZ5CQ1NmTgxBPXYsW25RC9EpeFc486dN1FRqajrED8\/y06d1EHk5RU4O4fAn9hPFINco1zcv5\/p4MDWWXv2bBYgZWWQaojWrZW5rbTiEG6oqMj7+1vJygqXhCHWoJnR0iDX+DKFhR8cHYOTk4UZrjU1lQICrBUU6OdWPYjJ+itHjx5NuZnRPXvuLF9+DTVRFPr0fxmwDO5kZGCgjZ6eKmqi6nDrr9evv7pxIx113TJhQntum6+n55UDB+6hJjjINb6Au3vUnj13Uf\/xhyVXr5SoFgwM1LilazEJN4CVK3va2rJ6VzBOERM7Ex\/INcpiy5abq1bFoPb0NHFx6YCaqEbEZLtXMfz8LNu3FwaVWVn5zs4hMErFfgIg1yiV48cfcYWFnZzae3mZoCaqF25q4+LF5\/fvZ6KuczQ0FP39rVBfvvyCZkaLQq4hmvj4V9zhNGtrbe4DRFQ73bs3xac6IFbhhpmZpq+vBeqdO5O8vVnUSZBriCAzM9\/R8VxGxjvQbds2onXWmkbcVlI4Jk3Sd3Prgnrx4qjDh1n6JSmHXEMEDg7BsbHCrYH16skGBlpra7PsuEQNwU1t\/PtvsrhVKlm9uvfQoa1QwzgFTy1KOeQaxZk5M5yLkwMCrHv3ZqV3iJrDwqJ5ixYs2apYDVIQPz\/LNm1UQKSn5zk7s\/3B0gy5xmesXh27adMN1KtW9Ro\/vh1qoqYR20EKoKmpxE1sRUQ8nzz5PGqphVzjE\/v23VuwIBL1jBmdFi7sipqoBYquv2Zni11qHEvL5ly6tj\/+SFyz5jpq6YRcgxEZmcotmgwf3nrTJnPURO0wZIiOmpowudGHD+IYbgDTpnWcNYudcp4\/\/9KJE3WWuLDOIdcQ8uxZDlhGfn4h6C5dNAICqHJaHSCe272Ksn692YABLCeIs3Oo+OwuqWXINYQ4OATfufMGhKqqQkCADfyJ\/URtMmIEW6o4cuQRRBziiZ+fJVbJSk19K7Uzo+QaAheX0OBgloEOLKNzZw3URC0DsQYeJs7OzhfbcAMsw8+PzYyGhqa4urLdw1KFtLuGl9dVf\/9bqP\/3P\/Phw9njjqh9FBTkxHklhWPAgBYbNpih3rr15oYNrIyW9CDVrgF+sWzZVdQLF3adPr0TaqKuEP+pDWTmTENX146oZ8+O4LJPSwnS6xowKoGxCerx49utWtULNVGHcLFGaurbs2eTUYsnmzf3sbLSRu3sHPrkiTBpk5Qgpa5x584bbp3V1FSTyiCJCerqikOG6KAW83AD8POz1NRUApGcnC1VM6PS6Br5+YVgGSkpOaC1tRsEBFhj9UBCHODCDfF3jTZtVLiZUYiMZs2KQM17pNE1wDIiI1lG7IAAm7ZtG6EmxAHONe7fz7x4kSVeFFuGDtVZs4Zlq9+4MX7Llpuo+Y3UucaCBZH79rFMkDt2WFlbs6EpISa0bNnQwqI5avEPN4B587pMnqyPevr0CyEhdVlHrnaQLtfYtOnG6tWxqL28uk+c2B41IVZIxPprUX7\/3YIr0eDsHPr8uXgd9q92pMg14ME1c2Y46kmTOnh6sgp9hLjBrb\/euJF+\/bpk1EDz87PU0BCeo3nwIJP3M6PS4hqxsWlcGaT+\/Vv4+rKaF4QY0r69qolJU9RHjkjGITH4mrmZ0ZMnH7u5XULNS6TCNTIy3jk6nsvMFJ6\/1tNTpYx+4s\/IkWyTrkRMbSC2tq29vXui9vG5zlUR5x9S4RqOjsHx8a9AKCrKgWXgGjshznBTG1FRqXiwUCJYtMiImyybMuV8ePgz1DyD\/64xffqF48dZlBsQYN2zJwt9CXHG2LiJgYEaagkKNwA\/P0vuM+bsHPrqVR5qPsFz11i1KoZbQl+9ure9fVvUhPgjcSspiKysjJ+flYqKPOjbt1\/zcmaUz66xd+9dd\/co1LNmGXIp6gmJgHONkJCnuJFXUujUSZ2bGQXL4z6EvIG3rhER8ZxbNLG11V2\/nh1tJiSFPn20WrVSRi1ZgxTA3r7NTz91Rw0B759\/JqHmB\/x0jeTkbEfHYKzNaWTUmDL6SSgSOkhBli7t9u23X6F2cQmNimKHGHgAP10DogzM6aihoRgYaKOsLBxkEhIHt93r+PFHb94IS+FJFn5+lsbGwor58AAD48C1fx7AQ9eYODEkNDQFdUCATceO6qgJiWPgwJaNG9dHLYnhhqKinJ+fVf36cqBv3Ejnzcwo31zD0\/PKzp1sDLllS18uWQMhoUhKdq\/SgAEyNzN68OD9pUuvoJZoeOUavr6Jy5dfQ714sdG0aQaoCcml6NTG+\/fC0hMSxzfftFu6lB16+vnna7t330EtufDHNYKCnkyZwkrpffvtVytWsL29hEQDsYaSkjDCz80tOHpUUgsX\/fRT97Fj2V4hF5fQ6OiXqCUUnrhGUtJrR8dzqPv00aKTJrxBTk5GoldSOPz8LA0NhVNseXkFYBxggtgvifDBNeAX4OAQnJoqTGqgo6McEGAtQwn9eISkT20gysryfn5WmGsyJiZNomdG+eAajo7BV668QA2W0bq1CmqCH3CxRlpa7unTElxDoEePphBxoN679+5PP7E5OIlD4l3Dze3iwYP3Ue\/cac0ljyN4Q6NGClx1K4kON4AJE9q7uxuh\/vHHK\/v3s2SUkoVku8b69fE+PnGof\/65x3ff6aEmeAYXbki6awArV\/a0tdVF7eISGh+fjlqCkGDXOHTowZw5LJf8lCn6Hh7GqAn+wbnGo0dZFy5IfNIKf3\/LDh1UQWRl5bu4hBQUiGst7FKQVNeIjn7p+LEM0qBBLbdvt0BN8JLmzRtw2eR5EG6oqytyW78uX34BxoFaUpBI10hLy3NwCM7Ofg9aX1+N1lmlAX6sv3KYmWn6+rJH3c6dt1eujEEtEUika0CUkZCQAUJJqR5YRpMm7KgCwWO49dfExAxJ3yWFTJqkz+V8+eGHKBhxoxZ\/JM81pk0LO3XqMerAQGsTkyaoCX7Trl2jnj2boeZHuAGsXt176FC2POTiEnrr1mvUYo6EucaKFdHbtiWgXrvWdNSoNqgJaYAf272K4e9v2batcIdRenqepExwSJJrBAbe8fC4jHrOnM7wQk1ICdzUxtWrLyXlsfxFmjVT4mZGIyKeT54cilqckRjXCAt7xi2ajB7dBgIN1IT00KWLBh7lAPgUblhaNt+ypQ\/qP\/64tWbNddRii2S4xqNHWZxlmJg0oYx+UgvPVlI4pk3rOGuWIer58y9xtTjEE8lwDbAMMA4QTZvWDwiwUVKqh\/2EtMG5RlhYypMn2aj5wfr1ZgMGtETt4hJ6754whaV4IgGu4eh4DoYnqMEy9PVZcR1CCjE11WzThp1O5NMgBfH3t9TRaQgiNfWtOM+MirtreHhcDgy8jXr7douBA5kZE1ILXwcpQIsWDbmZ0dDQFFfXMNTihli7xvbtCStWRKP28DCeMkUfNSHNcOuvp049Tk\/nWz3E\/v1bbNjAavds3ZqwYUM8arFCfF0DPhNTpzKv\/e47vZ9\/7oGakHL69WvRrBmr782\/cAOYOdPQ1bUj6tmzI4KCxC6liJi6RkJCBpfRz8Ki+c6dtGhCfIKX272KsnlzHysrdlrP2Tn08WPxmvcVR9fIyXnv6BiclpYLWldXhQ6nEcUoOrWRlyfBCTjLwN\/fUlNTGFIlJ2eL28yoOLqGg0PwtWvC40kyMsKMfjirTBAcEGtgPb38\/EK+hhvwvPT3ZzOjZ88mz5oVjlocEDvXmDMngjv8B1GGubkWaoIoCo9XUjiGDNFZs6Y36o0bb2zZchN1nSNerrF2bdz69WzSeOXKnlxxXYIoBu+nNpB587pMnsyWDqdPvxAS8hR13SJGrnHw4P158y6injatI5eUlSBKArEG1q\/IyHh34gTLnMBLfv\/dgou4nZ1Dnz8XVvCoW8TFNa5cecGdNIHAjDvMQxAiadiwnpSEG4C\/v6WGhiKIBw8yxaGQili4xosXbx0cgrEaVadO6oGBtGhCfBluaoP3rqGnp8rNjJ48+djN7RLqukIsXMPB4VxSkjBdgrKyfECAjbq60FYJomw410hOzg4NTUHNVyCw8vZmpYt9fK77+iairhPq3jWmTDnP7X4DyzAyaoyaIMqmWTOl\/v1boOZ9uAEsWmQ0cWJ71HDXhIfXSIWHD\/\/BGp\/D9VfVNdzd3a9fr3wSkeXLr3GuuWGDma0te3oQRHmQhvXXovj7W3LJU52dQ1+9qrZjONnZ2Xv27DE3N2\/cuLGysnKzZs2+\/fbb27dvc07h5+c3ePBg1FVyjYMHD\/7666\/v3r1j7Qqyc2eSp+cV1G5uXWbOZFlJCKKccBOit2+\/5mr98hgZGRkwDhUV4Q43+JarPjP69u1bR0fHVq1aNWrUaNGiRQ4ODqdOnbpw4cLJkyf79+9vZmamqqrauXNnY2NjV1fXlStXsr\/2XzxSGUJDQ2VlhaaTkZHBusrB\/ftv7OxO6+ruFgi2cS9b29PsbUIs0dPbi7+pffvusi6xwdT0EH5tS5deZl1858CBe\/gtcy+4oeC2gpuLXVEOnj9\/PnbsWEVFRXl5eQ8Pj1u3bhUWFrL3PpKbm\/vnn3+CVcFtrqCgAE3sr2Ss8ejRI7Al+GdAgxth5xdZtuxqmzZ7Dh168ODBZ3mKQkOfxsSksQZBVATpWX\/laNxYsX59Odb4D7ih4LaCmwtuMdZVJtu2bdPX19+\/fz+MRCCs+Pnnn9u3b4\/uUBTwlAkTJnh6eoIeNmwYNLG\/Mq7x6tWrHj16PHlSsQO8O3YkeXmxb6mr4Mlswb+2glhVgXDLSkbGO2vro2QcRCXgpjbg83PzpuRVWq4o8G2OGnUGtym0FqTBTTRRcBEEvgu3GNxoqEUCQ5JJkybBcCM9PR3GHbGxsf369WPvlcKgQYPk5OQ6derE2jBQgniDyfIB8cWIESPOnz+flSVM5An+hBHHF1FT2\/H6tXAGZK1g3xzBv9iZIWhgJXCLFQgzdDk46G3f3rdePVkFheJeBqET\/phEoqgI31Rxm8zPL4QXa5SgQQMRmUfhn4B\/iDU+R1ZWppi7A\/CTe\/tWWDVSJPLysvBijY8UFHwo44wm\/BPwD7HGR969K3z\/vmLfyNu3BaX9WuEHBT8u1vgIXAx\/hTVKAL+Ojh33wyga9L59\/ceObQsCviT4wv57XwQivxH4xksrgwwPOZG5YOHHW9rHs+jnxMjoYGys8LZZubInl7O3JAoKcvXqVexzAl9ViQdwWd+IyM8JkJNTbZ+T778Pw+x24BeHBJuxE3ASOP0pECbuV1NTSE93ws5iwC968eLFv\/76K4gmTZqAZWhrs\/P4ZQAXN2jQYNeuXfb29thTMdcAg7Czs4MhkLe39+jRo6EHHCg+\/svphsAgjY0Pov4gmIoCOSQwGiVwZQ2BYMaMTps2mbPGR0JCUiAYYY0SHDo0kCvtz7FkyeVffmF5wEqSleXSsGHxj2mvXoeiolJZ43PMzDTDw21Z4yNv3rxTVd3BGiXw9DTx8jJhjY8cPHjf3j6INUoQFjayT5\/ip\/VcXcO2bmWFo4qhpCSXkzOJNYrw1Vd77959wxqfA0\/mI0cGscZH7t3LbNduD2uUYMMGs40bbxRzje3bE7icSSW5eXOcgUHx9K5jx579b0AugpYtGz5+7MAaRVBX3wFxKGt8jpNTB39\/S9RLl175+edrILp0aXz9eqkRa2CgTcmTTStWRHNFdkqSmvpd06YsAxCHjc2xc+dEnwfp2rVxTMwY1vjI+\/cf5OV\/Z40SzJ\/f5bff2BE1jlOnHg8ZcpI1SuGcYI2V4LOwQkY4xyHk\/v1vdHVZdtWiLFy48LfffgNRv379S5cude3aFfu\/SMOGDZ89e6aiwv6fFRuhrF69GkZBp0+fBuPAnnHjxqGoFuDp8ehRVnJy8Rwk8IRUVpYv7SUnJ+K7gAdLscuKvko+QAB4bhe7jHuVkhW9rK9KUVHEVwXPumKXFX2VjJgACA2KXca9GjYUzqWXpMxvRMSTUFZWuL+utFfJJyEAncUuK\/r6b5a8OPAQLnYZ9yrp4Ah8g8Wu5F5FH+ncIAUsA\/5Xxa7kXhCe4GVF+dLnRMRvBD4MxS7jXiJDP\/h\/FLus6Au+AHZdEcr4wIv8kooh0mrhtt+yZQvqMWPGGBpWYMkyJiZGWVmZNSoUa+zevXvWrFlxcXHNmzcfPnz48ePHoROa5fznuRGKv+BPJ0EEdsIIxVowL0agg02ONm1UevVq1rt3M\/izVy\/NcvygiBqkffu\/isUa4oae3t47d4Th1caN5v\/3f59G4PzDzu7M4cPCVBJ2gph\/BMwFgB0CM2fBRBCqqgoZGcVHKDBK6NatGwxJQNerVy8lJQVGKPhWJRD1UBDFtWvXXF1dN2\/eDJYBzYgI4W0Ptqenp\/ff+19m3TqWQxW+N2PBEi\/BcBBtBL+gZcCAsOh0xv37mXv33p0z56Kp6WEFBd++fY\/Mn1\/He+8JcUZ6tntZW2vjnBEM7dsIVswVjINbCW4otAyAu9GKAs94tAzghx9+qIplAOVyjYSEBAguYESE45G8vLz0dOFktSx8+eUOA5yc2s+ezaIScIplghHgjhBrYE9h4YfGjev\/+KMJPCscHcGLPq3mvn9feOHCM\/EvY0fUIdz6a1DQk5cvhbkj+Ud+fuHMmeFz5kRwc\/YPBI3XCfrBrcRF63CLwY2GuijHjh1DoaCg8MVFky\/yZdfIz8\/\/7rvvhg0b5uzsjD05OTkocJdX+QEXjI4eY2urC0EU9rRurczlDkhJyfHyunru3FNPz25JSeOfPnX855+B7u5GNjbapY17CQKxstJu3pw9gXgZbhw\/\/sjQcP+mTTew2aePFoRXcPtgE24ouK3g5hIZaLx\/\/z4sjE1dw9\/p3LnKZdU\/lMmbN2\/MzMzs7e2Fa00fefCAZehr2rTpu3fvWG8VSEhIt7U9xW10k5Pb\/ttvsey9j1y58oIpotYR572hHFOnnscv0s6OV1uNIdb+L2kouzvgtWJFNHvvP9LT85gqBbiL8YYFunbtCnEAe6OyfCFY8PDwSE5OXrNmDdgVGAQCAxZ8t1WrVhUNN0Sir6926NAgPz9LXOUCg1qw4FLfvkciIp7jBYCJSZVGYgTvKTq1Ucb+CMni1KnHnTvv52opWVg0v3Jl1OLFn6W5U1NjkXtpvH37Kf0X3LBVv2dL\/fuFhYXe3t4bN258+PAhRDWKRRgyZAheo6OjUy2ugTg7d0hMHMcVWLtw4Zm5+eFFiyIrsqGEkF6GDWuFI18Y9vNjd\/m8eReHDDmZkJCBzeXLe4SGjjAxaYrN8gPRAVP\/Uf65yNIo9Z4\/ceLEypUrz5w587IEEyZMwGs0NDSq\/hUURUNDcft2i2PHBnfqpI49v\/4aq6\/\/F5e1nCDKgDcrKWfOPDE03L92bRw2zc21IiPtliwxxmZFUVL6tFENHKScm7nLQLRrREdHjxs37p9\/\/hkwYEDjEnDWVa9ejUxSwkMjPn7sDz+wn1FS0utRo844O4eIQ55VQpzhXEOiYw0Yng8adOLGDXamxsvL5MKFkVxajUrQoEEDAwMD1Hl5ebm5VV1jEuEamZmZgwcPXrRokY2N6Pyd3L8qJydiW1t18csvPaKiRllbs33yO3YkGRjs275d9N5qggBGjmyNG0AzM\/Ml0Tj+\/Te5a9cDq1ezTQa9ezeLiLD19Cx+LqGiwNOdS6hz7969K1dYUpsvkpWVZW9vf\/\/+fdb+SHHXeP\/+vZaWlqur648\/\/si6SoCbNYAq7hX5Ij16NA0OHr5unRluH05Pz5s6NWzYsFNxca\/wAoIoCnxOJPfgvLt7ZP\/+x69fZ59tT89uFy\/amZpqYrOKLF26FJ\/xEGvMnj27oKDUw4occA2EDp6enm3atGFdHynuGr169YKr58+fz9qiuHPnDooKbWWvNLNnGyYkjBs\/vh02T5x41KXLATytRBDFkMRBSkjI027d\/l61iu3dhIdlWNhIL6\/u2KwW1NXVL1++jGsXsbGxQ4cOzc4uq+J0SkpKz549dXV1RW7u+OQaL1++7Nat27Vr16ytrYueVClGXFzcw4fs95GUVNZJ\/mpEV1dl795+u3fbtGrFvrClS6\/06PEPRHTYJAhkxIhWKJ49exscLBaVysrmhx8uW1sfi44WFjYGPDyMYWBe8uhz1TEyMgoODlZQEC4znTlzxtjYeN26dSWDjqdPn06cOLFv377Lli1bsGCB6OWOwsLC\/fv3u7i4NGvGplsgkpk+ffqFCxeE+zk+8uLFC7jM2dm5fv36eBkABjZp0qRdu3bdvVtLm3+ys\/Nnzvxsxws0oZO9TdQMErHLi2PQoOP41c6ZE8G6xJLz55927\/43fqnwMjE5GBr6lL1XYzx79szDw4MLCxQVFcFNxv1H\/\/79NTU1VVVVwSyePHnC\/oIoZMBsTp06hf+Lonz11Vft23\/a0P7o0aMy8mhYWFiUEZ5UOxBiuLtHcdllIQDx9u71zTdsCENUO+J\/5rUo\/\/vfjf\/7P2EF9rZtG929+zV2ihtcThDE3d1o5UpW7qQWePv27blz54KCgtLS0nCrKMQgGhoaQ4YMsbKyAith15VChXN5iQ\/wQ4cfPWsIBOPHt1u1qmfr1iKSkRBVRLJc4\/HjrFatdqO+dMmuV6\/Kr1nWBOHhz+fNu8jlfzIyauzjY8qtFUoExWdDJYglS7pdv24\/dCg77ffXX3f19fdxe28JqUVHR5mbFxC37V7Lll3t0+cwZxkLF3aNjh4jWZYBSLBrAJ07axw\/PmTbtr5qasKYKje3YPbsCBubY5cv8780BlEGYrj+eulSqpnZYS7hNnx0g4KGrVrVC5uShWS7BvL99waJieO4tALnzj3t2fOfJUtKTQZJ8B5u\/TUu7pU47O756adrpqaHLl5kpzHd3LpAmMyVm5Q4+OAagKamkr+\/1T\/\/DGzfnqXz+eWX6M6d9x8\/\/gibhFShr6\/WrRvbgli34QaEvX37HvnxRzYB17Gj+unTQ1evLp5eWLLgiWsgdna6EHQsWMAyL8fHpw8ffur7789XYzlMQlIQh+1e8OiCsPfCBVbGec6czvHxYwcOFNbxkGh45RqAjIzMr7\/2Cg+35ebDfv890cBgn78\/S6pOSAmca1y6lHrvnug6DzXHtWsvrayOcsNkiH1OnBiydq0pP\/Jm8801EDMzzbCwkb\/91htrBaSmvnVxCbWzO5OYyFIVELzHxKRJhw6sJksthxve3jEmJn+HhqZgc+ZMw7i4sUOGFE\/EL7nw0zWQ+fO7JCSMGz2anb05fPgBBB2rVsVgk+A9XLhRa+uvMTFpNjbHFi+OwqaenurRo4M3bDArWfNNouGzawDwazt4cMCff1pxqWjd3aPMzA6fP8+eAwSPGTmSnUkJDn5aC8lZfvst1tj4IFeWbcaMTvHx9sOHs6+BT\/DcNZAJE9pD0DFtWkdsXrz43NLyqJvbpTLqpxI8oG\/f5i1bNkRdo+FGXNyrAQOOL1wYic22bRsdOjRo0yZzkXXVeIBUuAagqqqwZUufkyeHdO3aGHt8fK7r6+87eLB4xhGCT9TCdq81a6536XLg7Fl2\/BoeThBi2Nqyf5eXSItrIIMH68TEjPH07IbNu3ff2NsHTZhw7ulTVuGF4BlF118zM\/NRVxc3b6YPHnyCqwqoq6vy998D4OFUSlVg\/iBdroF4eXW\/enX0gAFsZ96uXbf19f\/asuUmNgk+Ac8JDQ12grN6w4116+IMDfefPv0Em1Om6MfF2Y8aVTztFS+RRtcAunVrcubMMBh5Yll2eApNn34BnhsxMWl4AVEUbpuc+B94LUm1r6QkJmYMHXpy7tyLeFxcR0d5\/\/7+27dbKCuLLvHPP6TUNZAZMzolJo779tuvsAnPDWPjg9z5IoIjLU2CK6cWHaRwFVIrzcaN8Z07Hzh58jE2XVw6QIhhby95ZloVpNo1gJYtGwYG2uzb179NG5aYY9myq926\/X3mDIs8CUln5MjWiorCtYycnPdVCTdu3349YsSpWbMicOlNW7vB3r39\/vjDkitaLD1Iu2sgEHhD0DFnDkusGh39ctCgEzNmXKj2+TMJpUULtn4picjLyxYNN1BUlM2bb0CIcewYOwzp5NQ+Pn4slwFb2iDXYCgoyK1da3ru3Agu9dPmzTcNDPYFBNzGpjTToIFkLwpUZf313r03dnZnZswIz8sTJubV1FSC4NTf30pd\/Qtp8ngMucZnWFk1v3TJbsUKlsExOTn7u+\/OjR179u7d2j7+RFQjXKzx4kVuUFAFxp5bt940NDxw+DArGPrdd3oQYnATYVILuYYIFi82unFjLPdRO3DgHgQdPj6s6CYhcaipKQwdynZ2lzPcePgwc8yYIFfXC2\/fCsvTN21af9cu6507rZs0+ZSjX2oh1xBNx47qR44M8vW1wE9Jfn6hm9tFS8ujly6xdEyEZMHVSSnPhOjvvydCiPH332zfMAQXcXFjHR31sEmQa5TFpEn6CQnj4E9snj+fYmp6mDvRKIXs33+PKUmDm9p4+DArIqJU63\/8OBsGpN9\/fz4rSzgRrqGhuGOHVWCgjabmp7LsBLnGF4BYAyIOiDsg+sAeb+8YGLDU2uFrolrQ1m5oadkcdWm\/Oz+\/W50774cBKTbHj28HIcbEiZ+qAhEIuUa5GDGi9Y0bYxcvNsJmYmKGre3pSZNCX7yQ4O1P0kYZKylPn+Z8\/fW\/8At9\/fodNFVVFf74w3Lv3n7a2izBAlEUco0KsGJFz0uX7Kys2CMLHk0GBn\/5+iZikxBzmjVjo4ybN9MdHYP\/\/JNVKd6xI8nQcP9ff93F5tixbePjx7q4dMAmURIJrr1Wh6xbF7doUdS7d6yy7vDhrby9e3XqxIYw\/EOyaq+VJCPj3dy5EeAOrP0RHR3l9u1VuRrjysryPj6mU6awaSyiNCjWqAxz5nROTBzH3T\/Hjj2Ch9WKFdHYJMQNK6ujJS0DePw4i7OM0aPbQIhBllEeyDUqSZs2KvDgDQiw4bJFeXhc7tXrEJcAjhAfYmOFR5lbC9LOCdZ8EEyF133BD10FbLuXjIxg69a+Bw8OaN269iqcSzTkGlXCweErCDpmzOiEzaioVBubY3PmRODuY0KsWCY4ZiVgEYeuIC1EsAY1jNEHDZL4GiW1CblGVWnYUH7TJvMzZ4Zxxb7Wr4\/X19\/Hza4RYoKu4CVT\/6Em+JTA7cGDTKaIckCuUT0MGNDi6tXRXl7dsQmfwq+\/\/vfbb4Nh5Iw9RF1hbX0MRYjgs2WRGMGnAiVGRszxifJArlGdeHp2i4kZM3gw+zju2XMHgo5Nm25gk6gTuAlOL8FwZ8HEUEF7eP0pMB0lcMV+W1tdNTWpy5FRFWjltUbYuvWmu3sUbhkC+vdv4e3dy8REUh9okrvyun\/\/vXnzLj55ks3aJejatXFIyAhyjQpBsUaNMG1ax4SEcRMmsM3IZ88md+\/+t6cnKyxO1AJZWfnff39+3LizaBkyMjLFMmKoqir8+KMJWUYloFijZvn77\/sQdOCDGujSRQOCDokr+SlxsQb82CHEePiQTSoNGtTSx8e0Y0f1mJi0Bw8yMzLe6eoqGxk1Ib+oHOQaNU5BwQd398jVq6+ztkAwdaoBeIcEfWQlyDVyct6DX2zblsDawipHvefN68IaRHVAI5QaR05O5rffeoeFjTQz08Qe+EwbGOzjzkEQ1cXhww86dz7AWUb\/\/i2uX7cny6h2yDVqiT59tMLDbX\/9tZfMf9XFnz3LcXIKGT36TFISG7wQVSEvr2DGjAt2dmfu3WO5GuFHHRQ0rHNnDWwS1QiNUGobsIlFiyIPHWKpKGVlZby9ey5Y0BWb4omYj1COHn04b96lO3eY\/9rYaPv4mHIFfasFPz+\/lJQU1vgcJSWladOmNWjAztTDDeXt7V1YKLrwuK6u7rhx4+TlJbveErlG3bBjR5K7e+Tz52+xaW6uBd4B8Qg2xQ2xdY337wvBLzZujGdtgWDlyp7u7iwNSnUB98itW7cyMzP\/\/fffxYsXY6eMjMyMGTMmTJjQrFmzVq1aQRP73717l5SUlJ6e7uzsfPcu2x9cr169devWmZmZwcXa2trcxZIK\/ESIOuHVq9zvvz8vEGzjXvPnXyooKGRvixN6envxK9y37y7rEgOOH3\/YocNf3E\/P0vLI1asv2Hs1Q1xcHNz\/eONAfAEBBXtDFP7+\/nilrKxsUFAQ6+UFNK9RZ6irK27b1vf48SHc2Hv16lh9\/X3\/\/HMfm0RpwAd37tyLw4adunUrA3t+\/rlHSMgI7ihQDZGTk\/P+vTBluYqKyubNm8sOGc6fh0eCkOHDh\/fv3x81PyDXqGOGDtW5ft1+yZJu2ISBwOjRQU5OIc+efTpbRRTl9OknhoYH1q1jhSZgWBcVNcrDwxibNUpERASKyZMnf3GUceyY8PwLXNavXz\/s4Q3kGmLB8uXdL18e1a9fC2z++WcSBB1FNx0QiJvbpcGDT9y8mY7Nn37qHhY2skePptisUfLz85cuXQoCRhwdO3bEztIICwt7+VJ4xFZNTW3w4MHYyRvINcSF7t2bnj07bMMGMyyP+Pr1u2nTwoYOPXn9+iu8QMo5eza5S5cDPj5ss5ypqebFi3ZLl7IYrRa4evVqVpZws2njxo2\/aAQ7duyAYRQILS2tNm3aYCdvINcQL2bONExIGPfNN6zs8MmTj7t2PbB8+TVsSi0LF0YOGHA8Lo4Z6I8\/mkRE2PbuzSry1gKFhYVr1rAsPjo6Oi1blpXFB6KM2NhY1BCeSPo6a0nINcSOVq2Ud+\/ut3dvP11dFezx9LzSvfvf8LDFplQRHPzUyOjgb7+xm7BXr2bh4bbLlplgs9ZIT0+\/f184Sy0jI7N+\/XrsLI179+7dvHkThKKi4ogRI7CTT5BriCnjx7eDoGP2bENsXr36Eh62M2eGZ2cL5\/ClhMWLo\/r1O4ZZP4ElS7pdumTHbcyvTeLi4jB8UFdX79OnD3aWxr\/\/\/pubKyyU4+joqKzMw1yktMtL3Dl37umiRZGXL7\/Apo6Osrd3z1oua177u7xCQ1Pmzbt47RrL2de9e1MfH9O+fetsF9zy5cs9PT1B1K9f\/4vzFI8ePcrOzpaVlf39999dXFxYL48g15AMfvklesmSy6whEIwb13bVql7cEKamqWXX8PC4XLRMxOLFxitW9GCNuiAvL6958+YwSKlXrx54h7m5OXtDFHfv3p06dSrcVlpaWsHBwQYGBuwNPgHfHiERxMe\/GjbsJLcVUlHRd+3a6+y9GqbW9oaGhaX06PE39z0aGx88dy6ZvVd3hIWF4c2io6Nz\/\/591lsKMCrBi42NjcFuWC+\/oHkNiaFTJ\/VjxwZv326hoSHMSZWXVzB37kVr62NRUal4gaTj6Xmlb98j3Fhs0aKu166NtrLSxmZdUVhYuGzZMtQwNtHV1UUtkrdv3966dQu1u7u7ggI\/s\/6Qa0gYU6boJySMc3Zm6bZDQp726nUIQnpsSigXLz43NT3ELTB36dL47Nlh3t69sFm3vHjx4ulTYWUsGRmZJUuWYGdpREVF4eqJnJzc0KFDsZN\/kGtIHs2aKfn5WR46NFBfXw17VqyI7tRp\/7Fjj7ApWXh5XTUzO3zpEouY5s\/vEhs7htsmW+dERkbi0VV1dfUBAwZgZ2lAoJGTIzwK4OTkxMvVE4RcQ1KxtdWFoGPRInYq\/ObN9BEjTk2Zcj4tTbjmJxFERqaamx9etuwqNg0N1c+cGfrbb72xKSaEh4e\/e\/cOAo2pU6eyrtL59ddfhcN+WVn+7SIvCrmGZOPt3TMiwtbCojk2fX0TDQz2+fmxobU48\/PP13r3PhQR8Rybc+d2josbO2CAeFVOzM\/P37RpEwhFRcUvBhqvXr3CnWCtWrUyNq6N03R1BbmGxGNqqhkaOmLNmt7y8sLf5osXuZMmhdrank5IYKfIxY0rV15YWBxZupTVeTAwUDt5coiPjyk2xYqzZ8\/iiAOMQE9PDztLY8qUKZjCS0tLS0dHwtLQVwhyDZ4wb14XGLDY27MNSEeOPOzYcZ+3dww2xYcVK6J79PgnLOwZNmfNMoQQg6tWJ1bAwIRbPdHV1W3RoqyplufPn8fEsJ+2mZkZX1dPEHIN\/tCuXaP9+wfs2mWtrd0QexYvjjI1PRQaKjrhZS0THf3S2voot9zTvr3qsWOD1683k5MT03R4x48fT0hgyQry8vJwk3hpbN68+cEDLhesbGl5Q\/kB7Q3lIZmZ+e7ukZs3C5cAkblzO69a1QuHMJWg6ntDV62KcXePYg2B4P\/+rxMMSSr99dQoKSkpy5cvv3r16q1bt7ibX0ZGBsYdJiYmCxcuNDL6lJcUhjABAQFRUVHJycLdaNgpJyfXrl07CwsLNze3siMUCYVcg7ecOfNk0aLImBh29Ktt20be3j0rd89XxTViY9PmzbsUHMwO7EJABH4xcmRrbIoh79+\/z84utS5sgwYNip58z8rKKigoYI3PgYijYcOG8Cdr8whyDZ6zbNlVLy+2tAk4OOitWtWzRQs2hCknlXaN1auvL1hwiTUEAlfXjmAZ9evLsTYhmdC8Bs9Ztszk2rUxAweyFc3AwNv6+vs2b76BzZojPv7VwIEnOMto00bln38Gbt7chyyDB5Br8B9j48anTw\/93\/\/6qKgIQ+usrPwZM8IHDToRHc3OoVc7a9fGde58ICjoCTa\/\/94gLm6snV1ZJzgICYJcQ1qYPr1jQsI4R0e26eDMmSfduv3N7cusLhISMoYMOTlv3kVstmqlfODAgG3b+jZsyMqIEDyAXEOKaNGi4a5d1vv392\/XrhH2eHldNTY+ePo0CwqqyPr18YaG+0+deozNSZP0IcQYM4ZvuXYJcg2pw96+LQQdXKX1mJi0wYNPTJ9+4c2bfOypBElJr4cPPzVnTkRhoXByHezpr7\/6+\/paNGrEt0S7BECuIY3Iy8uuWdM7NHSEqSnLwblly00Dg7927bqNzQqxadMNCDGOH2cnbp2dO8TH248bV+Mpv4i6glxDerGwaB4RYevt3RObT5\/mTJhwzt4+6M6dN9jzReDKkSNPz5wZnp+P5y8a7N7dz8\/PUk1NmDeI4Cu0X4MQJCZmuLtHHj78EJv16smClbi5CYcwDx5kenld3bPnbl6ecC+Trq6KlVXztWvN1NQUIDyZN+9ibi7b4zRhQnsfn96NG9fHJsFjyDUIhr\/\/rUWLol68eIvNvn21IBj53\/9uZGS8wx6ORo0UvvqqEZdAvFkzJfALB4cvHAkleAO5BvGJV6\/yFi2K9PVNZO2PtBakGQmE6ywhgvavBUrYiYBZgGWAcbA2IQWQaxDFOXbsEQxYbtxgFZgnCi7uEOxAnSFoYCVwixUId5rKy8v6+lrAwATfIqQHcg1CNDIy21HcF\/ygK2BH4IAYgY6xgCXd\/fDhexSEVEFrKIQISs5lEAQHuQYhAjU1ha5dG6P2EgxHgewQsFR9lpYsWSkhbdAIhRDNoUMPRo06gxpGKHaCGDVBziGBEYxQsPPcueF1XuKIqBPINYhSWbcubu5cdg6tGP7+Vk5ONA8qpZBrEGXx4EHmnDkXQ0Kevn4tnOlQVVWws9Ndtsyk1gpTE2IIuQZRLnB+VE2Nz6m3iXJCrkEQRMWgNRSCICoGuQZBEBWDXIMgiIpBrkEQRMWg2VCiVPLzS80JKCsrKydHNQqkFIo1iFLBksjKysoKRVD8j3r16snIyMCfW7duTU9Pp2ePVEGuQZRKcnJyamrq7t27WVuY9SuxoKCgsLDw3bt3+\/fvB+3q6qqhoWFra8uuIKQAcg3iC0BMgaJz584dOnTApry8vL29fV5eno2NDTSPHj3q5OT031UE\/yHXIL5AWFgYCjMzMxQcMGAZN24c6l27dpVRVJngE+QaRFnk5+eHhISgHjZsGIqi9OrVCwUMW27cqPHysYQ4QK5BlAWEDwkJCSDU1NT69euHnUW5efMmU8L6jK2YIngNuQZRFkuWLMnLywMxY8aMBg0aYGdRjh49iqJ169ZNmzZFTfAbcg2iVHJycnbt2gVCUVGRm7\/g+PDhA7x74MABbP7yyy+0g0NKINcgSuXs2bNv3gjrsEEcAWAnAH5x9+5dNze3CRMmvH\/\/XkdH5\/jx4w4ODuxtgu\/Q3lCiVGB4AhEECAMDg3nz5snKyoKJgF+EhobeuHFDTU2tQ4cOTk5O339PmcqlC3INolS0tbVTUlJkZGSMjY1hkPL27VtwjefPn2dnZ4ODgFksWrQIYhBuQwchJZBrEKK5fv16165dQVhYWEBwgZ1AQUGBh4fH2rVr370TZveCYGTx4sVkHFIFzWsQopk7dy4KOzs7FIicnJy3t\/emTZuwCQ4CgxfUhJRArkGI4NmzZ7hNQ15eHveMF2Py5MkdO3ZEvX\/\/fhjIoCakAXINQgR37txJTU0FUb9+fX19fewsCgxJYOSCGiyGXEOqINcgRODn51dQUADil19+UVRUxM5iZGRkoKBcG9IGzYYSImjQoMHbt2\/r1av36tUrFRURpU9yc3M1NTVxN4eBgcHly5cbNmyIbxG8h2INojjr168HywAxYMAAkZZRWFg4d+5ctAzAycmJLEOqINcgPgNiz\/Pnz6M2MTFBURS4YPny5TCEwebXX3+9cOFC1ISUQCMU4jMyMzO1tbWzsrJAJyUl6enpYT8AAciRI0fWrl0bGRkJTRi\/TJkyxcfHp379+ngBISWQaxBCwCbu3Lnz5MkTZ2fnly9fYqempqaWllbLli3l5OQSExMfP36MIxewFVNTU09Pzy5duuCVhFRBrkEIgVHJnj17WKMEMjIyampqYB9GRkYdOnRo3Lgxe4OQSsg1CIKoGDQbShBExSDXIAiiIggE\/w\/iH2I9gwby+AAAAABJRU5ErkJggg==\" y=\"1.50001\"><\/image> <line fill=\"none\" id=\"svg_2\" stroke=\"#0000ff\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"2.5\" x1=\"46\" x2=\"221\" y1=\"189.25\" y2=\"226.25\"><\/line> <\/g> <\/svg><\/span><\/p><p>Ta c&oacute;&nbsp;<span class=\"math-tex\">$\\overrightarrow{AS}.\\overrightarrow{BC}=\\overrightarrow{AS}.(\\overrightarrow{AC}-\\overrightarrow{AB})=\\overrightarrow{AS}.\\overrightarrow{AC}-\\overrightarrow{AS}.\\overrightarrow{AB}$<\/span><\/p><p><span class=\"math-tex\">$=AS.AC.\\cos\\widehat{SAC}-AS.AB.\\cos\\widehat{SAB}=0$<\/span>.<\/p><p>Do \u0111&oacute; s\u1ed1 \u0111o c\u1ee7a g&oacute;c gi\u1eefa hai vecto \u0111&oacute; b\u1eb1ng 90&deg;.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-01 03:56:14","option_type":"txt","len":0},{"id":"5596","post_id":"7582","mon_id":"1159285","chapter_id":"1159392","question":"<p>N\u1ebfu m\u1ed9t v\u1eadt c&oacute; kh\u1ed1i l\u01b0\u1ee3ng m (kg) th&igrave; l\u1ef1c h\u1ea5p d\u1eabn&nbsp;<span class=\"math-tex\">$\\overrightarrow{P}$<\/span>&nbsp;c\u1ee7a Tr&aacute;i \u0110\u1ea5t t&aacute;c d\u1ee5ng l&ecirc;n v\u1eadt \u0111\u01b0\u1ee3c&nbsp;x&aacute;c \u0111\u1ecbnh theo c&ocirc;ng th\u1ee9c&nbsp;<span class=\"math-tex\">$\\overrightarrow{P}=m.\\overrightarrow{g}$<\/span>,&nbsp;trong \u0111&oacute;&nbsp;<span class=\"math-tex\">$\\overrightarrow{g}$<\/span>&nbsp;l&agrave; gia t\u1ed1c r\u01a1i t\u1ef1 do c&oacute; \u0111\u1ed9 l\u1edbn 9,8 m\/s&sup2;. T&iacute;nh \u0111\u1ed9 l\u1edbn&nbsp;c\u1ee7a l\u1ef1c h\u1ea5p d\u1eabn c\u1ee7a Tr&aacute;i \u0110\u1ea5t t&aacute;c d\u1ee5ng l&ecirc;n m\u1ed9t qu\u1ea3 t&aacute;o c&oacute; kh\u1ed1i l\u01b0\u1ee3ng 102 gam.<\/p><p><span class=\"svgedit\"><svg height=\"270\" width=\"200\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"272\" id=\"canvas_background\" width=\"202\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><ellipse cx=\"150.5\" cy=\"102.75\" fill=\"#ff0000\" id=\"svg_2\" rx=\"23.5\" ry=\"48.5\" stroke=\"#ff0000\" stroke-width=\"1.5\"><\/ellipse> <path d=\"m131.26883,9.12123c-26.41757,4.35404 -35.19158,24.15744 -35.53394,35.48079c14.5225,0.94064 23.62295,-6.40635 27.32523,-10.70339c6.059,-6.09993 7.52399,-14.68687 8.20872,-24.77741zm3.24845,39.1151c-19.10059,0 -29.76953,6.98357 -35.01642,7.06195c-6.04308,-0.42044 -23.62295,-6.74841 -33.87787,-6.84817c-35.90815,0.9549 -46.179,35.87986 -45.73313,50.89452c2.92202,57.4719 42.11047,72.31555 48.51184,73.70513c5.14339,0.90501 22.46051,-7.09046 35.19158,-6.7199c13.90943,1.29695 23.63887,6.44911 29.2122,6.09281c7.07813,-0.44182 30.11985,-17.10261 37.07059,-42.80641c-13.99701,-10.59649 -22.64363,-20.20959 -23.41594,-29.31673c-0.36625,-4.12601 6.56856,-27.43544 17.61172,-33.98432c1.59238,-8.05248 -14.80913,-18.27129 -27.67555,-18.04326c-0.63695,-0.02138 -1.25798,-0.03563 -1.87901,-0.03563z\" fill=\"#ff0000\" id=\"svg_1\" stroke=\"#ff0000\" stroke-width=\"1.5\"><\/path> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_3\" stroke=\"#000000\" stroke-linecap=\"null\" stroke-linejoin=\"null\" stroke-width=\"1.5\" x1=\"97.5\" x2=\"98\" y1=\"106.25\" y2=\"255.25\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_4\" stroke=\"#000000\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(90 98.00781249999999,198.75000000000003) \" x=\"91\" xml:space=\"preserve\" y=\"207.25\">&gt;<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_5\" stroke=\"#000000\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(90 98.00781249999999,251.75000000000003) \" x=\"91\" xml:space=\"preserve\" y=\"260.25\">&gt;<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"&rsquo;Times New Roman&rsquo;, Times, serif\" font-size=\"24\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_6\" stroke=\"#000000\" stroke-width=\"0\" text-anchor=\"start\" x=\"106.5\" xml:space=\"preserve\" y=\"209.25\">g<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"&rsquo;Times New Roman&rsquo;, Times, serif\" font-size=\"24\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_7\" stroke=\"#000000\" stroke-width=\"0\" text-anchor=\"start\" x=\"105.5\" xml:space=\"preserve\" y=\"261.25\">P<\/text> <g id=\"svg_10\"> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_8\" stroke=\"#000000\" stroke-linecap=\"null\" stroke-linejoin=\"null\" stroke-width=\"1.5\" x1=\"106.5\" x2=\"124\" y1=\"240.25\" y2=\"240.25\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"&rsquo;Times New Roman&rsquo;, Times, serif\" font-size=\"24\" font-weight=\"bold\" id=\"svg_9\" stroke=\"#000000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"114.5\" xml:space=\"preserve\" y=\"248.25\">&gt;<\/text> <\/g> <g id=\"svg_13\"> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_11\" stroke=\"#000000\" stroke-linecap=\"null\" stroke-linejoin=\"null\" stroke-width=\"1.5\" x1=\"104.5\" x2=\"122\" y1=\"193.25\" y2=\"193.25\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"&rsquo;Times New Roman&rsquo;, Times, serif\" font-size=\"24\" font-weight=\"bold\" id=\"svg_12\" stroke=\"#000000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"112.5\" xml:space=\"preserve\" y=\"201.25\">&gt;<\/text> <\/g> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"&rsquo;Times New Roman&rsquo;, Times, serif\" font-size=\"24\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_14\" stroke=\"#000000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"98.5\" xml:space=\"preserve\" y=\"108.25\">m<\/text> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> 0,9996 N","<strong>B.<\/strong> 0,5996 N","<strong>C.<\/strong> 0,9196 N","<strong>D.<\/strong> 0,8996 N"],"correct":"1","level":"2","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong> 0,9996 N.<\/span><\/p><p>\u0110\u1ed9 l\u1edbn c\u1ee7a l\u1ef1c h\u1ea5p d\u1eabn c\u1ee7a Tr&aacute;i \u0110\u1ea5t t&aacute;c d\u1ee5ng l&ecirc;n qu\u1ea3 t&aacute;o: P = m.g = 0,102.9,8 = 0,9996 N.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-01 04:03:30","option_type":"txt","len":1}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.