{"common":{"save":0,"post_id":"7619","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5702","post_id":"7619","mon_id":"1159285","chapter_id":"1159392","question":"<p>Trong không gian v\u1edbi h\u1ec7 t\u1ecda \u0111\u1ed9 Oxyz, cho véc t\u01a1 <span class=\"math-tex\">$\\overrightarrow{u}=(1;1;-2),\\overrightarrow{v}=(1;0;m)$<\/span>. Tìm t\u1ea5t c\u1ea3 giá tr\u1ecb c\u1ee7a m \u0111\u1ec3 góc gi\u1eefa <span class=\"math-tex\">$\\overrightarrow{u}$<\/span> và <span class=\"math-tex\">$\\overrightarrow{v}$<\/span> b\u1eb1ng 45°.<\/p>","options":["<strong>A.<\/strong> m = <span class=\"math-tex\">$2$<\/span>","<strong>B.<\/strong> m = <span class=\"math-tex\">$2\\pm\\sqrt{6}$<\/span>","<strong>C.<\/strong> m = <span class=\"math-tex\">$2-\\sqrt{6}$<\/span>","<strong>D.<\/strong> m = <span class=\"math-tex\">$2+\\sqrt{6}$<\/span>"],"correct":"3","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>C.<\/strong> m = <span class=\"math-tex\">$2-\\sqrt{6}$<\/span>.<\/span><\/p><p><span class=\"math-tex\">$(\\overrightarrow{u},\\overrightarrow{v})=45^0$<\/span> ⇔ <span class=\"math-tex\">$\\cos(\\overrightarrow{u},\\overrightarrow{v})=\\dfrac{\\sqrt{2}}{2}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\dfrac{1-2m}{\\sqrt{6}.\\sqrt{1+m^2}}=\\dfrac{1}{\\sqrt{2}}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\sqrt{3(1+m^2)}=1-2m$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\begin{cases}1-2m\\ge0\\\\3m^2+3=1-4m+4m^2\\end{cases}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\begin{cases}m\\le\\dfrac{1}{2}\\\\m^2-4m-2=0\\end{cases}$<\/span> ⇔ <span class=\"math-tex\">$m=2-\\sqrt{6}$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-08 07:45:12","option_type":"math","len":0},{"id":"5704","post_id":"7619","mon_id":"1159285","chapter_id":"1159392","question":"<p>Trong không gian Oxyz, cho các vect\u01a1 <span class=\"math-tex\">$\\overrightarrow{a}(5;3;-2),\\overrightarrow{b}=(m;-1;m+3)$<\/span>. Có bao nhiêu giá tr\u1ecb nguyên d\u01b0\u01a1ng c\u1ee7a m \u0111\u1ec3 góc gi\u1eefa hai vec t\u01a1 <span class=\"math-tex\">$\\overrightarrow{a}$<\/span> và <span class=\"math-tex\">$\\overrightarrow{b}$<\/span> là góc tù?<\/p>","options":["<strong>A.<\/strong> 2","<strong>B.<\/strong> 3","<strong>C.<\/strong> 1","<strong>D.<\/strong> 5"],"correct":"1","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>A.<\/strong> 2.<\/span><\/p><p><span class=\"math-tex\">$\\cos(\\overrightarrow{a},\\overrightarrow{b})=\\dfrac{\\overrightarrow{a}.\\overrightarrow{b}}{|\\overrightarrow{a}|.|\\overrightarrow{b}|}=\\dfrac{3m-9}{\\sqrt{38}.\\sqrt{2m^2+6m+10}}$<\/span><\/p><p>Góc gi\u1eefa hai vec t\u01a1 <span class=\"math-tex\">$\\overrightarrow{a}$<\/span> và <span class=\"math-tex\">$\\overrightarrow{b}$<\/span> là góc tù khi và ch\u1ec9 khi <span class=\"math-tex\">$\\cos(\\overrightarrow{a},\\overrightarrow{b})<0$<\/span> <\/p><p>⇔ <span class=\"math-tex\">$3m-9<0$<\/span> ⇔ <span class=\"math-tex\">$m<3$<\/span>.<\/p><p>Vì m nguyên d\u01b0\u01a1ng nên m ∈ {1;2}. V\u1eady có 2 giá tr\u1ecb m th\u1ecfa mãn yêu c\u1ea7u bài toán.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-08 07:54:40","option_type":"txt","len":0},{"id":"5706","post_id":"7619","mon_id":"1159285","chapter_id":"1159392","question":"<p>Trong không gian t\u1ecda \u0111\u1ed9 Oxyz, cho A(2;0;0), B(0;2;0), C(0;0;2). Có t\u1ea5t c\u1ea3 bao nhiêu \u0111i\u1ec3m M trong không gian th\u1ecfa mãn M không trùng v\u1edbi các \u0111i\u1ec3m A, B, C và <span class=\"math-tex\">$\\widehat{AMB}=\\widehat{BMC}=\\widehat{CMA}=90^0$<\/span>?<\/p>","options":["<strong>A.<\/strong> 0","<strong>B.<\/strong> 1","<strong>C.<\/strong> 2","<strong>D.<\/strong> 3"],"correct":"3","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>C.<\/strong> 2.<\/span><\/p><p>G\u1ecdi M(x;y;z).<\/p><p><span class=\"math-tex\">$\\overrightarrow{AM}=(x-2;y;z),\\overrightarrow{BM}=(x;y-2;z),\\overrightarrow{MC}=(x;y;z-2)$<\/span><\/p><p><span class=\"math-tex\">$\\widehat{AMB}=\\widehat{BMC}=\\widehat{CMA}=90^0$<\/span> ⇔ <span class=\"math-tex\">$\\begin{cases}\\overrightarrow{AM}.\\overrightarrow{BM}=0\\\\\\overrightarrow{BM}.\\overrightarrow{CM}=0\\\\\\overrightarrow{CM}.\\overrightarrow{AM}=0\\end{cases}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\begin{cases}x(x-2)+y(y-2)+z^2=0\\\\x^2+y(y-2)+z(z-2)=0\\\\x(x-2)+y^2+z(z-2)=0\\end{cases}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\begin{cases}x^2+y^2+z^2-2x-2y=0\\\\x^2+y^2+z^2-2y-2z=0\\\\x^2+y^2+z^2-2x-2z=0\\end{cases}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\begin{cases}x^2+y^2+z^2-2x-2y=0\\\\x=z\\\\y=z\\end{cases}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$\\begin{cases}3z^2-4z=0\\\\x=y=z\\end{cases}$<\/span><\/p><p>⇔ <span class=\"math-tex\">$M(0;0;0)$<\/span> ho\u1eb7c <span class=\"math-tex\">$M\\bigg(\\dfrac{4}{3};\\dfrac{4}{3};\\dfrac{4}{3}\\bigg)$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-09-08 08:03:34","option_type":"txt","len":0}]}