{"common":{"save":0,"post_id":"7584","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5611","post_id":"7584","mon_id":"1159285","chapter_id":"1159392","question":"<p>Cho t\u1ee9 di\u1ec7n ABCD có G là tr\u1ecdng tâm tam giác BCD. \u0110\u1eb7t <span class=\"math-tex\">$\\overrightarrow{x}=\\overrightarrow{AB}, \\overrightarrow{y}=\\overrightarrow{AC},\\overrightarrow{z}=\\overrightarrow{AD}$<\/span>. Kh\u1eb3ng \u0111\u1ecbnh nào sau \u0111ây \u0111úng?<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\overrightarrow{AG}=\\dfrac{2}{3}(\\overrightarrow{x}+\\overrightarrow{y}+\\overrightarrow{z})$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\overrightarrow{AG}=-\\dfrac{2}{3}(\\overrightarrow{x}+\\overrightarrow{y}+\\overrightarrow{z})$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\overrightarrow{AG}=\\dfrac{1}{3}(\\overrightarrow{x}+\\overrightarrow{y}+\\overrightarrow{z})$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\overrightarrow{AG}=-\\dfrac{1}{3}(\\overrightarrow{x}+\\overrightarrow{y}+\\overrightarrow{z})$<\/span>"],"correct":"3","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>C.<\/strong> <span class=\"math-tex\">$\\overrightarrow{AG}=\\dfrac{1}{3}(\\overrightarrow{x}+\\overrightarrow{y}+\\overrightarrow{z})$<\/span>.<\/span><\/p><p><span class=\"svgedit\"><svg height=\"250\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g><title><\/title><rect fill=\"#fff\" height=\"252\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g><title><\/title><image height=\"215\" id=\"svg_1\" stroke=\"null\" width=\"311.00001\" x=\"3.99999\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWYAAADuCAIAAACF0DpAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACM+SURBVHhe7d15XE35GwdwtJCyN7KlLJE1O40le5NBtmSsiYgUJltEIrJHtiwZ2ZsoWUJCytKELBFNSPalEf2QQeb3dZ\/HdZW4dbezPO8\/5tX3Pt\/M7dxzP53z9D33FPqPEELkRpFBCMkHiowfe\/DgAX5FiOhRZPzAzz\/\/XKJEiXnz5uGYEHGjyPiePXv2FPqsVq1a27ZtwwIhYkWR8T09e\/ZkYWFkZNS2bVsIji5dusTGxmKZEPGhyMjTzZs3WUawg4vExEQ2DAwMrFq1KgTHyJEj7969C9MIERWKjDzNnDmTpcOyZctw\/N9\/Hz58mDVrFqSGtrb2nDlzsECIaFBk5AmOKf755x8cf3br1q1hw4ZBcNSoUSMoKAgLhIgARca3QeOTRQOOczl+\/Hj79u0hODp27BgdHY0FQgSNIuPboPF57NgxHOfhjz\/+qFatGgTH8OHDU1NTsUCIQFFkfAM0Pi0sLHD8I97e3kWKFGHfUrhw4dmzZ3\/8+BELhAgORcY3yDY+27Zt26dPH3j8O+7cuePo6PjpYKNQIVNT002bNmGBEGGhyPgGExMT9s6HxmeZMmXq1q0Lj\/\/QyZMnO3XqBMFhZWX1w\/MaQniHIiMnaHwOHToUhvmKDLBly5aaNWtCcLB\/h53mYIEQ\/qPIyClH47MAkQHmzp2ro6MDwcHOdN6\/f48FQviMIuMruRufBY4M5t69e05OTpAaxsbGGzduxAIhvEWR8RVY3Cm74lORyACnTp3q2rUrBEebNm0iIyOxQAgPUWR8RbbxCRSPDLB9+\/batWtDcAwaNCg5ORkLhPAKRcYXORqfQFmRAebPn1+sWDEIjunTp799+xYLhPAERcYX31zxGRoaGhERgQNlePjw4ejRoyE1KlWqtG7dOiwQwgcUGSi\/Kz4VdPbsWRsbGwgOS0vLw4cPY4EQbqPIQLkbn2qwa9cudtYDwTFgwICkpCQsEMJVFBkIGp\/p6ek4VqOFCxfq6+tDcEydOvX169dYIIR7KDI++WbjU50eP348duxYSI0KFSqsWbMGC4RwDEXGJ3Je6q5q8fHxv\/76KwRHixYtDh48iAVCOIMi49OnbLG3aF6Nz5kzZy5evBgHahESEtKgQQMIDjs7u6tXr2KBEA6gyMDG59KlS3H8NeWuy5DfkiVLSpYsCcExadKkzMxMLBCiURQZP2h8aioymGfPnrm6ukJq\/PTTTytXrsQCIZoj9sj4YeNTg5EBzp8\/D60WplmzZvv27cMCIZog9siwtbVlb8XvND41HhkgNDTUwsICgqNv376XL1\/GAiHqJerI+H7jE3AkMoCfnx97PhAcEydOfPHiBRYIURdRR8b3G5+AU5HBPH\/+fMKECZAaZcuWXb58ORYIUQtRR4Y8Kz65Fhng4sWLvXv3huBo3LhxWFgYFghRMfFGhpwrPt3c3GbOnIkDjtm7d2+TJk0gOHr16pWQkIAFQlRGvJHxw8YnX\/j7+5crVw6CY\/z48bnvCEmIEok0MqDx2bBhQxzz3MuXL93d3SE1SpUq9f3uDCGKEGlkyNP45J0rV67069cPgoOl4e7du7FAiPKINDI0eKm7qu3fv7958+YQHD169Dh37hwWCFEGMUZGaGgoeztp8FJ3NVi1alX58uUhOMaNG\/f06VMsEKIYMUYGND6joqJw\/F3Hjh07deoUDnjl1atXU6ZMgdQwMDBQ8\/W4RKhEFxn5bXxyc12G\/K5du2Zvbw\/BUa9eveDgYCwQUiCii4z8Nj75HhkgIiKiVatWEBzdunWLi4vDAiH5JLrIMDU1ZW8b+RufwogMsHbt2ooVK0JwjBkz5tGjR1ggRG7iigxofA4ZMgTHchBSZDBZWVnTpk2D1NDT01uwYAEWCJGPuCIjX41PILDIADdu3Bg4cCAEh7m5+c6dO7FAyI+IKDIKtuJTkJEBjhw50rp1awgOa2vr06dPY4GQvIkoMgq24lPAkQHWr19fpUoVCI5Ro0bdv38fC4R8i4giI7+NT8COSjp37owDgfr3339nzJgBqVG0aNF58+ZhgZBcxBIZBWh8ik1KSsrgwYMhOMzMzLZt24YFQmSIJTIK0PgUJ7aJ2rVrB8HBDq9iY2OxQIiEKCJDYJe6q0FgYCBcuceMGDEiLS0NC0T0RBEZXl5ebNenT5HIlw8fPkDDmNHW1p4zZw4WiLiJIjKg8fns2TMcE7mxA7Rhw4ZBcNSoUSMoKAgLRKyEHxkKNj6zs7M\/fvyIA7E6ceJE+\/btITg6dOgQHR2NBSI+wo8MBRufgl+XIb\/NmzdXr14dgsPBwSE1NRULREwEHhmKNz4pMnLw9vbW0tJiW7Vw4cJeXl7sKAwLRBwEHhnQ+FyyZAmO848iI7c7d+44Ojp+OtgoVMjU1HTTpk1YICIg8MhQvPFJkZGXkydPdurUCYLDyspKALd3IPIQcmQoZcUnRcb3bd26tWbNmhAcQ4cOvXnzJhaIQAk5MpSy4pMiQx4+Pj66uroQHJ6enu\/fv8cCERzBRsbt27fZ7qv4ik+KDDndu3fPyckJUsPY2HjDhg1YIMIi2MhQvPEJKDLy5dSpU127doXgaNOmTWRkJBaIUAg2MpS14pOdnN+5cwcHRD7bt2+vXbs2BMegQYOSk5OxQPhPmJFBl7pzga+vb7FixSA4pk+f\/vbtWywQPhNmZPTq1YvtpnSpu8Y9fPjQ2dkZUqNSpUoBAQFYILwlwMiAxmeDBg1wTDTt7NmzNjY2EByWlpaHDh3CAuEhAUaGshqfRLl27dpVt25dCI4BAwYkJSVhgfCKACODLnXnsoULF+rr60NwTJ069fXr11ggPCG0yFB649PW1tbR0REHRBmePHni4uICqWFkZLRmzRosED4QWmRA4\/Po0aM4Vhity1CR+Pj47t27Q3C0aNHiwIEDWCDcJqjIUEXjkyJDpUJCQtjrBcFhZ2eXmJiIBcJVgooMVTQ+KTLUgL1kJUuWhOCYNGlSZmYmFgj3CCoyVNH4pMhQj\/T0dFdXV0gNQ0PDlStXYoFwjHAiIywsjO1tgwcPxrGSUGSo04ULF+D6Y6Zp06b79u3DAuEM4USG0hufgCJD\/UJDQxs1agTB0adPn0uXLmGBcIBAIkN1Kz4pMjTFz8+PbXwIjokTJ2ZkZGCBaJRAIkN1Kz43bty4Y8cOHBD1ev78+YQJEyA1ypYtu3z5ciwQzRFIZFSrVo3tVbTiU5DYiUnv3r0hONgJS1hYGBaIJgghMlTU+CScEh4e3rRpUwgOW1vbhIQELBD1EkJkqKjxSTjI39\/f0NAQgsPNzS09PR0LRF14Hxl0qbvYvHz50t3dHVKjVKlSdHduNeN9ZNCl7uJ05cqVfv36QXA0bNhw9+7dWCAqxvvIgMbn06dPcaxsfn5+9GHZnHXgwIHmzZtDcHTv3v3cuXNYICrD78hQQ+OT1mVw3+rVq42MjCA4XFxcVPf7gzD8jgw1ND4pMnjh1atXU6ZMgdQwMDBYtGgRFoiy8Tgy1NP4pMjgkWvXrtnb20Nw1KtXLzg4GAtEeXgcGbNnz2Z7xuLFi3GsGhQZvBMREdGqVSsIjm7dusXFxWGBKAOPI0PVjU9AkcFTAQEBFStWhOAYM2bMo0ePsEAUw9fIUNuKT4oM\/srKyvLw8IDU0NPT8\/X1xQJRAF8jQ20rPiky+O7GjRsDBw6E4DA3N6eLDBXEy8hQ54pPdiDj6uqKA8JbR44cad26NQSHtbX16dOnsUDyiZeRoZ7GJxGe9evXV6lSBYJj1KhR9+\/fxwKRGy8jQz2NTyJI79698\/T0hNTQ1dX18fHBApEP\/yKDLnUniktJSRkyZAgEh5mZ2datW7FAfoR\/kUGXuhNliYqKateuHQRH586dY2JisEDyxrPISE1NZa9u\/fr1cUyIwgIDA01MTCA4RowYkZaWhgXyLTyLDPU3Pi9evHj16lUcEIHKzs6eNWsWpIaWltacOXOwQHLhWWSov\/FJ6zLE4\/bt2w4ODhAc1atX37x5MxaIDD5FhkYanxQZYnPixIkOHTpAcLAv2BALRIJPkQEfMx0ZGYljtaDIECd2iMEONCA42KEHOwDBgujxJjI01fikyBAzb29vLS0ttuMVLlzYy8srOzsbCyLGm8jQ1IpPigyRS0tLc3R0\/HSwUaiQiYnJpk2bsCBWvIkMTa34pMggTExMTOfOnSE42rVrFxUVhQXx4UdkQONz0KBBOFYjigwitXXrVjMzMwiOIUOGpKSkYEFM+BEZGml8gipVqjRr1gwHhPz3n4+Pj66uLgSHp6fnu3fvsCAOPIgMWvFJuOb+\/ftOTk6QGsbGxqK6bQUPIoMudSfcdPr06a5du0JwtG7dWiNHwerHg8igS90Jl+3YscPc3ByCY+DAgTdu3MCCQHE9Mvbu3cteCY00PgmRn6+vr56eHgSHh4dHVlYWFgSH65GhwcYnIfny8OFDZ2dnSI1KlSoFBARgQVg4HRnU+CS8ExcXZ2NjA8FhaWl56NAhLAgFpyODC43PatWqtWrVCgeEyCc4OLhu3boQHPb29klJSVjgP05HBlwX9OTJExxrAi3lIgW2aNEiAwMDCI4pU6a8evUKC3zG3cjgSOOTIoMogv3Cc3FxgdQwMjJavXo1FniLu5HBkcYnRQZRXHx8fPfu3SE4WrRoceDAASzwEEcjgzuNT4oMoiy7d+9u0KABBIednV1iYiIWeIWjkQGNT3YqiGPNocggyrV06dKSJUtCcLi7u2dmZmKBJzgaGVxofAKKDKJ06enpbm5ukBqGhob+\/v5Y4AMuRganVnxSZBAVuXDhgq2tLQRH06ZNw8PDscBtXIwMTq34jI+Pv3TpEg4IUbbQ0NBGjRpBcPTp04f7OxvnIoNWfBIR8vPzY8ezEBwTJ07MyMjAAvdwLjK8vb3ZVuNC45MQdWIxwcICUoPFBwsRLHAM5yKDO41PQtSPnZiw0xMIDnbCwk5bsMAZ3IoMutSdECY8PLxp06YQHLa2thcuXMACB3ArMuhSd0Kk\/P39DQ0NITjc3NzS09OxoFEcigxofNarVw\/H3DB8+HB2hokDQtQrMzPT3d0dUqNkyZJLly7FguZwKDK42fikdRlE4xITE+3s7CA4GjRoEBISggVN4FBkcLPxSZFBOOLAgQMtWrSA4OjevXt8fDwW1IsrkcHZxidFBuGU1atXGxkZQXC4uLio\/1csVyIDGp9HjhzBMWdQZBCuef369ZQpUyA1DAwM1Hwuz4nIuHPnDvvhudb4BBQZhJuSkpLs7e0hONguGhwcjAUV40RkcHnFJ0UG4bJDhw5ZWlpCcNjY2Jw9exYLKsOJyODyik+KDMJ9AQEBlSpVguBwdnZ++PAhFlRA85EBjc+BAwfimGPYsc\/atWtxQAhXZWVleXh4QGro6en5+vpiQdk0Hxmwop6DjU9CeCc5OZn99oXgMDc337FjBxaUR8ORweXGJyE8FRkZ2bp1awiOrl27nj59GgvKoOHIoEvdCVGRDRs2GBsbQ3A4OTndu3cPC4rRcGTQpe6EqM67d+88PT0hNXR1dX18fLCgAE1GBscbn4QIQ0pKypAhQyA4zMzMtm7dioUC0WRk8KLxGRQUpNmrgAhRimPHjrVr1w6Co3PnzjExMVjIJ41FBl8an7QugwjJpk2bTExMIDgcHR3T0tKwIDeNRQZfGp8UGURgsrOzvby8ChcuzN6AWlpa7J2IBfloLDKg8fn48WMccxVFBhGk27dvOzg4fDrYKFSIvRk3b96MhR\/RTGSEh4ezJ8qLxidFBhGwEydOdOjQAYKDfcGGWMibZiKDRys+KTKI4AUFBcFRP8MOPdgBCBa+RQORwa8VnxAZ7DmvWLEiNjYWHyVEcObMmaOlpQXBMWvWrOzsbCx8TQORAY3PhQsX4pjDLl68qKura2hoCL0ixsLCIkriw4cPOEni6tWr8Lisu3fvYlkiIyMDCzJyX6185swZrMnIcfustLQ0LMhgzwHLEuwZYuFr9MxzP3P2CNZkiPCZ79ixw8bGBnb18uXLOzo65njmjAYio0aNGuwJcb\/xyfKidOnSsPlye\/36Nc6TkF4LJCvHDa+io6OxIKNOnTpY\/qx27dpYk5Hjr+hLly7FgozBgwdjWeJ\/\/\/sfFr5Gz5yeOVOwZ86oOzL40vgMCwuDvGjWrJlk032hr69vaWmZlZWFUyW8vLzYgzns2rULyxIJCQlYkPHbb79h+TN7e3usychxd1\/22wALMmbPno1liTdv3mDha\/TM6Zkz0md+\/\/79nTt3jh49unjx4riLf1auXLkcz5xRd2TwovH5xx9\/wCZjL+20adPgayk9PT1qahBeu337dlBQkJOTEztswd1agp2At23bdvr06REREey4A2d\/Ta2RwYvGJzu+gM3HgoMNWTrAMIeaNWtScBAeuXHjxsaNG4cNGwadAamiRYt26tSJHXRERUX9+++\/ODtvao0MXjQ+U1NTS5UqBXkBevXqBRuXqVy5suwWp+AgXHblypU1a9aw0xnpVfCgRIkSNjY28+fPL8CVJmqNDL40PnM0nBmWC1ZWVtIGFRvKBkeOs1BCNOj8+fPLly\/v27ev9HYnoFy5cra2tkuWLImLi8OpBaK+yODRik85QXBoa2vjmBANOXPmzKJFi3r06FGmTBkICFChQgU7Ozt\/f\/+EhAScqjD1RQaXG5\/sZAS\/yr87d+7gV5\/lfoQQ5crOzo6Ojvbx8bG2ttbX14eAAFWrVh00aFBAQECOlRfKoqbIgMYnB1des3OQ9u3bm5qa5j4ZKRj4SanHQZQuKysrMjJy1qxZHTt21NHRkeQDYvvb8OHDAwMD\/\/77b5ytMmqKjDlz5rAfjGuNTxYTjRo1Yk\/MwsJCWZEh+0dZCg6ioJcvXx48eJDtVG3atMG96jP2C3j06NFbt25V81GtmiKDg41PVeQFuHz5Mvs3JS\/rJxQcJF+ePXsWFhb2+++\/S+\/zLsX2WFdX1+DgYJXe3Oj71BEZHGx8pqamqigvpGSDg\/2\/8FFCvuXBgwcsCMaNGwe7pSwWHO7u7ixE0tPTcbZGqSMyoPF5+PBhHGsaywhYDG5ra6uivJCC4KCjDJIb+73FTitGjRrFTjEk4fAFOw3x8PBgpySZmZk4mzNUHhlpaWlsE3Ct8cnCYtiwYThQOz8\/v507d+KAiElycnJgYKCDgwM7XYV0ADo6Oh07dvTy8jp69Ojbt29xNiepPDI42\/jErzRBT0+PbZMKFSpQcIhBYmLi2rVr2Yl51apVJfmA9PX1f\/nlFx8fn5MnT378+BFnc57KI4MvKz7VSbY5SsEhSBcuXFixYoWdnR17ffGVlihTpkzPnj0XLVqU+5Mv+EK1kQGNz9xX7KrfxYsX8StuyPFXFbZjYYHwVlxc3OLFi9k5b9myZfF1lTAyMurXr9\/y5ctZjuBUPlNtZHCk8QkXs4eFheGYM6TBwU5V8CHCH+xsIiYmZt68eTY2NgYGBp\/i4TNjY2N2JrJmzRp2VoKzhUKFkcGRxufs2bPhVZS9OJVTWHBs2LABB4Tb3r59GxUV5eXl1alTJ11dXdi1ADsHd3Bw2LhxY3JyMs4WIhVGBhcan3CnhlKlSsnzaevcERsbK9vjSE1NZYe1e\/fuhSFRs8zMzIiICA8Pj7Zt20rC4Ys6deqMGjVqy5YtilymxC8qjAxofD569AjHaifNC641Mn5Iup6HBceCBQvYjwDD9u3ba\/ZvPeKRnp7OMtrd3b1ly5aw8aXYuaSLi8uuXbsePHiAs8VEVZGh8cbn+PHj2RPgY14wOZqjstjPhZOIsj18+PDPP\/90dXVt3Lgxbu7PmjdvPnHixNDQ0KdPn+JssVJVZPTt25dtaA02PsPCwkxMTPiYF1IsOHJ8NCNjZWWFZaIMaWlp27Ztc3Z2rlevHm7iz1q3bj116tQDBw68ePECZxMVRQY3V3zy0YkTJ2D3ldLgolXBSElJ2bRpk6Ojo5mZGW5WCW1t7Q4dOsycOTMyMvLNmzc4m3xNJZHBzRWffJSRkSFtZADpn4qpqZEv165dCwgIGDx4MDv2xE0pUbx4cWtr67lz50ZHR+e+zQ\/JTSWRoZHGJzsHEeS7iP1c0r1ctpFhamrq4OAgnkZ9AbBN5+\/v379\/\/4oVK8IGBKVLl+7Rowf7lXbmzBmcSuSm\/MjYt28fe1XU3PhkOwfbD3r16oVjYWFRyM5QZPsy7GvY+xkKDll\/\/fXXkiVL2J5Qrlw53EAS5cuX79Onj5+f3\/nz53EqKRDlR4b6G5+QF+x\/KqrzfBYT7OeVnraIOThiY2Pnz5\/frVu3EiVKwNYAVapUGTBgwOrVqy9fvoxTicKUHBnqb3yyc3sR5oUUOwDx8vKC4LC1tcVHhe7du3fHjh2bPXt2586dixUr9ikePqtevfrQoUM3bNhw\/fp1nE2USsmRAY3PBQsW4FjFZO+EiA+JEgQHv1a45terV68OHTo0Y8aMdu3aFSlSBF53YG5uPnLkyKCgoFu3buFsojJKjgx1Nj6lf4Dk7MUjmsXO1\/h+qvL8+fPw8PDJkye3atUKXmuphg0bjh07dufOnffu3cPZRC2UGRlqbnyyX60mJiaUF3lhZ2rs5eBdj+Px48chISHjx49v0qSJJBy+aNas2YQJE\/bs2fPkyROcTdROmZGh\/sanIP+qqizSHgfD8eC4e\/fu9u3bx4wZU79+fXjCUpaWllOmTNm\/fz+91hyhtMigFZ8cJNscZVhwcOeNd\/PmTXaEOGLEiFq1asHTA1paWlZWVp6enkeOHHn9+jXOJpyhtMhQT+NTdm0CkZM0OBh8SEOSkpLWrVs3ZMiQatWqQUAAPT29Ll26sF3o+PHj79+\/x9mEk5QWGfCJyaprfLL9vn379qVLlxbt6gMFsQ2okT+pXLp0adWqVfb29pUrV4aAACy\/fv31V\/Y75tSpUziV8IFyIkPVjU+2u0vvVESRoSyQwqrIkfj4+GXLlvXu3funn36S5ANiQ\/YgK7EJOJXwjXIiQ6WNT9m8YF\/jo0Rh0lUtSgkOdrDADhnYgQM7fIB\/FrCDC3aIwQ402OEGTiV8poTIgMZnnTp1cKxU7JiC8kJF2PaUbY7mDo7vb\/D3798fP358zpw5Xbp0gTuzSJmamg4ZMmT9+vVJSUk4mwiFEiJj7ty5bC9RReOT7bKwGFwNd0IUrRzB4efnxx5k\/4Vhjo8OfP36NTuW9PT0tLKy0tLSgjmgVq1aI0aM2Lx5882bN3E2ESIlRIZKG5\/jx4+nD5VRA2lwXLx4UbqsFrRp02bfvn1TpkyxtLTEhz6rX7\/+mDFjtm\/ffvfuXfyHiNApGhkaudSdqAgcUMCy0bw0adKE5XhISAjdAU+cFI0MaHweOnQIx4S37t27t3PnzrFjx+rr60M6SDVu3Hjy5Mnh4eHPnz\/H2USsFIoMVTQ+NbJ2QLRu3boVFBQ0cuRIc3NzSIfcqlatirMJUTAylN74hD\/7QQeOqMj169c3bNgwdOjQ6tWrSzIBFStWrHPnzt7e3tu3b5e9RzkHb0xJNEihyFBu45P7d0Lkr8uXL69evXrAgAFVqlSBjQxKlCjRrVs3X1\/f2NhYnCqRkZHBgtvLy4tW6JMcCh4Z0PhkeyGOFePAzzshctm5c+fY275Pnz7ly5eX5AMqV65cr169lixZ8tdff+FUQuRW8MhQYuNTmhf0O01BZ86cWbhwYffu3WE9i1TFihX79+\/v7+9PW5goqICRcffuXbYjKqXxyY5+2T9FeVEwHz58iI6Onjt3rrW1dfHixSX5gExMTAYPHhwQEHDt2jWcTYjCChgZSmx8sqTg+50Q1ezNmzeRkZEzZ87s0KGDtrY2BAQwMzNzdHTctGlTSkoKziZEqQoYGdD4fPjwIY6Jir148eLAgQNTp05t3bo1pINUvXr1nJ2dt23blpaWhrMJUZmCRIZyG58kL0+fPg0NDZ04cWLz5s0hHaQaN27s5ub2559\/qvmWdIQUJDIUbHyycxD6zIu8PHjwYNeuXS4uLhYWFpAOUi1btpw0adLevXvT09NxNiFql+\/IULDxyfKidOnSjRo1wjGRXOC\/ZcsWJycntlUhHaTatm3r4eERERGRmZmJswnRqHxHhiKNT8gL9u10cWpycvLGjRsdHBzgzi9Surq6nTp18vLyioqKevv2Lc4mhDPyHRkFbnyK\/E6ITGJi4po1awYOHGhsbCzJB2RgYGBjYzNv3ryYmJiPHz\/ibEI4KX+RUeDGp\/Qz49jvT3xIHC5cuLB8+fJ+\/foZGRnBFgBly5a1tbVdvHhxXFwcTiWED\/IXGWzXZ7t7fhuf0o9sEcnFI2fPnl20aFHPnj3LlCkDPzioUKGCnZ3dihUrEhIScCohfJOPyFCk8WlhYSHgvGBnEydPnvTx8fnll19yfNhE1apVBw0atHbtWnZWgrMJ4bN8RAY0Pn19fXEsbm\/fvj169OisWbM6duyoo6MDAQFq1qzp4OAQGBiYnJyMswkRinxEBq34zMzMPHjwoIeHR5s2bSAdpOrWrTtq1KitW7fSkhMibPJGxv79+9kbQ\/7Gp2CuYU9PTw8LC3N3d2\/RogWkg1SjRo3GjRsXHBz84MEDnE2I0MkbGfI3PjMk9+Bik\/l7pRk7kmJB4OrqCrdQkcWC4\/fff2ch8uzZM5xNiJjIFRnyNz5ZXkjvVMSvQ\/Q7d+6w04rRo0ezUwxJOHzBTkOmTZvGTklevnyJswkRK7kiQ87Gp2xewMfbc9zff\/8dGBg4fPhwaNNI6ejodOzYcdasWZGRkVlZWTibECJnZMjT+OTLnRCvXr26du3aQYMGyX4iLqOvr29tbe3j4xMdHZ2dnY2zCSFf+3FkyNn4NDExYdO4eSfEhIQEf39\/Ozu7ChUqSPIBlSlTpkePHosWLTpz5gxOJYR8148jQ87Gp5+fH6cuHomLi1uyZAmLsHLlykFAACMjo759+y5fvvz8+fM4lRAitx9EBjQ+zc3NccxtMTEx8+fPt7GxKVGiBAQEMDY2\/u2339asWXPlyhWcSggpkB9EBsdXfP77779RUVGzZ8\/u1KlT0aJFISBAjRo12FHPxo0bb9y4gbMJIQr7QWSYmZmxt983G59hYWEaaVv873\/\/i4iImD59etu2bQsXLgwBAerUqePk5BQUFHT79m2cTQhRqu9Fxncan3Ax+\/jx43GsYv\/88094ePikSZNatmwpCYcvGjZs6OLisnPnzvv37+NsQojKfC8yoPHJfqXj+DP13Anx0aNHISEhbm5ujRs3hv+dVLNmzSZOnLhnz56nT5\/ibEKIWuQZGXk1PlV6J8S0tLTt27c7OzvXr19fEg5f\/Pzzz1OnTmUHPi9evMDZhBC1yzMyfHx82Bs1R+NTFXdCTElJYUcrjo6OtWrVkoQD0tbWbt++\/cyZM48cOfLmzRucTQjRqDwjI3fjU4l3Qrx27dq6desGDx5samoqyQdUvHjxrl27zp07lx3CfPjwAWcTQjjj25EBjU97e3scS2RkZFhYWBQ4L9g3rly5sn\/\/\/pUqVYKAAKVLl+7evfvChQtPnz6NUwkhXPXtyMir8Zlf8fHxS5cu7dWrl6GhIQQEKF++fJ8+fZYtW3bu3DmcSgjhg29EhoIrPk+dOuXr69utW7eSJUtCQIDKlSsPGDBg1apVly9fxqmEEL75RmRIG5\/sVEKeP4u8e\/fu+PHj3t7eXbp0KVasGAQEqFat2tChQ9evX3\/9+nWcTQjhs29EBjQ+IyMjS5cubWpq+s0lnq9evTp8+PCMGTOsrKyKFCkCAQFq1649cuTIzZs337p1C2cTQoQiZ2RA49Pa2jr3nc2eP3++b9++yZMnW1paSsLhiwYNGowdO3bHjh337t3D2YQQIcoZGdD4hJtxsLx4\/Pjx7t27x48f37RpU0k4fMEemTBhAquyOfjNhBCh+yoy2DEC5oFkUTY7dsDBZ+z4gh1lsGMNdsSB30MIEZOvIsPd3R2z4bMiRYpYWVnNmDHj8OHDr169wnmEELHKeWLCTkl0dHS6dOni7e19\/Pjxd+\/eYYEQQnJHxqlTp\/ArQgjJJWdkEELId1BkEELygSKDECK3\/\/77PwzbuQYWNmr4AAAAAElFTkSuQmCC\" y=\"7\"><\/image> <text fill=\"#000000\" font-family=\"’Times New Roman’, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_2\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"70.5\" xml:space=\"preserve\" y=\"15\">A<\/text> <text fill=\"#000000\" font-family=\"’Times New Roman’, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_3\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"3.5\" xml:space=\"preserve\" y=\"232\">B<\/text> <text fill=\"#000000\" font-family=\"’Times New Roman’, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_4\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"302.5\" xml:space=\"preserve\" y=\"159\">C<\/text> <text fill=\"#000000\" font-family=\"’Times New Roman’, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_5\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"66.5\" xml:space=\"preserve\" y=\"139\">D<\/text> <text fill=\"#000000\" font-family=\"’Times New Roman’, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_6\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"111.5\" xml:space=\"preserve\" y=\"174\">G<\/text> <line fill=\"none\" id=\"svg_7\" stroke=\"#bf0000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"2.5\" x1=\"89.5\" x2=\"126.5\" y1=\"14\" y2=\"160\"><\/line> <\/g> <\/svg><\/span><\/p><p>Ta có: G là tr\u1ecdng tâm tam giác BCD nên <span class=\"math-tex\">$\\overrightarrow{GB}+\\overrightarrow{GC}+\\overrightarrow{GD}=\\overrightarrow{0}$<\/span>.<\/p><p>Nên <span class=\"math-tex\">$\\overrightarrow{x}+\\overrightarrow{y}+\\overrightarrow{z}=\\overrightarrow{AB}+\\overrightarrow{AC}+\\overrightarrow{AD}=3\\overrightarrow{AG}+\\overrightarrow{GB}+\\overrightarrow{GC}+\\overrightarrow{GD}=3\\overrightarrow{AG}$<\/span><\/p><p>⇒ <span class=\"math-tex\">$\\overrightarrow{AG}=\\dfrac{1}{3}(\\overrightarrow{x}+\\overrightarrow{y}+\\overrightarrow{z})$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-01 06:21:38","option_type":"math","len":0},{"id":"5613","post_id":"7584","mon_id":"1159285","chapter_id":"1159392","question":"<p>Cho hình h\u1ed9p ABCD.A'B'C'D' có tâm O. G\u1ecdi I là tâm hình bình hành ABCD. \u0110\u1eb7t <span class=\"math-tex\">$\\overrightarrow{AC^\\prime}=\\overrightarrow{u},\\overrightarrow{CA^\\prime}=\\overrightarrow{v},\\overrightarrow{BD^\\prime}=\\overrightarrow{x},\\overrightarrow{DB^\\prime}=\\overrightarrow{y}$<\/span>. Kh\u1eb3ng \u0111\u1ecbnh nào \u0111úng?<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$2\\overrightarrow{OI}=-\\dfrac{1}{2}(\\overrightarrow{u}+\\overrightarrow{v}+\\overrightarrow{x}+\\overrightarrow{y})$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$2\\overrightarrow{OI}=-\\dfrac{1}{4}(\\overrightarrow{u}+\\overrightarrow{v}+\\overrightarrow{x}+\\overrightarrow{y})$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$2\\overrightarrow{OI}=\\dfrac{1}{2}(\\overrightarrow{u}+\\overrightarrow{v}+\\overrightarrow{x}+\\overrightarrow{y})$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$2\\overrightarrow{OI}=\\dfrac{1}{4}(\\overrightarrow{u}+\\overrightarrow{v}+\\overrightarrow{x}+\\overrightarrow{y})$<\/span>"],"correct":"2","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><\/span><span style=\"color:#16a085;\"><strong>B.<\/strong> <span class=\"math-tex\">$2\\overrightarrow{OI}=-\\dfrac{1}{4}(\\overrightarrow{u}+\\overrightarrow{v}+\\overrightarrow{x}+\\overrightarrow{y})$<\/span>.<\/span><\/p><p><span class=\"math-tex\">$\\overrightarrow{u}+\\overrightarrow{v}=\\overrightarrow{AC^\\prime}+\\overrightarrow{CA^\\prime}=(\\overrightarrow{AC}+\\overrightarrow{CC^\\prime})+(\\overrightarrow{CA}+\\overrightarrow{AA^\\prime})=2\\overrightarrow{AA^\\prime}$<\/span> <span class=\"math-tex\">$\\overrightarrow{x}+\\overrightarrow{y}=\\overrightarrow{BD^\\prime}+\\overrightarrow{DB^\\prime}=(\\overrightarrow{BD}+\\overrightarrow{DD^\\prime})+(\\overrightarrow{DB}+\\overrightarrow{BB^\\prime})=2\\overrightarrow{BB^\\prime}=2\\overrightarrow{AA^\\prime}$<\/span><\/p><p>⇒ <span class=\"math-tex\">$\\overrightarrow{u}+\\overrightarrow{v}+\\overrightarrow{x}+\\overrightarrow{y}=4\\overrightarrow{AA^\\prime}=-4\\overrightarrow{A^\\prime A}=-4.2\\overrightarrow{OI}$<\/span><\/p><p>⇒ <span class=\"math-tex\">$2\\overrightarrow{OI}=-\\dfrac{1}{4}(\\overrightarrow{u}+\\overrightarrow{v}+\\overrightarrow{x}+\\overrightarrow{y})$<\/span>.<\/p><p><span class=\"svgedit\"><svg height=\"240\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g><title><\/title><rect fill=\"#fff\" height=\"242\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_1\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g><title><\/title><image height=\"231.99999\" id=\"svg_2\" stroke=\"null\" width=\"320.00001\" x=\"1\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAaQAAAEqCAIAAADVlLPKAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADvsSURBVHhe7Z0HWBRX14AvIFVUBMUeBXvs0cTejT22GEvU6K+JX2JJoiZGjUlsgIqiYAOxC\/auoIhdrGClKoogfem97eJ\/2HsZl6UIywCzu+d9zuPDnLmDy+7Zd+6duTNDPiAIgqgBKDsEQdQClB2CIGoByg5BELUAZYcgiFqAskMQRC1A2akCaWlprq6uh4ohMTGRtZMhMDBw+PDhvXv3joyMZCkEUWlQdqrD9OnTST6NGzdu27ZtzZo16eIPP\/yQkpLC2n34kJub+\/vvv0O+Vq1at27dYlkEUWlQdqrD2bNnqdqqVat28+ZNyBw+fLhDhw6Q0dPT27Fjh0QioS1zcnIaNGgA+Xr16olEIppEENUGZac6rF+\/Xuo6oqOjk56eDhmw27\/\/\/kuT48ePz8jIoC2zs7NpctmyZTSDICoPyk5FEIvFtWvXpgrr378\/TWZlZf3vf\/+jyQkTJsjJztDQkC4iiDqAslMRnj9\/Xr16deo1d3d3mvT392\/ZsiVkjIyMLl68SJMAld3GjRvZMoKoASg7FeHgwYMwepW6jn2mYWFhbdu2pZm9e\/dy3ToAZNeqVauAgAC2jCBqAMpOFcjNzV2wYAH1WufOnbdu3Tp16lT4uWbNmpMmTYqKimLt8gHZjR49Oi4uji0jiBqAslMF4uPjR40aRWU3bNiw+fPn9+3b18DAoHv37jt27AgNDWXt8pFIJPfv32cLCKIeoOxUgRcvXtApddWrV3dxcYEMCM7e3h4yoDzo69FmCKLOoOxUAQ8PD2mvjrRu3drX15dlP3zo1KkTzW\/bto2lEERpyc3NTU9Pv3PnzvLly01NTXV0dLS1tVeuXOnp6enn51e\/fn3W7sMHBweHOnXqTJ8+nS1LQdmpApMnT6ZSg9FrQkICy374sHjxYprv1q0bSyGIchIfH3\/ixInRo0fTOgff7du3z9bWduzYsbVq1YLk0qVLacuYmJimTZtC5vPPP6cZCspOFTA2Ns5TGiGbNm1iKSnNmjWjeZQdotTExsYOHz7cyMgIivm\/\/\/6TPQwNq8B6kH\/06BHN7Ny5U1r18nPmUXZKD4xb6UcLHD9+nGU\/fICOPctKp56wLIIoGykpKXR2gaamJtd9kyUyMrJ3797chY9gQ2ispaVFFzlQdkrPwoULpULLg6U+fHjz5k3nzp1p8ssvv2RZBFE2kpKS5s+fTyt52LBhRc6XSktLs7S05O7uQ2W3atUqusiBslNu4ANu3rw5LYWuXbvekDJu3LgvvviCzjHu2bOnj48Pa40gysaWLVtoeQPPnz9n2UJER0eLxWL6M8iuWbNm3t7edJEDZafEeHp6Tpw4UaMoTExMvvvuOzc3N9YUQZQQUBi3Ly9yAFskILuZM2eyBRlQdgiCCJSDBw\/q6+uD6eBf7orvTwKdwV27drEFGVB2CIIIERiW\/vXXX7Rb16NHD9m7z5ZMWFhYfHw8W5ABZYcgiBBJTk7++uuvqexmz56dlZXFVigKyk5lSUtLC82HpRBEeQDZDRkyhMrOxsaGZcsByk418fX1nTVrVt98Dh06BKXD1iGIMoCyQz4NdPirV6+uoaExg5BHhPSQ3qh99erV3Ll5BBE+6enpU6ZMQdkhxZKZmdm\/f\/+RhCQQ8iE\/9hNSixAPj0dxcek5OeyxOwgicPbs2aOnpweymzt3bpHH7LKzs11dXQvfsbFIUHaqxt27dzUJsZUxHYSIkIGEmJsP\/OabI3PmnP\/ll0sKx\/PnUQrH27fxEkkue6EI8ini4+N79ICRCalTp86rV69YNh8wnZOTU+kvhUTZqRonT57UISSzoOwkhEivuKlGyKpyhpHReoXD2HhDvXrWCkfXrg6XLwcqHD4++NBIQbNhA5RHHl9++SX3zICEhIQmTZpA7RobG69fv56bgPL48ePZs2fDJqU\/OIOyUx3i49MfPQr76af1oDSfgrLLImR23sxMMzlzYZQ+evXaa2V1V+E4etTn7t0QhSM4OCE2Nl3hyMoS9OFaUNvo0aPrEzKckKmEtCdEm5Dbt2\/TtcnJyZaWlv369TPJx9zcfMKECTCIoQ1KCcpOFUhPz3Z0fDJu3LFGjWwIWahBqi+WCo6TnT8hUEk\/\/7zCxuaBwrFkydUuXew7dNipWLRoYSenD4zSx5dfOo4Zc1Th+OmnC4sWXVE4njyJ8PaOViz8\/WOhPlmlFkVSUtLcuXO\/1tK6TkiStFzfS\/fNX331ldzQ9UI+z549Y6mygLJTejw83jdpYqOvbyHz3RhpQPIO2wVLS8eDkAaEDBgwICYmhm2jENA7iIlJE4lSFYuoqNTg4ESF49ChF0OHHlY4WrfeLvP+YJQt6tTZWLeutWJhamoN9dm06ZbionHjpbq6ujtl9s0QV6WPi7p27RorPj5A2SklYrEkNDTp2DGfESOcZIuyUaPNkLl69Q10+01MTKUH6TQJ0e3atWtZ+\/yILC4ur\/\/446rCMWyYU7duuxWOxo1t5I5+lik0ND5WiCBjbjNCEgvKDgKQu\/tmOUHZKR\/R0akwqOzRY49sxdSvv2nVqlv37r1njT58WL36ICGjpYdBvgsKCmJZRAl5+DDs1Ck\/hWP9eg9Ly7uKxT\/\/3OjXb\/\/nn+9QOGSrtJiYa54\/gOUiQXqrzrVr17K3gA9QdsoEjCKtre81a7ZVT2+dbLnMmXP+3bsEuVkdBw485xqwFIKUEbE4VyRKCwtLVjgCAmKLjJMnffOPLcyDwcf6grI7QYihoeGlS5fY6+ADlJ0SAAUXHJy4c6cnJy8Ibe21zZvbQm8uNbXoC6RRdogAyczMef48as6cC1xxQujpDdHQ0LxGSKS0iweF27EC7rCNshM06enZrq6By5dfa9VqG1cZGhqr2rffuWbNbdg9snZFgbJDBEVKStb+\/c8WLHCVzhlglWlktL5nzz3bt1+fOnVazZo1exEyhZBG0ueH+fv7sy15AmUnXLy9o8eNO1anzkauMiDatdsJO8aQkMRPXvWFskOEw927Ie3a7ahe\/eOcgWrV1kyYcNzTMzw8PO8WFYmJiQ4OlwkB3ZmPHbs1MjKSbsgjKDvBATvAp08j5869yJUFhI7OWnNzWxjJskalg9t89+4nLIUglQU93vfkScTAgQe4UoSA3lzv3nuvX5c\/aebi8po2+L\/\/O8dSvIKyExCpqVlOTi+nTz\/DlQUEVMakSSdtbB4oMAme+yUoO6SSiYhI2b79ca9ee7kihKhff9Nff7lfvPgK9uisnQwoO3XBw+P9F184GBpacpUB\/XwYxt679z4xMZM1KiPcr0LZIZVGZGTK5s3327XbaWAgO9F91c8\/X\/LxiWaNioKTHfT76NiWX1B2VYlEkpuQkHH0qI+Z2VauJiCgNzdhwnF397esnaJwvxBlh1Q00kFrqr29F1d1ELDDbtzYZuLEE2lpJV0xRvHwCKldewNs1aWLfVBQAsvyB8quyoAdIDiob999ssVRr96m3367fPduCGtUPrhfi7JDKg4QGbhp3bo75ua2XMlpaq5u337n339fL3nOgCyvX8d16LATtkXZqQ6guR9+ONuli0P16h8HrU2a2Pz004UnTyJYIz7gfjnKDqkgoGK\/++4keI0rNogOHXZZWXm8ehUrFpfhTrEoO9UBBq2JiZl79jyVLQvYAZqaWv\/zz82KuIEw97+g7BB+ycoSg4\/k5gZraa2BYt679ylrVEZQdqpAZmbOnTshNjYPWrb8ODcYKgP2h4sWXXn5sqSjtuWB+79QdghfwKD11Cm\/hQtdP\/tsC1dghoaWo0Yd+e+\/m6yRQqDslB4fHxEMWhs3\/jhrHKJ5czt397f+\/jEV+kQI7r9D2SG8AIPWAQMO1Kjx8fCLtvaa0aOPXLsWFBeXzhopCspOWQGLhYUlww6QKwsILa3VNWta2dk9Yo0qmBEjnGiwZQQpO7m5eUMTL68IuZNpurrrWrXaduXKG9au3KDslI\/09OwLFwJ++cVFtjKqV7eEHeCqVbdYIwRRBkSiVGfnl4MGHZQtZmPjDXPmnL99O5g14gmUnTKRmJj59GnksGGHofvGVQb080eOdHZ1DYyJSWPtEETwiERpjo55U6NkB60aGqtnzTp38+Y71ohXUHbKgUSS6+LyWvaQLYSm5upevfaC5lgjBFEGxGKJs7O3bCVDgPKWLePzJumFQdkJndDQpBMnfIcMOSRbGbVrr5827XQF7QARpCLIzBRHRaU4OHjJ7rNhh92ihd3PP1\/y9q6oOQMcKDvhAv18KALou9Wo8XHQampqPWPGWTc33o7aIkgl8Px51I8\/Xujffz9XyRCguZMnfb28Iirn0eYoO4Fy9KiPltYa2cowMLD48093GAJUTmUgCC\/ExaX\/8ouLltZq2WLW01vn6PikTNc\/lB+UnYDIyhLDXm7btkey\/fxq1dZ89ZXjnDnnK25uMILwTnp69tWrb2FowlUyRPXqln367Pv99yusUeWCshMK4LJ581xkL3WGaN7c9sgR7\/fvk1gjBFEGHj4M+\/bb47K3YNLRWTtypPOZM\/4iUZXNGUDZVT2BgXHz57vq66\/T0PjY1Yd+vr29V8mPOkcQQZGbm3vuXICZma3c0+maNLFxcXmtwN1h+QVlV2Wkp+fcuhUMmpMtC9gZDhhwwNn5JWuEIMpAbGzaxYuvBg8uMGegVi0rendY1qiqQdlVAUlJmY8ehX3\/\/Wm5fv6wYU7HjvlERaWydggieKKjUxcscIUhquzcYFNT6x9+OAuDVtZIGKDsKhXo51+48KpVq22ylQHRo8ce2DempirZoHX27PN16myEOHToBUsh6sS+fc9q196gofGxkg0N8+YGx8enZ2TksEaCAWVXSYSEJJ4\/H\/D114e5soCoUcNqxAgnDw+h9PPLCveH4F1P1IesLLGvr+jECV\/Zh3Bqa69p2nQrDFZ8fESsnfBA2VU4IlHakiVu0HfjKgOicWObpUvdYdDKGikn3J+DslMHcnPz5gYvWnSlRQs77qOHMDe3dXDwevgwjLUTKii7imX\/\/mf162+S6+f\/+ad7dHRqdnYVn5wqP9wfhbJTeWJj03\/99bKJyQZNzY9zBmrUsNy796lIpBxHmVF2\/JOdLfH3j\/nnn5uy5x+qVVvTtu2OiRNPVMI1gJUG99eh7FSVjIwcT89wubnBUNgwUvnppwuskZKAsuMT6Oe\/fBn911\/urVp9vD06hJnZVju7R6GhqjY3mPsDUXaqR1JS5v37oWA02E9zH7Su7tqhQw\/DeAWGJqyd8oCy4w1wWYsWdjBolb0MEPaB27c\/DgtTzUsguD8TZadKiMW5ly69bt9+Z926H09BQHTosOvYMZ\/y3x69qkDZlRcYtEJvbskSN9my0NNb16nTLoUfg6QscH8vyk41SEjIePAgdMQIZ+6ThYBi7tVr76NHQj\/\/8ElQdoqTlpZ95Ij3779fke3nQ1du4MCDO3d6RkSksHaqC\/dXo+yUHdDcP\/\/cmDDhuOyzhmvVspo06eSuXZ6skZKDslME6Oe7uAR27eoge3t06Zvo4O8fo4yHMxTD2HgD\/cO\/\/vowSyFKyIEDz+WOMsM+G\/biAQGxSUmZrJHyg7IrGzExaY8fh48adYQrC03N1bq6a7t23a0C\/fyysngxG7x367abpRAlAXbYwcGJbm5voXq5YtbSWm1isnHkSGdVmjPAgbIrLdDPt7C4I3er1YYNNy9c6Gpr+5A1UjNQdqUkOjo6OTmZLVQ1Ekmur69ozZrbn3++g6tkiMaNbdauvX3tWhBrp3Kg7ErFoUMvOnTYJVsZ0M8Hzfn5xQjwGsBKQ91kN3ny5L59+3YrxOvXr0WiYi+T+u233z7\/\/PNp06aV0KbSeP8+acWK6+bmtrJzBgwNLe3tvfz9Y1gjFQVlVyywAwwPT16\/3kO2LGDQ2qDBpkmTTqpkP7+sqGHPzt3dvUaNGkRKixYthg8fDiLT1taGxe3btycmJubmFrhp\/tOnT83MzGBtv379oqKiWLbSycmRvHuXMH9+gWcN6+isbdVq24EDz1kjVYeTXadOILt4luUPpZSdWJw3mwQ017593lvDRaNGm1euvBEZqfqnWUuJmsvO1dWVJi0sLJo1awaZMWPGQC+PJilHjhyBvIaGxp9\/\/slSlUtaWraXVwTULVfGENraa\/v02bdlywO1up8YJztTU2t4T1iWP5RPdtDP79Vrb4sWdrIdOujNbd\/++OXLKtszCxM1lJ2VlZWWlpbUdUQsZlc3SyQSS0vLalJmzpyZlvbxzuNUdvr6+pcuXWKpygJ6cxcuvOrZc6+Z2VaukiFAc\/fvh6re9TyfJD09Z8yYo\/RNuH6d\/0OTZZMdVz2FyYGPTlJRzyKCkQf05iIiUhYsKHDfYG3tNc2abd237xlrhxRE3WQHFbho0SJquvHjx8uOWL28vBo1akRXhYV9PC9PZde1a1e2XPHAi4JvdUBA7PDhTlwlQ0Bvrk2b7X5+wr0FUyUwdeop+m5UsexAZ3Z2dmyhILBX\/Pvvv\/ft2ye7z+QLqIwzZ\/z\/++8mVxYQBgYWsEvcsMEDB60loG6yi46O7tOnDzXa8uXL5Q7PffHFF3QVN7wFQHa6uroPHjxgyxVMYmKmnd2jadPOyD4FolEjm+nTz2zadJ81UmMEITuomwMHDhgaGrJlGYKCgjp27Ag11LNnz4gIPkfa0Fl0cXk9YMABExM2OZZG7957b98ODg5OZO2QYrCwuNu8uR3EuHHHWEqlefXqlZGREZSitrY2WIxl8+Fkt2TJEpaSym7YsGFsoSKRSHL37n0KpStbydWrW8BgxcsrAvborJ16IwjZPXv2jBYKW5bB2dmZroIRBEuVG\/jsHz8OHzny4zWAGhqrtLTWmJnZ+vmp+Al4RGHc3d1pKTZv3vzlywIPRYK9dZGyO3nypJubG1uoAOD\/jY9Pt7Ly4CpZWsyra9SwHDjwIAxmWTtEStXLzs\/Pr3fv3rRQWEoGKjsdHR0HBweWKgdJSZm7dz\/p109+bvCsWeesrO6yRghSFLNnz6ZVOnjwYJbKJzQ0tFWrVnTtvn37WLYiga7cq1exMGht167AnIHPPtvy++9XEhIyWDtEhiqWHQwNBg4cSKsEYFkZqOzMzMzi48s1NSY+PmP\/\/mewu+PKAsLAwOLnny89eBCKT2hFPknDhg1plVpYWLBUPrdu3TI1NaVrZU9QVBDv3yeNGuXcseMu2Ztg16xptW3bIxiysEZIIapSdtAJ37ZtW506dWiVAGyFDFR2hw4dYstlJDf3Q0pK1saN97iagIAS0dZe+7\/\/VfZsAER5EYlEtEQBFxcXls1n8+bNdNXQoUMr7sowKObk5KzZs8\/LFrOm5mpTU2v1mRtcHqpSdvb29jNnzrS1taWFArAVMoDs2rVrxxbKQk6OJCAg1t7ei84k5KJxY5tffrmUmIj9fKQM\/PHHH7RE9fT0WCof8GCnTp1glb6+\/oEDB1iWV1JTs93d39rYPJCtZNhhd+26e926OzEx\/M9SUEmqTHY3b96sXbs29PmdnJxoGQFsnQwgO3AiWyg1oaFJ48cf69zZnuvna2is\/vJLxz17ngrnEeWIEtGlSxdaohMnTmSpfKysrOiqBQsWJCTwfNFldrbk0qXXI0c6yz66EGLQoINnz\/oHBsaxdkgpqBrZ+fv7f\/XVV3QWccmyg6EuwBZKQUZGzo8\/XpB9BhJE7drr9+17VqbfgyAcDx48aNCgAS1RuUNy27dv19DQgLyJiQnvBRYdnTp06GHYT8sWc4MGm8LCkrGYFaAKZJeTkzN27Fhu7mXJsisl4LgbN945Oj7lagJCR2ft2LFHV6y4rj431EQqgtOnT9eqVYuWaEhICGRgP52WlrZp0yZTU1MY2A4bNozmeSE9Pef4cZ8+ffbJFrOpqfWECcf\/\/fcma4SUncqWXXZ29ty5c2vWrDlmzJgZUrh5JwBrVBbEYsm1a0ETJ56oV8+aqwyIHj32nDjhI5HgDhApF\/Hx8VOmTGEFKr3aH4p26tSp48ePr1at2pAhQ06dOsXXHU3E4tyDB59\/++1x2UrW1V03a9Y5KHKcG1xOKlt2K1asaNKkSVMZSj4bWzLv3ycZGFhAD46rDAgjo\/VBQfGZmUr\/FGqkyrlw4UKbNm3MzMxYscqQkpICnbusrCzWtHxkZYm3bHkAxSz7SBOIwYMP+vqKcnIq6sJwtaJSZXfz5s2JEyfKHcQteRgL44Xbt28fyOfixYsikQgGrefPB\/TtW6CfX7fuxtGjj1TEn4EgFURubm5ISKKzs3fHjgXuDtugwabJk0+i4\/il8mR369atESNG+Pj4sOV8Spbdpk2bGjRoUJ+QPwnpQEgtXd1hw4ZNnQqbfKwMXd21M2acuXw5EPv5lUlaWnZsbDpEYqLqPJalMomLS58z53zv3h\/32Zqaq2vVsrK2vof77IqgkmQHvf1u3brt3buXLctQguw2btxooK19mpBEQnIISSbkNSHd8xrCP6w+5s69GB+fnpmJmqtsVqy4bmS0HmLAgAqZXKbCZGaKZ88+D28dV8YQhoaWO3d6JiRk4IHmCqIyZJeTk\/PHH38YGBgUvmMddOOhpyYVXR5yp7S0tLT6ExIJEpSJDYRIb5\/4B7xoZ+eXR4\/6KBauroE3brxTOKA7A6NpxQLUrAIFrYY37ywlUNWwd8\/IyIB\/ZeeIwMjj\/v3QY8d86PtGQ0dnbevW25cudY+Px4nuFUtlyC41NfXbb781Nja2sLB4\/\/7jnF4Y2P7zzz+dOnWCVZRvvvnm7t2PF+SD7DYXNB2EOyHSG2OP48qlSmLixBMzZ55TLGbNOvfLLy4LF7oqHDACUjiSkjJ5US3KrjgcHR1nz549c+ZM+Nfe3h6sl5OTN2dgxoyzcnMG+vXbv2fPU3ykSeVQGbKDnVtCQkJUVJRIJMrO\/njJPUgQknJAkq2Wym52IdldJMQwT3Z\/cxWjhgHfmXLEpoYNNyscTZtuCQ1Nhvjppwv0xXTsuItmShNgW\/bpqihffPGFnp5ebULeEzIFalVPr1mzlhMmHJd7pLqx8Ybg4EQ83FmZVN4JCgWAEW5zQp7LmC6NkDmENGnSxM7uERSQwtGnz76ePfcoFl9+udvEZKOu7jqFg6t4jLJG5872Z874Kxxubm9hIKlwhIQkZmaKi4+cw4cP6+vr35Cp2Nt5O2YtOhDR0Mhz3MCBB\/755wYrcaQSEbTsgK5du44h5F9C4gm5LjVdY23tK1eusNVVAQxKLlx45eDgpXBs3HhP4YDBY9OmW2vX3qBoFDgojlGm6N7dce7ci8XH6c6dB\/WTMR2NAXm++0pXdy182c6dC8jKwhmgVYPQZffw4cOOHTtqEvIZIcaE1K1b9\/z58yU8mkflga9KeHgydDEUjrdv4xWOffueNW5sQ8PQ0JKWjo7OWi5Zcshdza5y8SfUqW8h2S0lpHPn7g8fBqSk8DMDGVEMocuOQshyQloS8itbRgRA5Z+gOH3ab9QoZ4Wjb999XbrYKxz1628CrZcYyzQ0mt4qJLuZhAwaNEgkUusnewkBZZEd3XOuYsuIAFi+\/Br9UL74wkEsVv25\/jdvvrOze1RC2Nre\/frrCV00NLJkTAc\/a2hoyD6YAqkqUHaIgrx8GU0\/lM8+2\/L8OT5BPA83N7caNWpMISROarp0Qn6ooodkI4VRDtlx96fbscOTpZCq5v37JPqhNGy4+eHDCn\/wgrJw6tSppk2bamhokrw+nWbt2sbHjx9n65AqRTlkN2DAAfoqUXbCAWVXHM+eBTRsOI6QfvXrjz1w4CTLIlWNcshu6VJ3+ipRdsIBZVccQUEJXbrYwzvTocPO16\/xzulCAWWHKAjKrjg42bVvD7LDJ1ULBZQdoiAou+LgZFe3rvWDB6Esi1Q1KDtEQVB2xZGZmTNp0kn65ri4vGZZpKrhZOfm9pal+ANlp8qg7Erg\/\/7vHH1zUHbCgftQZs48y1L8gbJTZTjZNWq0+dEjlF0BUHYC5NQpP\/qhoOyQsgGDtevXgyA8PN4nJ+OtigqAshMgKDsE4R+UnQBB2SEI\/6DsBAjKDkH4B2UnQFB2CMI\/KDsBgrJDEP5B2QkQlB2C8A\/KToCg7BCEf1B2AgRlhyD8g7ITICg7BOEflJ0AQdkhCP+g7AQIyg5RHLE4NydHApGbyzIIBWUnQFB2iILExaXPmHF2+vQzCxe6vnkTz7KIFJSdAEHZIQqCt3gqAZSdAEHZIQqCsisBlJ0AQdkhCoKyKwGUnQBB2SEKgrIrAZSdAEHZIQqCsisBlJ0AQdkhCoKyKwGUnQBB2SEKgrIrAZSdAEHZIQqCsisBlJ0AQdkhCiISpTZvbgcfiqGh5cmTviyLSEHZCRCUHaIgSUmZgwcfpJ\/L1q0PWRaRgrITICg7REFQdiWAshMgKDtEQVB2JYCyEyBKJrv+\/fezFFLVoOxKAGUnQJRDdjExafRVtmu3g6WQqgZlVwIoOwGCskMUBGVXAig7AYKyQxQEZVcCKDsBgrJDFARlVwKc7KZNO81SSFWDskMUhMquY8ddv\/56+datYJZFpKxde1tDA2UnLDjZffWVI0vxB8pOlcnJkTx\/HvX6dRxbRmQ4dy5AU3M1yk5QcLKDYCn+QNkhagrKTphQjUCwZf5A2SFqCspOmFCNQLBl\/kDZIWoKyk6YUI1AsGX+QNkhagrKTphQjUCwZf5A2SFqCspOmFCNQLBl\/kDZIWoKyk6YUI1AsGX+QNkhagrKTphQjUCwZf5A2SFqCspOmFCNQLBl\/kDZIWoKyk6YUI1AsGX+QNkhagrKTphQjUCwZf5A2akyOTmSR4\/CXF0DId69S2BZRArKTphQjUCwZf5A2akySUmZw4Y56eishdi27RHLIlJQdsKEagSCLfMHyk6VwVs8lQDKTpjQcoVgy\/yBslNlUHYlgLITJrRcIdgyf6DsVBmUXQmg7IQJLVcItswfKDtVBmVXAig7YULLFYIt8wfKTpVB2ZUAyk6Y0HKFYMv8gbJTZVB2JYCyEya0XCHYMn+g7FQZlF0JoOyECS1XCLbMHyg7VUZWdmvW3JZIctkKBGUnVGi5QrBl\/kDZqTKZmeK5cy\/Sz2XUKOf09By2AkHZCRVarhBsmT9QdiqOhcUd+rmMGOGEspMFZSdMaLlCsGX+QNmpOCi74kDZCRNarhBsmT9QdioOyq44UHbChJYrBFvmD5SdioOyKw6UnTCh5QrBlvmDf9m1abM9IwO\/VEIBZVccKDthQssVgi3zB\/+yq1fP+sGDUJZFqhqUXXGg7IQJLVcItswfvMkuJSWrZ8898BJNTa3v3g1hWaSqQdkVB8pOmNByhWDL\/MGb7NLSsocPd4KXiLITFCi74kDZCRNarhBsmT9QdiqOu\/vb33+\/AmFv75WdLWFZREZ2PXrsYSlEAKDsEIRnONlpaa1mKUQAoOwQhH+qVVtTQd8rRGHoJwLh6PiEpXgCZYeoLyg7AdK16276oWze\/ICleAJlh6gvKDsB8u+\/N1F2CMIzKDsBgrJDEP5B2QkQlB2C8A\/KToCg7BCEf1B2AgRlhyD8g7ITICg7BOEflJ0AQdkhCP+g7AQIyg5REBeX1+bmtvChTJlyCu8zKAfKToCg7BAFwbuelADKToCg7BAFQdmVAMpOgKDsEAVB2ZUAyk6AoOwQBUHZlQDKToCg7BAFQdmVAMpOgKDsEAU5c+ZxjRoLCZlLyMK4uDSWRaSg7AQIyg5RhKtXr\/brN0BTszohBoTU++8\/vCVvAVB2AgRlh5QZMF3NmjXbE3KNkEBCxhGira29cOFCthpB2QkSlB1SNlJTU4cNG9aJkDRCPuSHLSFNmjQ5dcr95csoGj4+opSULLaN+oGyEyAoO6RsPH36tFmzZutkTEejDSE1a46Az4hGo0Y206ef+fPPq0VGYGAc+3XF4OcXI7eJbGzZ8qDIOH3aj21f1aDsBAjKDikbVHYJhWQ3mQDtaDF9Mq5fD2K\/rhicnF7KbSIburpri4yRI53Z9sUQEpI4atSR5s1tyxouLoHsVxQD\/ObRo49woaGR93QxCPh5926eH++CKMC9e\/dq125ISG2I+vWbHThwgK3gA5SdqhEenuzpGd606V\/a2sabC8luRJ7sxtBv+Cfjk7I7ePC53CaliaFDD7Pti+Ht2\/hOnXbJbVWaOHLEm\/2KYoBhu9wmpYnvv\/\/0U7SNjTfIbcVFw4abW7feVjgGDjwAr4dtXwzv3yc9exZZZHh7RwcExBYZ8Aay7YtBIsmF3yy3FY3g4MSqer7wnj17THR1YVf8OyEOhHQipC4h8+fPZ6vLDcpOdXj6NNLG5kGvXnul37E\/CKlvRkiojOlsCTEyMvr5Z9s1a27TWL361qJFV+bNcykcv\/125c2bT3xnHj0Kk9tKNrhvu1xUnOw+OZGw4mQnt0lpomnTLV5eEWz7Yvjf\/y7KbcWFgYFFvXqbioyvvnJk2xdDYmLmhAnH5bai0b79TiiJf\/65UWSw7Yvn2rUguU242LTp\/o4dj4uMFy+iYCyip6e3lJCU\/HKVELKdEBMDA09PT\/bbywfKThWIi0tfuNC1cWMbHZ21Mt+Hn7WkQ9ax0r5cV0J0IbsKjJDONpOSlSXOyMgpHJDPzWVtikMszpXbSjbALEVGcHAC274Y4L+GEjp92r+swbYvHvjfZd6f0oYwZVdCQDGw7YshISED+pVyW5Um2PbFA1KT24QLbe21enrrioxt2x5t3ry5KSGeMvtmCPi0mhPy7bffst9ePlB2SkxOjiQwMA56c0ZG62WrSkNjVfPmdidP+r17927SpEnm5uZmZmatWrXiaw+pMsieoIiPz\/D3jy0ySnPCWm4T2Zg9+3ybNtsLx6BBB0G+bPtiWLnyhpnZ1iKjhIGzre1Dtn0xVInsSghLy7vLl6\/+mpCsgrKDgL11\/\/792W8vHyg7ZcXF5fXy5ddq1LCSLZpataygGwLfEBinsHYfPohEoujo6OzsbLaM5CP8s7GZmeLIyJSIiCLi8uXAFSuuFxn37r1n2xcDjPf37HkqtxWNP\/+8OnfuxTlzLhSO+fNd2PbFo5jsOnTYaWw8piEh9wua7j0hZoRs2bKF\/fbywb\/soFMK7yPLIhVAdrZk5EjnOnU2ypYLhKPj03v3QpOTP2oOKRmcelIYiSTv0ER6enbhyMoSs0bFEx6eDGPzUgaYUebAyx8a5LPFBWW3jZBqhLx584b99vLBm+xgXzFu3DH6uq2s7rIsUgFs2gT7P1ofq6BW6tffNHTo4bi4AkfikNKAsqsSoFZDQhJbtgSVsTKGMDS0bNJkroGBAYxbjxLyjpCWhBgaGq5cuZJtVjwwagmXwo1g4N\/k5GS6loM32QE2Ng\/o60bZVSjZ2eLmzW3hff7yy93r13t88pwpUhwou0oGHLdrl2e\/fvt1dT+eSTM23vDzz5eOHvVOTs7Yt2\/f9OnTmzRpYm5u\/sMPPxw6dCgnp6Qz7D4+Pra2tn\/99VcjKe3atVu+fPnhw4ctLS0Lz9FD2SkfubkfHj4MO3PGPzg4QSz+1BlTpHhQdpWJnd2jLl0ctLVlJwzknZp4+jRSdmZfamqqt7e3n59fWlqaWFzSwBm02LJlS01NzZkzZ166dMnDw+Pq1as9e\/asXr26rq7u5cuXWbt8UHaI+sLJLjUVz95UFDExaStX3qhXbxN9qyHgbTcx2dChw67o6FTWqIw8efKkRYsWhBAY9t6\/f59l81myZEnr1q39\/eWnIqHsBIePjyg8XP5wA1IRdOzIpi5v2HCPpRD+8POLcXDwMjW1pm8yjfbtd\/7994137z4x17IEoN\/Xo0cPajonJyeJRP56j8TExM6dO799+5Yt54OyExCwo1u+\/HrbttutrfG7VxlAj4NWLMqOXx4\/Dp8y5RRUsqYmu\/oYom5dawuLuwEBsTk5il+O9vLlS+i15V30SMivv\/5a5Dg3NzfXxsZGbvI8gLKresTi3KSkTEfHJ3Xrstkkffvui4hIYavLAT0nlVAUkC\/5gIg6sGbNbfqGo+x4ASyWkJDxv\/9d0tVdR99YCPBdzZpWV67wMH0EOnGTJ0vvZUHIN998w7JFERdXxA17UHZVzK1bwevW3aldu8AlEC1bboMdIGtRDl68ePHjjz\/q6OjQ+hgyZEj\/\/v1r1KgBPzdq1GjDhg2snbqCsuORs2f9ly51NzEpMP2zX7\/9K1Zcj4\/PYI3Kx5MnTxo3bkyL+cyZMyxbalB2VcbFi69mzz7fqNFmrjJowBcPRgHl6erLsm3bNm1tbVofb968CQsLO3fuHF3U1dU9e\/Ysa6eWoOx44fz5gDFjjspdzAOZ48d9wsL4PPq8dOlSWrrm5uY+Pj4sW2pQdpWNWCzx9o7u02cfVxY0dHTWDhx4MCaG52firFsHA4o8RowYwR3F+Pfff2kS9pM0o56g7MpDdrYkIyOnSxd7roYhoIzbt995506FXDA6depUWrezZs1iqbKAsqs8RKK006f9fvrpgqGhJVccEFAc33134tmzSNaOP1JSUsaMGUPrY\/bs2VlZ7IL28ePH02SvXr1oRj1B2SlGRETysWM+AwYc0NJic3cg6tTZOGHCcX\/\/mIq70T8tWg0NjdJcVlEYlF0lsW7dnf79D8hOHIdo1myrtfU9X18RX4NWOSIjI01NTaE+atSocfo0u0+Rr68vLRrgxo1P36FMhUHZlRWJJHfv3qcDBx7Q17fgyhhixYrrN2++y8ys2FNetGg1NTXPnTvHUmUBZVfh+PiICh+Yg1i06EpCAj8Hbovj\/fv3tD4aNmz48GHebX9CQ0O7d+9Ok0ePHqXN1BaUXZn4779bXPVy8ccfV\/k9MFcCtG5RdsIlNjZt6NDDXHH067ff0vJuWlplTNlfvHgxrY+mTZs6OTktWrQIfmjTps2333576dIlvOkTyq40vHkTd\/as\/2efbeFqGKJFC7sFC1w\/ef93fmnSpAnKTujAO6OltaZ16227dnkqfImMAoDXqOxGjhy5cuVKfX19+LlDhw6WlpashXqDsisZT8\/w+fNdunbdzT2ZCKJLF3tr6\/teXhGlueMTv6xfvx4KuIRjdvHx8SWMV1B2lYFIlHbtWlBpbnTOI1evXpWKLg8HBweJRJKRkQE\/wCLsGwcPHhwVFcWaqisou+JIScmaO\/eigYGFhgZzHI38Mq6a20+8evWqffv2UMBdunR59+4dy8pga2vr4eHBFgqBslNZrK2tpaLLg6Xy7q0Y3rNnT8hAL0+xsYAqgbKTQyLJvXUrGN4W2VvDGhmt\/+orxyVLrsre\/rqqcHV1pQedzc3NL1++\/FDK\/fv33dzcJk+eXPJMY5Rdebl8+U1FzBopPyNGSJ+bSMigQYNYSsqUKVNo\/pdffmEpdQVlJ8u5cwGzZp2rVavA3ODRo4+cOOFbaacgSkNERISNjc3IkSO1tLQaSJkxYwb06UJCPjG5D2WnOC9fRvfrt19ff92ECccr\/\/hFybx48QJ2fVRqsjf24np2gGIzM1UJlB3l5Enfnj336ul9vKAVon37ndDLy8jIqaIxa0nAODojI4Nd5p2QkJ6eXvjeJ4VB2ZWZmJi027eD581zkZ0b\/MnHRFUyt2\/frl+\/PhjN0NDw9evXLPvhw82bN83MzCAPw9iLFy+yrLqi5rITidIuXXrdv\/8B2fMPMICFXbi3d3TFzQ2uKlB2ZQP+xpEjnQs+nnWVmdnWCxdesRYCAPZ7K1askPbeSPfu3aOjo9mKDx\/69OlD8wMHDhSJhCXoykdtZZeUlAlf0lGjjhgYFJgbvGiRG+hPaMMUvkDZlZZ16+6A1OQ0BwH1ERKSKBZXyCUQiiEWi8eNG0elNnfu3KysrPj4+GXLljVu3FhTUxOS1apVCwoKqqpzasJBPWW3YsV1U1Nrbe2PV3pBLF7sBqMTVdUcBWX3CV6+jN6792mTJgVmVEI0bLh52rQzr14VcdusqiU9Pd3Jyal9MfTq1cvR0TEyUohnVCof9ZFdZqY4MDDu5s13cnODGze2mT37\/Pv3SaydSoOyK5bHj8P\/+su9QYPNcr25du12WljcqYQrARUjNjY2tHhYI0SKmsjuyZMIGH+0a7eDq2GIbt12w\/fUw+O9avfmZEHZFc24ccfq1Nkoe+CWxsmTvtHRqRIJPtNLFVB52cXGps+b5wKDVi2tApV89qx\/TEyauh3HQNnJ8+5dQps227mygDAwsGjbdsecORcq+rp9pJJRVdllZ0t8fUUjRjjLzg02NLT8\/PMdv\/9+RfVOs5YSlF0RLFjgypVI3777d+zwFIl4vqcmIgRUUnZubm9+++2y3O3RBw8+uHv3k7g4+WfQqBUouyJITMyAv6Jly23HjvmIRDhoVVlUTHYXLrwaN+6YickG+kfRaN9+5\/nzATBoxTJG2RVNUFACDlpVHtWQXVJS5t27IUOGHKJ\/C42aNa3atNnu5RXBGiEoO0SdUXbZQX\/Nzu7RlCmnQG30D6Exbdrp48d91Oc0aylRO9l5eIRs2ZJ3z14EUWrZrVt3B\/pusvOitLTWLF7s9vBhWHKymp6CKBl1kV1GRk5wcOKgQQfpK4SeP1uBqDFKJ7vsbElERArozNzclr5yGrVrb5g48cS7dwmsHVIUFSK7X365JJwudGRkyv79z+bPd5F9ruWsWep+KzcEUC7Z+fiI4AW3bLmNK2OIzp3tlyxxu3r1rTCnuAsKPmV3+rQfFcqQIYeSkwXRdTp8+EXPnnvkrnaG2L37CWuBqDHKIrvo6NSlS92bN7fT1i5wMY+9vVdQUILaX+JcWviU3YMHoQ0abILPoMplFxubvn37Y339Avfn0tFZa2y8Yfr0M3iaFaEIXHY5OZKoqNQxY45yNQyhq7vW1NR63jyX9HR1f15SWVEp2UkkuY8fh0OvrXXrAl19iO7d92zceE9od51DqhYhy+7GjXd\/\/30dds9cDWtqru7TZ9\/WrQ9hX84aIWVBdWT34kXUtGlnzMy2VqtW4N41Y8ceO3DgeXBwgliM3X2kAJzsunSxZykBcO5cwNixRxs2LPCs4WnTTjs7v3z\/PgnnBiuMKsguMTHzjz+uVq\/+8b7BGhqrqle3gL0ivCTWCEEKERgYTwvGxGQDS1UdmZniJ08i+vc\/wJUxhK7uOihjyLNGSDlQBdkNGFCgPho1spk169ydOyHYlUM+Ca2ZqpVdVFSqk9PL\/\/u\/87Jzgz\/7bMs33xyBPHbl+EIVZOfqGkjrQ09v3c6dno8fh+OxW6SU0MqpQtlZWt7t0WMP9ODoK4HQ17dYuPDyo0dh8fF4bI5PVOSY3aBBB1etusUWEKTUUL9Usuygs5aRkQOD06ZNC9w3GPbWo0cfwbnBFYTqnKBAEAWglqlM2QUExG7efL9FCzv6X9No337nnDnn\/f1jsrNxbnBFgbJD1BrqmsqRHXTlFi9269TJXu5G\/xs33vP1xUlRFY6gZQe9\/W3bHmlqrsY54kgFQXVT0bKDSh41ypn+XzQ0NFbVq2dtY\/MAT6NVGkKUXXa2xNs7+vRpP+726Fu2PGDrEIRXaIFVkOzi49Pv3w9dt+6OkdF6+h9BVKu2pmtXB0vLuzExePvrSkVwsvPzi\/n118uff75DS+vj3ODevfdGRKSwFgjCH7TAKkJ2ly8Hfvvt8SZNbLgyhpgw4bit7cM3b+JxQknlIyDZZWeLV668UbOmFfTwZetj9OgjUBw4kkUqAlpj\/MrO3z8GvgKye2sIfX2Lu3dDxGIJVnJVIQjZ3bv3\/scfL8hWBkTdutbjxh27di0IiwOpOGix8SI7GJZeufKmX7\/9soPWevU29eq1F++yIwSqUnYpKVlnz\/rPnn2+fv28rbiAWlmyxM3VNbA8B\/4QpDTQkiu\/7BwcvIYNO6yn93FusKGhJdS2u\/vbyEg8AiMIqkx20GXr1GmXrm6Bc\/AQy5dfS07OysmRsHYIUpHQqiuP7Bwdn7Rtu0Nbu8CgddCgg8+fR+GkOUFRBbILDk4cO\/aY7L1JdHXXtWxp9803RwICYlkjBKkUaAUqILuQkMQ9e562alXgZmLm5raTJ598+zaeNUKERBXI7smTCFNTa64+OnbctWXLw6dPI9lqBKlEaBGWSXZQq+vXe\/TuvU920Kqjs3bpUvfHj8NZI0R4VIHsoqNTe\/feSyvM1vZRQkIGzqtEqgqqqtLLbtasc7VqWckOWqHmYSQrEqVlZ+OxF0HDm+zCwsKmTZumq6vbnBB9QpYtW\/b69Wu2rhAODl5LlriFhSWzZQSpIkojO9hzBwTE2Ng8qFXr42lW8B2MYZctu4bnH5QF3mQ3fPjw1oRAt\/4ZIbaEdIPo1s3b25utRhBB8knZubu\/hd4cdzEPjbFjj+7a5enjI8J5UUoEP7JbuXIl9OZOECIhBMpHTEgsIV9qaPz555+5WA6IgKHyKlJ24LJRo5yNjNZraq7mNGdqau3m9uaTkw0QAcKP7EaMGAGjVygc2VhMgGaE\/FejhtXAgQdHjz5Snli+\/Nrjx+HlDE\/P8KCghHJGeHgyzoxRDRISEgj5DcLYeHl6OrtTZnx8updXRM+eeYeVuTA23tCpk72DA84NVmJ4k90fhWR3PU92wL+yRVO1AbvoDh12lTP69t33++9XQL7ljJMnfcsZLi7FHhVFPomnp+d3331HSD0IHZ1Gv\/7668OHDw8ffjF+\/DHZx7PWrGn1\/fenz50LSE7OYlsiyglvsmtZSHbWeaYzh54dVzcYsgHfonJG7drrW7XaVs6ALsyiRVeWLbtWzmCloCS8fPmydevWUKA7CXlCyBpC2mppmZqaGhp+fGwTxODBB+\/eDUHNqQb8yM7Ozk6PkP2EZEs1l0hIIIxgq1WbM2eOv3\/M+fMB5Yx16+506LCznNG69fbGjW3KGTAkl\/0yYPAYoO+xY4+VMxYvdvPyCn\/5MrrkGDNmTP\/8Q8w0XhDyWd7uGfbaebNJxow5GhKSyOobUQn4kV18fPzMmTPrErJIWraTCGlIyPDhw4OCglgLAZCQkPHsWWQ5w9n55X\/\/3SxnLFjgKvcVVSC6dHHgNIFR1jAgZJ+M6WjMJURHx+S77xzv38cncKog\/MgOSE1NPXv2LOwwYec4dOjQI0eOREVFsXVIQTIzxfHxGeWM0NCkFy+iyhlHjnivXXunnDF06GE5lQg\/mhLiWUh2sPcwMalz4wY+uUk14U12CFIegoISzpzxL2f88MPZli3tShP6+vrbCpoum5DxhLRt25a9IETlQNkh6siyZcs+J8Q\/33RiQk5Lz8uuWLGCtUBUjjLLLj4+3tHRMS0Nb5+PKDFRUVH9+vVrQcg4QlYTMpmQBoR0++KLjIwM1gJROcomu8zMTCsrq6+\/\/jo5GS9rRZSbkJCQmTNnNmjQwMjIqEmTJvPmzcNduGpTNtlZWFgQQlB2iMoQHR196xaekVALyiC7a9eu1alTB2WHIIgyUlrZhYeHQ1c\/b9Ilyg5BECWkVLITiUTffPNNhw4dUHYIgigpn5ZdXFzcjBkzHBwc6AE7lB2CIMrIp2V34cKFkSNHwg+bN29G2SEIoqR8QnYuLi7ff\/\/9u3fv4GeUHYIgyktJsgsODjY2Ng4MDKSLKDsEQZSXYmUnEokGDRrUvXv3X\/Pp27cvyg5RMXJzc8VicXYhcnJyIM8aISpBsbJbvHjxsGHDJsvQuXNnlB2iYkRERGzfvr1Nmza0tqtVq9ayZcsuXbrAmGbkyJFHjhyhx3AQFaBo2VlZWc2bNy8hIYEtS8FhLKKq\/PXXX7S2a9euDYJ7\/fr1rl27wHqQGTx48OXLl1k7RJkpQnY7duyAPp1EIv9MGZQdoqpwsmvbti33PLyzZ89qaWnRJM0gSo287Pz8\/MaNGxcTE8OW8wH3rV69mhYEyg5RMWhhA3SWFceMGTNo\/scff2QpRGmRl1337t2nTp3KPVaOAzITJkygH3z79u3j4uLYCgRRcu7fv08LG3B3d2dZKS9evKB5GN6yFKK0yMsOPldtbe0FCxawZSl79+5duHAh7dIDGhoavXv3fvIEn6GJqALOzs60sIHCR29oXl9f\/+rVqyyFKCdFn6BAEDUhMzNzyJAh1GhDhw5lWRnoKpAdnqZQdlB2iFoTGBjYrl07arTDhw+zbD6+vr50FcpOBUDZIWrNtWvXjI2NqdE8PT1ZNh8rKyu6ysjIKCsLH5Wt3KDsELXG0dGR6qx\/\/\/7R0dEsm0+nTp3o2o4dO7IUorSg7BC1Zs6cOVRnP\/74Y3Z2NstK8fb2rlatGl3r5eXFsojSgrJD1Bp9fX1wGUhty5YtLCUlKSlp0qRJ1HTLli1jWUSZQdkh6ktYWBjVmaGh4YMHD1hWyunTp01MTGBVv379QkJCWBZRZlB2iPoya9YsKjvwGktJcXJyMjU1hfzgwYPv3bvHsoiSg7JD1JS3b99Ch47KrlatWsHBwZC8devWlClTIF+zZs0VK1YUvm4SUV5Qdog6EhoaumTJkvqFaNSoUadOnWbMmBEQEMCaIqoCyg5RR8Bl0IkrTOGpdojKgLJDEEQtQNkhCKIWoOwQBFELUHYIgqgBHz78P6JvIF0e6Wp\/AAAAAElFTkSuQmCC\" y=\"2\"><\/image> <line fill=\"none\" id=\"svg_3\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"121.5\" x2=\"197.5\" y1=\"28\" y2=\"202\"><\/line> <line fill=\"none\" id=\"svg_4\" opacity=\"0.95\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"20\" x2=\"301\" y1=\"75.25\" y2=\"157.25\"><\/line> <line fill=\"none\" id=\"svg_5\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"23.5\" x2=\"301.5\" y1=\"200.25\" y2=\"33.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_6\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"194.5\" x2=\"125.5\" y1=\"81.25\" y2=\"153.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_7\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"22.5\" x2=\"299.5\" y1=\"201.25\" y2=\"157.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_8\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"200\" x2=\"127\" y1=\"207.25\" y2=\"155.25\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"’Times New Roman’, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_9\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"157.5\" xml:space=\"preserve\" y=\"107.25\">O<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"’Times New Roman’, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_10\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"153.5\" xml:space=\"preserve\" y=\"197.25\">I<\/text> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_11\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"160.5\" x2=\"161\" y1=\"117.25\" y2=\"178.25\"><\/line> <\/g> <\/svg><\/span><\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-01 06:33:28","option_type":"math","len":0},{"id":"5614","post_id":"7584","mon_id":"1159285","chapter_id":"1159392","question":"<p>Cho t\u1ee9 di\u1ec7n ABCD. G\u1ecdi M, N l\u1ea7n l\u01b0\u1ee3t là trung \u0111i\u1ec3m c\u1ee7a AB và CD. Trên các c\u1ea1nh AD và BC l\u1ea7n l\u01b0\u1ee3t l\u1ea5y các \u0111i\u1ec3m P, Q sao cho <span class=\"math-tex\">$3\\overrightarrow{AP}=2\\overrightarrow{AD},3\\overrightarrow{BQ}=2\\overrightarrow{BC}$<\/span>. \u0110\u1eb3ng th\u1ee9c nào \u0111úng?<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\overrightarrow{MN}=\\dfrac{3}{4}\\overrightarrow{MP}+\\dfrac{3}{4}\\overrightarrow{MQ}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\overrightarrow{MN}=\\dfrac{1}{2}\\overrightarrow{MP}+\\dfrac{1}{2}\\overrightarrow{MQ}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\overrightarrow{MN}=\\dfrac{2}{3}\\overrightarrow{MP}+\\dfrac{2}{3}\\overrightarrow{MQ}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\overrightarrow{MN}=\\dfrac{3}{2}\\overrightarrow{MP}+\\dfrac{3}{2}\\overrightarrow{MQ}$<\/span>"],"correct":"1","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>A.<\/strong> <span class=\"math-tex\">$\\overrightarrow{MN}=\\dfrac{3}{4}\\overrightarrow{MP}+\\dfrac{3}{4}\\overrightarrow{MQ}$<\/span>.<\/span><\/p><p><span class=\"svgedit\"><svg height=\"290\" width=\"290\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g><title><\/title><rect fill=\"#fff\" height=\"292\" id=\"canvas_background\" width=\"292\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g><title><\/title><image height=\"288\" id=\"svg_1\" width=\"286\" x=\"1\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAR4AAAEgCAIAAADt24tcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAC9xSURBVHhe7Z13QBRH28BBmjSxCyqKKPbeTaKxYAkq4VVfIxor0ajxtYUYzauG2BKNYmzYE7ElqMQu0ajYBTX2XrABolgQRfr5Pd89D\/MucMBx3N7t7c7vD+We2d3bMr+dmb3ZGbP3HA5HBLhaHI4ocLU4HFHgapkqqamp9BdHknC1TBVfX1\/6iyNJuFomSZcuXczM+LWTNPzymB6jRo0Cr7haEodfHlMiIyMjMDAQvQIoypEk\/PKYEmPHjg0NDSWxuFrShl8ek2HhwoUTJkxITk4msbha0oZfHtNg8+bNH330Ef5NYnG1pA2\/PFJHpVIFBwe3b9+ePnO1TAR+eaROVFSUt7d3fHw8feZqmQj88kia0NBQOzu7ztkhsbha0oZfHuly9epVHx8f+iCAxOJqSRt+eSRKRkaGvb39+fPn6bMAEourJW345ZEorq6ujx8\/pg8CduzYQWJxtaQNvzxSxMbGBswJCAiIiYmh0Pv3586dCwkJKVu2LHoFTJ48OTo6mpI5EoOrxeGIAleLwxEFrhaHIwpcLdPg9evXgwYN6tixY7t27QYMGHDgwIHMzExK40gSrpYJcOPGDXpwIQBMo2SOJOFqmQA+Pj7kU3YCAgJoCY704GpJndu3b5NJubC1tU1LS6PlOBKDqyV18lGrePHifFwnycLVkjpRUVGgEMmUHTc3N1qIIz24WlJHpVJ5e3uTTNl5\/fo1LcSRHlwtqZOYmNi8eXOSSYCHhwctwZEkXC2pM3XqVHSpXr16+AfDy8sLyjRajiMxuFqSZtOmTWiRnZ3dxYsX8e9SpUpZWFjAH\/DvwYMHaVGOxOBqSRdoSrEHGMuWLYMI\/j1s2LCZM2fi3w4ODrgwR2pwtaRL7dq10R9\/f3+M4EdQC+qBjRo1wo8jRozAVI6k4GpJFD8\/PzSnYsWKT548gQjr7oRqhYWF4UeoH0ISrsWRDlwtKSL8mXj9+vUYbNOmDUZQLYg0bdoUI56envx5htTgakkRfMsYmDt3LoU0qZWWltasWTMM\/vbbb7gYRyJwtSQHqwo6ODi8ePGCogK1vvjiC1ZGgVEYLF269LVr1zDIkQJcLWkREhKCqri4uFAoC6bWyJEjKaTG19cX4+PHj+cvcUkHrpaEOH\/+vKOjI3qyZMkSimaRl1qxsbFOTk6YhM\/oOVKAqyUhypcvj4aMGTOGQgLyUgvYuHEjJtWuXfv58+cU5RgVrpZUGDBgAOrRqVOnjIwMigrIRy3A09MTU729vSnEMSpcLUmwZs0aFAO4ePEiRbOTv1pRUVHOzs64wJEjRyjKMR5cLePz4sULVAKYNm0aRXORv1rAwIEDcYE6deq8efOGohwjwdUyPp988gkq4eXllc8L+QWqBdjZ2eEyM2bMoBDHSHC1jExQUBDKANy9e5eimtBGrX\/++adEiRK4WGhoKEU5xoCrZUzOnDmDGtjb2xf4g682agF9+vTBxbp3704hjjHgahkNaA7Vr18fNfj0008pmjdaqgWwKRcmTJhAIY7B4WoZDfbWsJbFi\/ZqbdiwwdzcHJaEf6GKSFGOYeFqGYdFixahJ87Ozvfv36dovmivFsCeFrJ5+zkGhqtlBK5fv475Hti7dy9FC6JQagEuLi64\/I4dOyjEMSBcLUPz7t07zPFAnz59KKoFhVVr2bJluLy9vf25c+coyjEUXC1DM2vWLMzxpUqVio+Pp6gWFFYtgHX25XMvGB6ulkE5cOAA5nUgMjKSotqhg1oqlcrd3R3X+vvvvynKMQhcLcPx4MED9vbHr7\/+SlGt0UEt4Oeff8a1XF1dhTMjc8SGq2U4vLy8MJdDPY1ChUE3tQAHBwdckb\/kb0i4WgaCvTPSqFEjChUSndWKi4uztLTEdbdt20ZRjshwtQzByZMnWcfZQ4cOUbSQ6KwWMHfuXFy3YcOGCQkJFOWICVdLdGJjYzFbm5ubr1ixgqKFpyhqAbVq1cLVf\/rpJwpxxISrJS4qlapDhw6Yp5s2bZqUlEQJhaeIal25coVVCwv10J+jG1wtcTl+\/DjmZisrq5s3b1JUJ4qoFtCvXz\/cQrNmzfi7kmLD1RKRy5cvY1YuVqxYcHAwRXWl6GoBbEjQdevWUYgjDlwtsXj37l379u0xH\/v5+VG0COhFrdOnT9va2uJ2wHyKckSAqyUWY8eOxRxsbW2tcYSmwqIXtaDt17ZtW9wOG+CaIwZcLVFgXWPLlClz\/fp1ihYNvagFxMTEsE4hQUFBFOXoG66W\/klOTq5cuTLm3dyD4OqMvtQCtmzZAs0\/3Fr+A3JwdIarpWcSExMxywKjRo2iqD7Qo1oAawcOHz6cQhy9wtXSM2wqVKh0Xb16laL6QL9qpaamstlco6OjKcrRH1wtfZKUlISZVYwJvPWrFjB79mzcoJ2d3a1btyjK0RNcLb0RGxtrb2+PmXXs2LEU1R96VwsoXbo0bpOP\/aR3uFr6QaVSTZ48GbNpjRo1KKpXxFALYHZduHCBQhx9wNXSD+xpu6WlZVE6CuaDSGpNmzYNN1u9evV3795RlFNkuFp6IDIykr1uuGXLForqG5HUio+PZ0OCjh8\/nqKcIsPVKiqZmZlNmjTBrCnqg2yR1AJevXplZWWFG+djP+kLrlaRSE9Pb9myJWbKdu3apaamUoIIiKcWAOUVbrxFixYpKSkU5RQBrlaROHz4sIWFBWbK7du3U1QcRFULdMI6LRzOnj17KMopAlwt3WEdL4oVK\/bLL79QVDREVQsICwtjtwk4NIpydIWrpSPv3r1jXcjhj7dv31KCaIitFtC3b1\/8CqjcJicnU5SjE1wtXVCpVCEhIZgLS5cuTVGRYWqJ+oicDbh7\/PhxCnF0gqulC9AawfwHVcH9+\/dTVGQMo9aBAwewWgiOvXr1iqKcwsPVKjSQs2vUqIG5PJ9ZvfWOYdRKSkpizzyHDh3K35XUGa5W4cjIyOjcuTPmPE9PT4oaBMOohbBO8VCIUYhTSLhahWPSpEmY5ypUqKDllHP6wpBq7dy5k70r+eLFC4pyCgNXqxC8efOGjdkSGBhIUUNhSLVSU1PZfLCGrPTKCa6WtiQnJ9vY2EBWMzc3\/+KLLyhqQAypFnDjxg3W+4lPcaIDXC1tmThxIuazsmXLPnz4kKIGxMBqAWxQKmh68QF3CwtXSyvY7MO6zd+jFwyvFlCiRAn80hkzZlCIox1crYKBqlHJkiUxh02fPp2iBscoasGx4xwr9vb2\/GeuQsHVKpiOHTtinu7ZsyeFjIFR1AJYp3hXV1cDf7VJw9XKD5VKNWHCBMxYHh4eaWlplGAMjKXWnTt3WLVw\/vz5FOUUBFcrP9is3ubm5seOHaOokTCWWkBSUhKcAfz2p0+fUpSTL1ytPElOTmZDsnz55ZcUNR5GVCszM9PPzw+\/3dPTMz09nRI4ecPV0oywQxPkaSnMRmVEtYDHjx+zoeBCQ0MpyskbrpZmtm7ditnIxsbmzJkzFDUqxlUL+PXXX1nvJ2PtgwnB1dIANCcwA1lZWUlndD6jqwX8+9\/\/xn3g1cIC4WrlBDJuixYtMAN16tTJuE8FhUhBraioKNwHKMzPnj1LUY4muFo5GTFiBOae5s2bU0gaSEEtYMOGDfiuZL169RISEijKyQVXKxvBwcGYfR0dHaV2V5aIWq9evWrcuDHuycCBA\/m7knnB1fr\/h+w\/\/\/xzly5dAgIC2K8369evp2TJIBG1ANAJ9wRO182bNynKyY7S1Ro+fDj78YrRuXNnSpYS0lELWLBgAe5MxYoVpbA\/EkTRaoWHh2Pf0xw0atSIlpASklILqoV169bF\/YEyn6IcAYpWa86cOZg5cmP4l4gLRFJqAQcPHmRDgoo0OYtJo2i1unfvjjkjNxKsE0pNLWD58uW4S\/b29tyuHCharaCgIMwZuZHg9L4SVCsuLo51il+yZAlFOWoUrVZMTIyrqyvmDIa5uXnfvn1pCSkhQbUAuD1ZW1vDXrm5uUlqx4yOotU6d+6ck5MT5lekUqVKwcHBlKwmMzMzNjuUkAuVSgV3cVpIjX6zmjTVAgYOHIg75uLikpGRQVHFo2i12OPBH3744ZWa3FNLgTAXLlwoX7588SwoIRcoKi7To0eP5ORk\/eYzyap19uxZ3DEo8ENCQiiqeBSqFmT6fv36YYaoU6dOgXPefP7557gwMG7cOIoKSE9Pb9iwIS5gZWUlxuifklUL+Pvvv3HfypUrxycQQhSq1uHDhzErQAmze\/duiuYBaFO5cuVWrVrhKvXr16eELF68eNG\/f\/+qVaviAiLNXSJltaDazEYQGTx4MK8WAkpU69GjR5gJihUrps1gDxEREdAG+\/nnn3GtWrVqUUIWCxcunDVrFqYCFNU3UlYLgGqzpaUl7uHevXspqmAUp1ZaWpqPjw\/mgF69emlzfw0KCvr2228XL16Ma5UoUYIS1Kxbt87b2xvaaZhqY2NDCfpG4moB33\/\/Pe6hEUdrlA6KU4sVLw4ODlqOt\/zBBx9ER0drVOvixYvQZlOpVGxaIPGmbJS+WikpKR06dMCdhBqywt+VVJZa+\/btwwsPXmn5zsjLly\/bt2+fnJwMrXMc893KyurIkSOQBMEePXrcu3cvPj4eGmO4ZVAXV9Q70lcL2L59OzRfYSdLlix56dIliioSBakF91RoJmHuhKY2RQsiICDAz88P\/mBqQQtt06ZNsDVPT09wFZL+\/PNP3Ky5ubl6JVEwCbWAn376Cd\/N6dSpU2pqKkWVh4LUqlixImbNzz77jEIFAf40bNgQCi78G9WCfAPtq\/Hjx7N3utij+RzNMP1iKmo9ffrUw8MDd3X06NEUVR5KUeuXX37Bi21vb6\/9CE1XrlypVq0afRDMldiiRYtGjRrhDzgZGRkYBE6dOoVL6p3bt2+XK1cOv0XiagFQYcZdhdvZnTt3KKowFKEWe3wHzaRCvVwELYelS5fSB4FaH3\/8MYUEtUFra+vXr19TVN+cOHECvwWQvlrAgAEDcG9btmypzGqh\/NVKSEhgvbO1b2IBKpUqx2BpDx8+hI3Y2dkJ31r\/4IMPcOMjRoygkAiYnFpxcXHu7u64w2vXrqWokpC\/WqxV7eLiUqg+OJs3b4Zi6vLly\/Q5Sy1hJ6Z\/\/vmHFWVjx46lqAgI1QLnKSptNmzYgDvs4OCgwP4ZMldry5YteHVtbGxu3LhBUS3YuHFj\/\/79vb29J02adO7cOQw+e\/Zs+fLl+Pfz58+hKjh+\/HhYBvHz84MKJKbqHaFaFDIFvvrqK9zn7t27m0Rhq0fkrBY0oFnTf9myZRQ1TUxULSjzHR0dcbd\/++03iioD2aol7DBat25diposJqoWsHPnThwpvmHDhtIZitgAyFYtqM5hRmzatGlycjJFTRbTVQvo2bMn7nnjxo0ppADkqdapU6fYa47yqIeYtFqHDh3CJ0nW1tYHDx6kqNyRoVpJSUmYBaEeMmzYMIqaOCatFsA6xdeuXVsGlQhtkJta6enp3bp1w6vYrFkz2Yz3b+pqAaz3k7+\/v6n8flAU5KZWeHg4DjDk5OT0+PFjipo+MlCL9X6ysbHBVwfkjazUOn78OF48CwsLCc6HUBRkoBYwePBgPIS2bdtSSL7IR63U1FQ2fMWAAQMoKhfkoRY0g9ngPOPGjcvMzKQEOSITtaDuzkZoKl++PEVlhDzUAgIDA\/FpYYUKFe7evUtROSITtdjg4yVLlrxy5QpFZYRs1AKgvMIDyT2Aj5yQg1qvXr2CWyBerQkTJlBUXshJrdjY2CpVquCxLFq0iKKyw+SvU0pKiq2tLV6nbt26UVR2yEktYO3atXgscE98+PAhReWFyV+nH374AS9S8eLFZTz5p8zUApo2bYqH07t3bwrJC9O+TteuXcPXHB0cHGTZxGLIT62oqCg2WokshwQ14et0\/\/79smXL4rWRaxOLIT+1gBkzZuAR1a5dW34v+ZvwdRo6dCheGA8PDwrJF1mqBbBhqubPny+zIUFN9TrNnDkTL4mjo6MSpvqUq1rh4eFsBISdO3dSVBaY5HW6cOECe3dVvHfmJYVc1QLYZO0dO3akkCwwvesEZVTNmjXxYkyePJmickfGagEtW7bEQxszZgyFTB8Tu06ZmZnsnRFo+z5\/\/pwS5I681dq3b5+FhQUcmo2NjXB0OpPGxK7T4cOHcaAFQDnvqwLyVgvo3LkzHl2rVq0oZOKY0nWKjo52dnaGs29tbZ1jMm\/ZI3u1gNatW+MBLly4kEKmjMlcp5SUlPbt2+Ophzrh27dvKUEZKEGtbdu24QHq0Mf60qVLpzQhxqTSWmIy14nNhyDLd0YKRAlqAex5xpAhQyikNevXr8d1ATc3tyZNmmCPAhB1yZIlhv9J2jSu044dO\/CUWVlZ\/fXXXxRVEgpRKyEhwcXFBQ9z9uzZFNUaXBH4448\/4OPdu3dZXyodXC0ipnGd2MD84s25KHEUohYwd+5cPMzKlSsXqlM8FE24oqurK4Xev\/fy8sIglIcGbkRI\/TpBOc6mAvH29qao8lCOWkCvXr3wSAs1s0yDBg1wLfbjGGQe1j7nauXkp59+wlPj4OBw7NgxiioPRakVExPDOl7v2bOHovki7DAVFBSEwYsXL0K2waB407fnhaSvU2xsLBsEd82aNRRVJIpSS6VSsdfwqlatGhcXRwl5s2nTJhxyA3jy5AkG2SthUPHhjzH+B7RomzVrhqdG1KmrTAJFqYXUqVMHj3f8+PEUypsuXbrgwoCvr2\/fvn2rVasGf3t4eKxevdoo8w9J9zqxwUlcXFyio6MpqlQUqNadO3fKly+Ph7x7926K5oGTkxMuCSdqVxas+DIKUrxOUB\/Yu3cvnimoECpwQsHcKFAtYNSoUXjIH3744aJFi86cOXP37t3coxeyuzDkFumMbSjF63Tz5k3Wip06dSpFlY0y1UpOTmY\/czFyDy7EfmiW1NCuUrxOcIvCM9W\/f38KKR5lqgXUr1+fDlsAuMSaT8Ib8ZYtWzAoBaR1naDux+oA0Ip9\/fo1JSgeZar13Xff0TFnx8HBgU0w\/ddff1HUzCwqKgqDUkBa14lNZmFhYbFkyRKKcpSqlqenJx1zLjZt2gQLvH37lj1GBiTVaVtC1+np06fsVyx\/f3+KctTwUktI8eLF4S787Nmz2bNnjxUwa9asxYsX08rGRirXKS0tbciQIXjiOnbsyKuCOWBqTZs2jUIKICYmBn+eykHXrl2l\/1aRVNRavXo1njVokl6\/fp2inCyYWrJ5v11Lrl69CrdaPHbG2rVrKVnCSEKtiIgIPGXQxDp8+DBFOQIUqxby4MGDwMDAYcOG4UkoVaqUpJ5YaMT4amVmZjZu3BhPWbdu3WQ2zqO+ULhaSEpKCqsf\/ve\/\/6WoVDG+WgMGDMCT1a5dOwpxcsHVQuDOy37F2rhxI0UliZHVWrNmDZ4me3v7s2fPUpSTC64WY\/r06Xgq3N3dnz17RlHpYUy1kpKS8ByZm5vLaWxHMeBqCalXrx6ejWXLllFIehhNrTdv3ri5ueEJ8vHxoSgnD7haQm7evAnVHDwhly5doqjEMJpaixcvxgFTnZ2d5T1dtF7gagmBFtfIkSPxhDRo0ODly5eUICWMo1Z4eDieF7j3KPm1fO3hauWmTJkyeE6k0wNDiBHUiomJqVSpEp4U\/s6IlnC1cnPjxg029IUEJ0Q2glpsvB5XV1clTI2lF7hauYFqYd++ffG0dOnSRWrzShparfnz5+O5cHd3f\/PmDUU5BcHV0ggUVlWqVMEzs2LFCopKA4OqBdmiZMmSeCJ+\/fVXinK0gKuVF4cPH7a0tMSTc\/nyZYpKAMOppVKp8PiBzp07U5SjHVytfPDx8cGTM3DgQApJAAOpBdViX19fPP46deooZ8o5fcHVyocXL17g00JbW9t9+\/ZR1NgYSK1jx47hcFbw79GjRynK0RquVv4EBgayOQ2fPn1KUaNiCLWuX7+Oxwx1Yv5avm5wtQqEDQlaqJHixUN0tTIyMrp3747H3KJFC2hxUQKnMHC1CiQzMxNPkbm5+bVr1yhqPERXa9KkSXjAUBvmTSyd4WppA5vfsHr16jExMRQ1EuKqtX\/\/fjxUOzu7kydPUpRTeLha2gD3bpztGpg5cyZFjYT+1YIaYGxs7I0bNx4\/fgw3DzzOr776ipI5OsHV0h42LphxH5jpX6127dpZW1tbWFhYWVnhETZo0IDSOLrC1dKeiRMn4rmqWbNmYmIiRQ2OBrXu3LkzderUHppYunQppNJyuXj06JGrqyselZCVK1fSEhxd4WppD+hUtWpVOFeWlpYLFiygqMHJs9TCCwk0b94cmkzsaYStrS3OwZybwMBAXCYHNWrUiIyMNOL9QwZwtQoFnC42SeT9+\/cpalg0q8VerQemT5+OQWYXgJEctG3blpLzBe4oI7PYsmUL5BXg5s2bT5484frlBVerUKSlpfXu3RvPWOvWrVNSUijBgGiW5OzZs7hb0CKMiIjAYIFqCRcoLNA2g\/IQtkDb4mSHq1VYQCc8Y+bm5iEhIRQ1IJol+eabb3C3ypcvn5ycDJG4uDiMAJMnT8bFcvDXX3+xV9N0Y8KECbStPICd8fX1hToq3JOAESNGwFkDrl69SkvIFK6WDmzfvh3u13DSypUrZ\/ixnwqo2g0ZMgQ+Pnr0qE+fPvCxZMmSU6ZMgdIWF8sB3CfyKrigUIIk2A4sduvWrb1ZfJVFSzULFy7ETeXFy5cvGzRoQBvVBNwLuquZOXPmUjVwfs+cOUPrmyxcLR2AGzHrCfTJJ5\/klW9FQoNakH1xbwDI9D179oQ\/nJycgoKCtGkL3bt3b+LEiXXVbNq0ady4cdbW1ri1KlWqQJuKltOJ27dvwx1Ih7KR1s+bt2\/fSnlQO66Wbly8eJHlFta0MQwa8tzKlStxV6D99+TJk9OnT3\/44YdQsIIYwcHBtJDWqFSqP\/74AzcIwHEWpUGVmZn55s0bkB92DJgxY4a\/GjYwnUbq1KlD6+cNbAr2zVlNtWrV5qsxSh1dI1wtndm9ezeeOhsbG8gzFBWfnGq9fv26VKlSuCvff\/89BoXVMMiCGCwUMTExjRo1wi1YWlr6+flRgl5JTU29rCYyMhIKTABuE9Ak27FjBy2RN\/nLWbt2bTgDQNeuXfurCVVDK4sPV0tnIEt36NABz9748eMN1kE8p1rQLMGWn7m5uTBHQpbCnXN3d9d52LcffvgBNw7UqlVLUs8emqnBfdMSuEfQynkDZew\/\/\/yTz+\/sWsLVKgrQvHd0dMQTeOXKFYqKTE61li1bhntgZ2dHIfXPXFA5xHjNmjVfvXpFCYVn8eLF0FjCTQFQsFCCxFiUxZw5c6pnUToLqFrAzpcvX56Wzhs2hSwDGp\/I5MmT72YBdysEary0Zna4WkUkICCAvStpmPGOcqrVtGlT\/PrRo0dT6P37a9eusQ6Bffv2LWKRGhcXx0bhgaM1oXEyErKIjY198ODB48ePKSFvKlSogEeaPyWzcHV1rVq1au5xv7haRSQlJaVy5cp4DidOnEhRMcmm1qNHj\/C7Afa6y759+1xcXDDo6+url3eu4LYxf\/58NhBP3bp1z58\/T2nyAg7Tx8enZcuWeKRakrv3QG61hqmBSjsgwQEuJQg0dvAcOjk5aXNbLCL\/U+v48eOstQe3z3+pwZeiGzVq9NFHH\/33v\/\/V74ica9euBanwG+3t7ZcvX04J8iU9PX17FoMEwBlGsHagjVr4MQfOzs544VavXh0cHLx+\/XpY\/qIaXEvhTJs2zdzcHE4U5Gex58vOWSE0MNBsE1aZunXrJrUxUCXCgQMH8BShWqxuUyjANNyaYoHinU1xIvZI8UZWCwCX5s2bh0cLdxTINJGRkZTGyaJEiRJ4ilCtqKio27dv+\/v7j1Xj4eGBqfmjjVqwKWDu3LmQ84CXkpwEpCiwVg+c0rtiTpFjfLWQnTt3sjkWSpcuzcfWzQGeGYBVCDUCTdZz585BEbdy5coVanqqwfeXtPkFHL9FI82z6N2795dqpk+fvmvXLpOrbQ4cOBCPCKqF7969o6i+kYpaANwg4VDxmAFvb+\/cTQ7FQidF\/LGX6WsKCa2cN\/fv35fOz5jR0dE4KqaNjY14HW4kpBYALs2ZM4f1OQTCw8MpTdnQ6TAzE7UOw\/g5C6hKlFdTqlQpaKUgOOcgY9iwYbRa3nTs2JGWVtfExowZ842ap2rgrvpWTUZGBq0gMqGhoexnLpGa99JSC4H6DN5UAAcHh+3bt1OCgsGzARhGrdwkJSWhBsCtW7euqNm6devo0aO1mQm\/du3adACasLW1RYFr1apVX83XX3+9efNmfKFJDDIzM\/v164ff3rlzZzEmo5KiWgDcwNg0XICXlxclKBU6EcZTq4h0794dhKFj0JoCZwy9c+dOWFiYbi+ns0GdoVro6ekJDbCxY8fqcahMiaoFwB1r9erVrK9w5cqV9+7dS2nKA08CYKJqCXn9+vUfavz9\/fFXuIYNG9ZRQwepBkqwAjP69OnTaWk1UP5AWQT8qWb37t3QNL2hhlbIzvLly2nNLMqWLXvw4EFKLhrSVQuB42Q9egGoJOTVy07e0PHLQq0CgTrL0qVLV61aVeDjOyht6Lxoh5ub27fffnvo0CFYF5pYFM2FXnq3SF0tIDY2Ft9xBiwtLdu2bUsJSgIPH1CCWtqzcOHC3r17C597aQP+vrdu3Tr6nIt58+bh9hl79uxZmYv8q1EmoBaQkpIye\/ZsKKzxyKGqsH\/\/fkpTBnjgAFcrH06q2bVrFz7eDAgI6KKmetYozsilS5dg4Tlz5tDnXGicvT4mJoZ1gqlRowZsHzsGwt\/wRfHx8bRcFqahFgI6CXtFrVixwmDPao0OHTNXq2jcunVr06ZNjx8\/hjphPl1Ytm7dSisIgAoke87p4+ODwWPHjuEbRtWqVcvRKdGU1ALS0tK6deuGhwdUqlQpPT2d0mQNHTBXq2ioVKrk5OT8B8yEDEZLZ+f69es49ySwdu1air5\/P3jwYAxCISZ838rE1ALArqCgoJJZ043XrFlz586dlCZf8GABrpbOREZGdu3aFXu+I\/\/6179mzpxJH9RMmDAhISGBVsjOgQMH2K\/Mwsf9oBkGocEivDqmpxZy\/PhxKILxkIDAwEBKkCl0nFwtnYiKihoxYgTW3BAomljXRyjHIiIioGqX\/wNJNhm5p6cnhdRs374d48C5c+coarpqAQ8ePGAjdgBubm6GHK\/HwNBBcrUKCWSJ0aNHC6Vq0aLFn3\/+SclaA+0oWt\/M7MSJExRVI0O1ECjQWREPVWG5\/uqFBwhwtbQEmj2LFi2is6YGqnNhYWGUXEiWLl2KG4HmfY6xYX788UdMAmSlFnDr1q0aNWrgsVlZWc2aNYsSZAQeHcDV0gZojTtnTQ+JQNlSlOGSWPfiPn36CG\/f6enpOAYu4OrqKhwXQA5qAffv3x81ahQeIdCrV6\/o6GhKkwV0YFytgli1apVwJJLKlStPmzatiDPg3Lt3r3z58rjBHK+Tgq7M4RwzFshELQAqANOnT2cjsZUoUeLSpUuyeTSPBwVwtTSSnJx84cIFoVTQOvjss8\/00qU9PDycNioYjgnx9fXFeI5nG4B81ELi4uLYk0Nogxl9rmh9gUcEcLU0ApUx4VN1yPF6HMF\/wIABuNlvvvmGQmpWZg3h7ubmZtq9MbQE6rvCHys++uijt2\/fUprJQgfD1coOVEyg8i\/sQ9imTZu8+rnrBtQGadNmZgcOHKDo+\/fjxo3DAUugbNQ4OJQM1QIyMjIWLFiApwOQwfuUdCRcrSxu3rw5ceJEoVRQG9T7lPtwU2bTCAGtW7f+UQ12kvr888\/zGclHnmohd+7cqVWrFp4U4LvvvhPjZVLDQMfA1VJ3k4VLaZ815pmVlVWdOnU09vorOqvzQJtfUOWsFpCamurl5YXXAPD29qYEU4MOQPFqhYSE5HiFZO3atdLspS1ztQA478IJvkqWLHnq1ClKMx1o7xWs1rZt29zc3OgsqKdlCg4OlvK88vJXC7l48SKbIgz4z3\/+Y5jpKvQF7bfy1ILLBCVVmzZt6PjVE8RMnjw5NjaWlpAqSlELyMzMFA5lM2DAgAcPHlCa5KGdVpJaUN24efPmJ598QkeunhhgypQpYo\/Vri8UpBagUqmOHj1KF0r95LCIcysbDNpjxagVERHRsGFD4YCHPXr0iIqKomRTQFlqAWAX5E5WwYA2sZ+fn0iDPOoR3FtA9mrdu3fP29ubjXEPQMF1+vRp4VuGJoHi1EJevnzZu3dvunTqV+IePXpEaZKEdlTWasXExPTv37948eJ0qOreQ3v27DHRYRoUqhayd+9e9iYPFF\/6\/RVfv+BOArJUKyEhYd68eWy64WLFilWuXHnbtm2UbJooWi2oYzx79ozN4QBXdPDgwZQmMXAPAfmptXr1ajYcAxIZGSnekNQGQ9FqIfHx8ezdbKBt27YSfHJIOycvtQIDA+vWrcu61VatWnXJkiV6HBrauHC1iF27drFrDJVDqQ1lgzsGyECt1NTUsLCwDz\/8kA5J\/Tv+0KFDb926RUvIAq7W\/0hMTGQDHUPlcODAgdLpMo97BZi0WlADj46OFg4mCXexUaNGFeX9X8nC1cpGUlJS\/\/796bKrO1Pnfg\/HKNAOmbJaV65cadOmjbAHYMeOHcE02Q5nQv9zskhPT9+6dStdfHXHauF4jsaC9sZE1Dp58uSqVavWr19\/6tQpMCcmJmbYsGHCwqp169YXLlyQq1QIV0szkIPh8mM+sLCwWLRoUVxcHKUZA9wTQOJqgTCffvop7asaLy8v9gIInMn27dtv2bKFlpY1XK38gHst62vTqlUrI05Hj\/sASFmtN2\/eNGnShHY0F2XKlAkKCqJFFQBXKz\/S0tKghUBZw8ysdOnSa9asoTTDQnsgbbWg4iccoEIIVA5lMIxCoeBqFcy1a9fYW9xQiH3zzTeGH4kNvx2Qslpz586lvczF4cOHaSHFwNXSljFjxrBbcps2be7fv08JBgG\/F5CmWiqVKjw8vEePHrSXuYDCnxZVDFytQpCYmGhnZ4d5pVixYps3b87IyHj+\/PmJEydu37796tUr8Xpn45dCmSnBFysSEhLYCJgagQaYvB8GaoSrVTgePHhA+UVtl4eHh5WVFX4E65o2bUrL6Rv8CqiXSqobOBTd3bp1c3BwwN0DPD09c3QI7Nq1q6m8FKdfuFqFBjK3v78\/ZZxcDBo0iJbTK7jxXr160Wdj8\/Tp0ylTpgh\/\/\/Xy8oLSOz09PTk5+ezZs4vUHDlyJC0tjdZRGFwtHZk+fTrlqexAIUZL6BXcuBTUgurf1KlThSVVs2bNVq5cScmcLLhaOsJ+Bs0NLaFXcMvGVSslJSU4OBj3BLG1tYVbDCVzssPV0hGo6lD+yo6FhQUtoVdw40ZUa8mSJZUqVYLmJe6Ji4tLSEiIbF4AEQOulo5ERUWxSaOFWFpaTps2jRbSH7hxo6i1adOmTp064Q4AUBWcNGnS9evXKZmTB1wt3ZkxYwbcvCnHZWfMmDEPHz6k5fQBbtbAal24cGHIkCH41QA0I8eOHVvYUTVDQ0OnTJnyeRZ79+6lhCx27NgxYcIESBo1atSaNWtu375NCSYOV6tIPH78GBobxYsXd3Jygkwza9YsVmWCyOXLl2m5IoPbNJhaN27cEA5VC7Xcjh07UppOVK9enbZlZpb7N67t27fDV+zatYs+ywKulp7ZuHEj5SAzs7Jly8ItmRKKBm7QAGrFx8fDt8Ce4zcCTZo0gdpvEX\/zZT+1Az179qRoFqCWl5eXiY7clBdcLf2TkpLSqlUrzEbm5uZQp6KEIoBbE1WtpKSk0aNHC3+qatasWVhYWNEHadyyZQucB6g\/42ahPIeqJqWpmTx5ckREBH2QC1wtsViwYAF7QO\/q6nr27FlK0AncjkhqPXjwYP78+fgVSO3atZcuXUrJRSYgIACnsGAdNebMmYNJCBSMMhjCKQdcLW1RqVQzZ878+OOPsZMuNEUKfEr2+++\/C1+y+PPPPymh8OAWxFDr4MGDuHEEdhgilKYnatSogZW958+f09eYmbEpquDE+vj4yK+TIVerYO7fv9+jR48yZco4ODhATQY+QhEEmQMb9\/kPnpGQkNC4cWPMTJBrO3ToQAmFBLegX7V27tzp4eHBnrs4OjoGBQWJMQPIp59+ih2X09PT2TvI3bt3xz5QnTp10mMJKR24WgVw+vTpmjVrQlbw9fUV3lnPnz+PWaR169YUygO4YUOWZe14d3f3EydOUJrW4Lr6UmvXrl3CGUAsLS2HDx8u0sD3vXv3njhxIn14\/\/748eP4pXCfgnP76tWrihUryvKnZ65Wfvz999+lSpWCfFClShUKZXHnzh3MIoA2PbtDQkKEPzGvWrWKErQD1yq6Wrdu3WrUqBFuDfnyyy\/Fe\/8XWlAVKlTIMWQqm9De398fznDDhg0pQV5wtfLk6dOnrLKU+8VHoVqQVyiaLykpKeXKlaN1zMwqVapECVqAqxRFLSgZoIBlRwRATfXdu3eULA5gjrW1NX3IAkxjdxmoDUI5RgnygqulmRcvXtSrVw8vPzSowApKyOLy5cuYCmipFgBVSuGzuPr16+\/evZvS8gWX100t8GfkyJFQ68ONANWqVTtz5owBnhxs2LBh2bJl9EHAmDFjcE+gTDPuUFniwdXSTEREBF57YMSIERQVAC1vSjYz+\/333ymqHWFhYVBk4brQ5Fi3bh0l5A0uXFi1VCoV1PeEUnl6em7evJmSxadq1ap5PRfBF5OhyZeenk4hecHV0gxmRIRCAuB+T2lF6OrOnhwCzZs3z7\/Bg4tprxYUBb\/99huuhbi6uhr4BRBo17Vr1y6vH6xOnDgBp27cuHH0WXZwtTQAtUHKj2Zmzs7OFBUgXEDnX4GgSIHijraifv8\/n15RuIyWal26dEn4Fr29vf2RI0cMPPPlyZMnbW1toWk3ZcoUCmUHbk9wQ4EGLX2WHVwtDQh\/2ezXrx9FswAlBg0ahKl16tQp4rifx44dY93nHR0dV6xYQQnZwQUKVGvx4sXCwtDc3PzHH380yiBQUVFRN7N49uwZRbMj11YWwtXSgFCt3B2UwCWUwcrKKkdfOJ0Rzv4KlajcHVUxKR+1wsPDhRNBALCwXJsxJgFXSzP4cxaQQ63ExESMQy3r6NGjFNUHUDw6OTnhxoEcA6NjUKNa0KSpW7cuLoCAqK9fv6ZkjpHgammGvZ9fq1YtCqn5+uuvIdi1a9eEhAQK6Y8zZ86w+XyhSPzll18oIQ+1oFDq1q2bcF7t6tWry2wCONOFq6UZaFAdOHAA86uvry+UIXPmzKmvJjQ0VAyvkNu3bw8dOhS\/t1ixYp6enhjHiFCtgIAAi6ypHgB3d\/fTp08b4KcqjpZwtfIDGl3+\/v6QxQcNGjRv3rzcL5+LxNixYytWrIjOQM1TODNVhw4dpkyZIiypWrduXdhuUxwDwNXKDyid2rRpA8VUfHx8Xr87PXr0iP7SKxERERqHtRFSrly54OBgWoEjMbhaeZKUlFS6dGk7Ozto\/wDwN5QkOV5\/gDJt\/\/799EHfREdHk0Oa2Lhx45s3b2hRjvTgamkG2jy91bBHhQyoHzZU07Vr10OHDtEKIgBlJn2lJuT3Wq7M4GppRjgfVFRU1JgxY7y9vZuqad68uZ+f365du8TuSZC\/WoodS91U4GpJl9TU1A8++IBMys6MGTNoIY5U4WpJGmG\/EEa\/fv1kNq6YLOFqGY2dWeRfsUxJSQkNDf1UzciRI0+ePEkJHGnD1TIomZmZwcHBPXv2dHFxgWbb559\/3qdPH0dHx3LlyvXq1St3V2CO6cLVMhAqlWr37t22trZQo3N3dz9\/\/jwlqMHRavfs2UOfOaYPV8sQQGHl5eWlbij9\/zAvFBVw6NAhSKIPHFnAL6foZGRksJHJ4A+KZicxMXH48OH0gSMLuFriAvXAqVOnoldlypR58eIFJXDkDldLXM6dO4deAYMHD6YoRwFwtcTl6NGjJFbhB37imDRcLXFh7\/9aWlpSiKMMuFrigl4Bjo6OFOIoA66WuFhZWXG1lAlXS1xCQ0NRreLFi1OIowy4WuISGxtbrVo1tGvu3LkUFbB9+\/aiTGnHkSxcLdEJCwtzdnYGtYoVK9a\/f\/\/IyMg7aiC+bNkyjZ0zODKAq2UIMjMzFy1aZGNjY5kFtMFKly596dIlWoIjO7hahkOlUkVHRz9Sk5iYSFGOTOFqcTiiwNXicETg\/fv\/A7IYkdtSkBFxAAAAAElFTkSuQmCC\" y=\"2\"><\/image> <\/g> <\/svg><\/span><\/p><p><span class=\"math-tex\">$3\\overrightarrow{AP}=2\\overrightarrow{AD}$<\/span> ⇔ <span class=\"math-tex\">$3\\overrightarrow{AM}+3\\overrightarrow{MP}=2\\overrightarrow{AM}+2\\overrightarrow{MD}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\overrightarrow{AM}=2\\overrightarrow{MD}-3\\overrightarrow{MP}$<\/span> (1)<\/p><p><span class=\"math-tex\">$3\\overrightarrow{BQ}=2\\overrightarrow{BC}$<\/span> ⇔ <span class=\"math-tex\">$3\\overrightarrow{BM}+3\\overrightarrow{MQ}=2\\overrightarrow{BM}+2\\overrightarrow{MC}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\overrightarrow{BM}=2\\overrightarrow{MC}-3\\overrightarrow{MQ}$<\/span> (2)<\/p><p>L\u1ea5y (1) c\u1ed9ng (2), v\u1ebf theo v\u1ebf suy ra <span style=\"color:#16a085;\"><\/span><span class=\"math-tex\">$\\overrightarrow{MN}=\\dfrac{3}{4}\\overrightarrow{MP}+\\dfrac{3}{4}\\overrightarrow{MQ}$<\/span><span style=\"color:#16a085;\">.<\/span><\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-01 06:51:14","option_type":"math","len":0}]}