Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Sinh học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Lịch sử - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Địa lý - Lớp 12
    • Ôn thi Tốt nghiệp THPT môn Giáo dục Kinh tế Pháp luật - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 16. Công thức tính góc trong không gianBài tập trung bình
{"common":{"save":0,"post_id":"8317","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"6186","post_id":"8317","mon_id":"1159285","chapter_id":"1159382","question":"<p>Trong kh&ocirc;ng gian v\u1edbi h\u1ec7 t\u1ecda \u0111\u1ed9 Oxyz, m\u1eb7t&nbsp;ph\u1eb3ng n&agrave;o d\u01b0\u1edbi \u0111&acirc;y \u0111i qua A(2; 1; &ndash;1) t\u1ea1o v\u1edbi tr\u1ee5c&nbsp;Oz m\u1ed9t g&oacute;c 30&deg;?<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\sqrt{2}(x-2)+(y-1)-(z-2)-3=0$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$(x-2)+\\sqrt{2}(y-1)-(z+1)-2=0$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$2(x-2)+(y-1)-(z-2)=0$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$2(x-2)+(y-1)-(z-1)-2=0$<\/span>"],"correct":"1","level":"2","hint":"<p>G\u1ecdi ph\u01b0\u01a1ng tr&igrave;nh m\u1eb7t ph\u1eb3ng (P) c\u1ea7n l\u1eadp c&oacute; d\u1ea1ng&nbsp;<span class=\"math-tex\">$A(x-2)+B(y-1)+C(z+1)=0$<\/span>&nbsp;th&igrave; c&oacute; VTPT l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{n}=(A;B;C)$<\/span>.<\/p><p>Oz c&oacute; VTCP l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{k}=(0;0;1)$<\/span>.<\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$\\sin(Oz,(P))=\\dfrac{|\\overrightarrow{n}.\\overrightarrow{k}|}{|\\overrightarrow{n}|.|\\overrightarrow{k}|}=\\sin30^o$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\dfrac{|C|}{\\sqrt{A^2+B^2+C^2}}=\\dfrac{1}{2}$<\/span><\/p><p>&hArr;&nbsp;<span class=\"math-tex\">$A^2+B^2-3C^2=0$<\/span><\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;<span class=\"math-tex\">$\\sqrt{2}(x-2)+(y-1)-(z-2)-3=0$<\/span><\/span><\/p><p>&diams; Lo\u1ea1i \u0111&aacute;p &aacute;n B v&agrave; C v&igrave; \u0111i\u1ec3m A(2; 1; &ndash;1) kh&ocirc;ng th\u1ecfa hai ph\u01b0\u01a1ng tr&igrave;nh n&agrave;y.<\/p><p>&diams; X&eacute;t \u0111&aacute;p &aacute;n A.&nbsp;<span class=\"math-tex\">$(P):\\sqrt{2}(x-2)+(y-1)-(z-2)-3=0$<\/span><\/p><p><span style=\"color:#16a085;\"><\/span>M\u1eb7t ph\u1eb3ng (P) c&oacute; VTPT l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{n_1}=(\\sqrt{2};1;-1)$<\/span>, Oz c&oacute; VTCP l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{k}=(0;0;1)$<\/span>.<\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$\\cos(Oz,(P))=|\\cos(\\overrightarrow{k},\\overrightarrow{n_1})|=\\dfrac{|\\overrightarrow{k}.\\overrightarrow{n_1}|}{|\\overrightarrow{k}|.|\\overrightarrow{n_1}|}=\\dfrac{|-1|}{\\sqrt{2+1+1}.\\sqrt{1}}=\\dfrac{1}{2}$<\/span><\/p><p>&rArr; (Oz, (P)) = 30&deg;<\/p><p>&diams; X&eacute;t \u0111&aacute;p &aacute;n D.&nbsp;<span class=\"math-tex\">$(Q):2(x-2)+(y-1)-(z-1)-2=0$<\/span><\/p><p>M\u1eb7t ph\u1eb3ng (Q) c&oacute; VTPT l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{n_2}=(2;1;-1)$<\/span>, Oz c&oacute; VTCP l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{k}=(0;0;1)$<\/span>.<\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$\\cos(Oz,(Q))=|\\cos(\\overrightarrow{k},\\overrightarrow{n_2})|=\\dfrac{|\\overrightarrow{k}.\\overrightarrow{n_2}|}{|\\overrightarrow{k}|.|\\overrightarrow{n_2}|}=\\dfrac{|-1|}{\\sqrt{4+1+1}.\\sqrt{1}}=\\dfrac{1}{\\sqrt{6}}$<\/span><\/p><p>&rArr; (Oz, (Q)) <span class=\"math-tex\">$\\ne$<\/span> 30&deg;<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2025-01-12 11:04:28","option_type":"math","len":0},{"id":"6187","post_id":"8317","mon_id":"1159285","chapter_id":"1159382","question":"<p>Cho m\u1eb7t ph\u1eb3ng <span class=\"math-tex\">$(P):3x-2y+2z-5=0$<\/span>.&nbsp;\u0110i\u1ec3m A(1; &ndash;2; 2). C&oacute; bao nhi&ecirc;u m\u1eb7t ph\u1eb3ng (Q) \u0111i qua&nbsp;A v&agrave; t\u1ea1o v\u1edbi m\u1eb7t ph\u1eb3ng (P) m\u1ed9t g&oacute;c 45&deg;?<\/p>","options":["<strong>A.<\/strong> 1","<strong>B.<\/strong> V&ocirc; s\u1ed1","<strong>C.<\/strong> 2","<strong>D.<\/strong> 4"],"correct":"2","level":"2","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;V&ocirc; s\u1ed1<\/span><\/p><p><span class=\"math-tex\">$(P):3x-2y+2z-5=0$<\/span>&nbsp;c&oacute; VTPT l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{n_1}=(3;-2;2)$<\/span>.<\/p><p>G\u1ecdi VTPT c\u1ee7a (Q) l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{n_2}=(a;b;c)$<\/span>.<\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$\\cos((P),(Q))=\\cos45^o$<\/span>&nbsp;<\/p><p>&hArr;<span class=\"math-tex\">$|\\cos(\\overrightarrow{n_1},\\overrightarrow{n_2})|=\\dfrac{|\\overrightarrow{n_1}.\\overrightarrow{n_2}|}{|\\overrightarrow{n_1}|.|\\overrightarrow{n_2}|}=\\dfrac{|3a-2b+2c|}{\\sqrt{3^2+2^2+2^2}.\\sqrt{a^2+b^2+c^2}}=\\dfrac{1}{\\sqrt{2}}$<\/span><\/p><p>&rArr;&nbsp;<span class=\"math-tex\">$2(3a-2b+2c)^2=17(a^2+b^2+c^2)$<\/span><\/p><p>Ph\u01b0\u01a1ng tr&igrave;nh tr&ecirc;n c&oacute; v&ocirc; s\u1ed1 nghi\u1ec7m.<\/p><p>Suy ra c&oacute; v&ocirc; s\u1ed1 vect\u01a1 <span class=\"math-tex\">$\\overrightarrow{n_2}=(a;b;c)$<\/span>&nbsp;l&agrave; ve\u0301c t\u01a1 ph&aacute;p&nbsp;tuy\u1ebfn c\u1ee7a (Q).<\/p><p>Suy ra c&oacute; v&ocirc; s\u1ed1 m\u1eb7t ph\u1eb3ng (Q) tho\u0309a&nbsp;m&atilde;n \u0111i\u1ec1u ki\u1ec7n b&agrave;i to&aacute;n.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2025-01-12 11:29:25","option_type":"txt","len":1},{"id":"6190","post_id":"8317","mon_id":"1159285","chapter_id":"1159382","question":"<p>Cho h&igrave;nh l\u1eadp ph\u01b0\u01a1ng ABCD.A&#39;B&#39;C&#39;D&#39; c&oacute;&nbsp;c\u1ea1nh b\u1eb1ng a,&nbsp;g\u1ecdi &alpha;&nbsp;l&agrave; g&oacute;c gi\u1eefa \u0111\u01b0\u1eddng th\u1eb3ng A&#39;B v&agrave;&nbsp;m\u1eb7t ph\u1eb3ng&nbsp;(BB&#39;D&#39;D). Ch\u1ecdn h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 Oxyz nh\u01b0&nbsp;h&igrave;nh v\u1ebd, t&iacute;nh sin&alpha;.<\/p><p><span class=\"svgedit\"><svg height=\"240\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"242\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"240\" id=\"svg_1\" stroke=\"null\" width=\"320\" x=\"1\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfIAAAGDCAIAAABfjQXjAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAG19SURBVHhe7Z0FWFtXH4cTQggQ3KWUuk4677zb2nXdvrl21m3f1n3zrdPKBPdC3d3dVvdSd3co7oS4k32\/5N4xSoFVQrhJ\/u\/Os6fc3EByc857fufmnnN5fxEEQRAOBGmdIAjCoSCtE1ZjxYpznp4JPN4fKB99tIrdShCEbSGtE1aDtE4QXIC0TlgN0jpBcAHSOmE1SOsEwQVI64TVIK0TBBcgrRNWg7ROEFyAtE5YDdI6QXAB0jphNUjrBMEFSOuE1ajTuodHQlraHnYrQRC2hbROWI06rYeGppWWKtitBEHYFtI6YTVI6wTBBUjrhNUgrRMEFyCtE1aDtE4QXIC0TlgN0jpBcAHSOmE1SOsEwQVI64TVIK0TBBcgrRNWg7ROEFyAtE5YDdI6QXAB0jphNUjrBMEFSOuE1SCtEwQXIK0TVmP5ctI6QbQ+pHXCavzwwyahMI60ThCtC2mdsBo+Pkl8vnlVXtI6QbQipHXCajBnYEjrBNG6kNYJq0FaJwguQFonrAZpnSC4AGmdsBqkdYLgAqR1wmqQ1gmCC5DWCatBWicILkBaJ6wGaZ0guABpnbAapHWC4AKkdcJqkNYJgguQ1gmrQVonCC5AWiesBmmdILgAaZ2wGqR1guACpHXCapDWCYILkNYJq0FaJwguQFonrAZpnSC4AGmdsBqkdYLgAqR1wmqQ1gmCC5DWCatBWicILkBaJ6wGaZ0guABpnWiS8vLyQ4cOsT\/8zalTp4YNG3blyhX253qQ1gmCC5DWicYpKyvr1avXlClT2J\/\/5scff3Rzc8vOzmZ\/rgdpnSC4AGmdaAS9Xh8VFSUUCsePH89u+htPCwcPHmR\/rgdpnXBgtFqtSqUyGAzszxyGtE40BBV39+7dPj4+PB6vUa3fcccdCkUj1iatE3aHyWTSaDQymUwqlcrlcrUF6Fun07F7WKitrc3KynrqqackEgm7icOQ1omrQPVdvXr19u3bfX19G9W6l5dXVVUV+8PVkNYJu8NoNE6ZMsXNzQ213c\/Pb\/To0V9++eXbb7\/91Vdf1Q\/m8H7v3r0DAgIKCwvZTRyGtE5cBapyTEyMXq8PDAxsVOvvvPMOsgz7w9WQ1gl7BFFGLBajtm\/evBn\/ViqVn332GUT\/4YcfIssz+xQXFwcFBd19990I9cwWLkNaJ\/4Bo9EhQ4ZotVrU5qa0jsEpqj77w9WQ1gk7hdH61q1b8W9U\/nPnziGYe3h4XLp0iantRUVFUVFRw4YNa6rycwrSOsGCDN6\/f\/\/169czPzal9WYgrRN2h9FoRCUXiUTh4eGVlZXMRkTyO+64w9XVdcSIERi5Ygu0fueddzZ1+pFrkNYJM8jgp0+fRsXFwPN\/Fry9vUnrhMMDaw8fPhwGv+222+rOLsrl8nvuuQcbf\/rpJ+a70+rq6tmzZzOK5z6kdcLMoUOHXnjhhYp6NHUlTDOQ1gm7Q6vVenl58fn8wsLCuu9Ir9U6drMXpwPSOvGXWq2eOHFicXEx+7MFOglDODxGo\/HAgQNwukgkQh5nt\/71V2lpafv27YVC4cyZM7EPu9V+IK07OxqN5ttvv7148WL9y7kwGvXz84PWk5OTm7ru5VpI64R9gcr\/7rvvQut9+vSRyWTMRqTynTt3uri4hIaG2sUXpNdCWnd2ysrKoqKi7rrrrvozjF599dXg4GBvb2\/U7NTUVHbrv+HpGcvjDefxRuBJpHWC+yCyvPHGG9A6KjwUjy3weHl5eXh4uJeX14IFC+oucLQvSOuEdUDYF3s+LuDdKeDdHhryRUmJnH2AILhKdXU1hqRAqVTiR0gcmf2VV17x8PD4\/fffmX3sEdI6YQWQdEQi0Yd8FymPn8Tj3+4i+PjjT9jHCIKT6HS6+fPn19f62rVr+\/fv361bNzi9\/jlJu4O0TtwqWq32k0GDRvH5Sh6vlsfT83j5PF6E6HZf31hf3+Rmir9\/8scfr87Ozt+7t4Dj5eTJcp3O\/r46Ixogl8sPHz786aefbtmy5ZlnnnnqqacesgCbDxgwoG\/fvnPmzFEoFHZ00UujkNaJW0WtVg8aOLCCxzPyeH9ZShmPF8bz5PF+YL5Bbarw+X+4ucV5eSVyv\/j7p3TtOqZ797EcL716TTx\/vqqgQMr9Ulxs69N027dvv79nz16+vsc9PLp5ePTq0uXIkSOQeH2YyxntHdI6cUtoNIbc3MpO7Z78mcfT\/a11pPWX\/ILmT989f\/6pRktm5r7w8HTul9DQdD4\/pkFvxOXi6hrLdELcL4GBqQMHLrVl6f9on0WurlIeT83j1fB44z08du\/ezdZjx4K0Ttwker2xqko9fPhWf\/9kPu8XMc9zNo9fzuMVweli8Q+fffaXVsvueg1arbG8XMn9Ulam+PnnzT\/9ZAelQ4dRQUGp3C9+fskiUVyD3sg25RGeEE5nkgfKSYEgIiKCrZGOBWmduBmkUu26dZfatBmJbOjhkdC9+xge73svXqdQnkcAr01K3Gi7WOjOkUAXW1Qk537Jza154YUF\/frNtnrp23f2Y4\/NeOCBKfffP8XbO7GB01HEPI8yHp85VYj\/H3Vx6RMayh4+x4K0TtwYen2tRKLu02emSBQvFMYGBqZkZ+e\/9trivxvPDzze8NGjD7B7E0RLYjSatFqDQqGTSDQYXaWk7MGopV27LLHYrHUXlxhX19i\/aybKa7e5ule7uCh5vCoe7x5Pz5N79rC\/yLEgrRPXhcmEJlSrVht27sxDFEKDcXOLe+65ebt3F9TUaBDb6zWeP0jrRAuBeqjTGVFUKr1SqauoUL3xxpKnn57j75\/C1D2hMA41EyNIT88EVNTfftuOjcyX82Lx0MmTZz7h6f0cz\/VhoWjZHXfUXzDAkSCtE9eFXm+cM+fEo49Oh9DRSHx9k1NT96BdabXGxMRspkVhO\/MP0jphRaBySzHV1pog9F9+2fLzz1sg7rpaxxTUTJS4uJ3Jybvz86WI8K+\/bh5E4iG4PikpG3UYv61Pn0k83gsffLCY+eUOCWmd+HeQiSZPPoK2gWaDdvLpp2vkcp3BUIuWVlQkr4vqs2Yd9\/CIxz9I64S1gJ2XLj2LSBEfv8vdPV4kind1jUVhMgQi+SuvLHr33eUff7xaozGgoFqiLFt2FslDIIhFSP\/Pf+bv2pVvqa7mX9inzwwe7\/cPPlhh+fWOCWmdaA612jBy5D4fnySRyOz0sLD0sjKFVmtg1srAP\/788yIaD8r3329ctOg0s9oXaZ24aeDfggLZsWOl48cfCg5OQ90TixMQFyBoVC2mEt5xx4S+fWeXlSmlUi2GjKilGDUyTz91qjw8PAP7Y8+goNSXX16EHfA7mUdBnz4z8Xs++GAl+7MjQlonmqSwUHb\/\/VPE4kShMDY4OBXNLDe3BgNh9uG\/\/iovV4aGpqORIEMhtiMikdaJm6CqSo3KNnXq0XvumXTXXZMiIjK8vZEkzGpGdfLzS46KGvnoo9MPHy45cqTkypUamUyLYF6\/KhqNJolEk5m5z9\/fHNI9PBJGjNh26VI1jM\/u8TekdcJJqahQffbZn2hLGO0iK91zz+SiIhkaEvuwBZ3OOHHiYWQooTDu88\/XIr6vWHGOtE78K8jO8HJpqQJl8OA1\/\/3vqo4dRwUEpDCVRyCIgdMRyVGQJOB62Ly6Wq1QNDn\/Ew9hsHjbbeNhcz4\/Jjo6c\/r0Y03tT1onnAvEH4xYd+zIi4zMYK4oeOqpWWhXUql5zdIGIKqHh5ujurd3IhoetpDWiabQag01NRp4fNKkw1lZ+zt3Hh0amoYCiaPCoKb5+iZh5PfJJ6u\/+mrdzp15ZWVKFOZLzmbADsePlw4bthVCR7QPDExBHKmqUtU\/69IA0jrhROj1tZWVqhdeWODjk4QWgvT0xBOzMDpmH76GUaP2o1miOT344FRmC2mdqAPVCZEcKt+9uwBl5crz7dplBQWlurubv1QXCGJRzVBQeR5+eFrfvrNzciQVFcprz5k0BYSOX44Igs4A1RUV7447JhQWyozGf7nxBWmdcAqMRoR0\/d69hR06jMIYFqaG0y9frm4+K6EFnj9f1a3b2AsX2NuxM1pHix079iCzhXAeEJA1GoNarZdKtUgD2dn53buP69x5DByK4uoaC6GjakHlyNQRERlnz1aiNBOrmwF\/6NKl6k6dRotE5q9Sg4NT4XeJpJEx5bWQ1gnHB6mqulr9yCPT+XxzhhKLExcvPnNzjW3NmgvoD4KD006eLGc3EY6LyWRCNEbfr9WabQ6xDhy49PXXFyMcwJuW6hQjFMaKRHEeHvHt22fNnXsSVevo0VL2+TeFZVqp8e23lzHXusDpL720sJnT7tdCWiccn8zMfcyZEzS\/r79ef\/p0BfsAQTQLVI7KM2LENozYUH8aFOToL75YGxOzA7qHi9nn3BqIIOgYnnxyFnNGHsF\/+\/Yr7GPXDWmdcGRWrTqPcI08xefHIGH9+OMmnc5Y\/6IxgqiPyfTXypXnly0727XrGEQB5GVEAVfXWOYyRJTnnpv36quL1q+\/pFLpmWvJIWJr1aiSEnm7dln4i3B6VNTIjz5aJZNp\/\/VM+rWQ1gkHxGCoLS1V\/PDDJi8v89IuYnHChAmHpFItnM7uQRAWoOb8fOn581XHj5cFBqaioLYwX5\/AjMjjbdqMhOJ79hxXVaVCUSh0EPrNncFrBryMceMO+vomoQvBn8ZfrKpSo8+4uQ6DtE44Ggg4zz8\/H2EHbZLP\/wPD51278tEU2YcJ5waiRA0pLpYfOlT85JOzHnxwGsZzPpZ5nkweRxQID0\/v3Hn0li05e\/YUQK\/YXy5vqTsKoWZeuVLz+OMz8HcxrAwKSs3M3IcIcisjANI64TggjG\/dmvvWW0shdAxjQ0PT0EJqajQ3MYwlHAlIuaxMCY9\/\/fX6r75a9+ijM2BPaJSJ5BA6qgpS+ahR+1FWrjxfUWFO5VaP5NdSWan63\/\/+9PNLRkj39U3OyNhbUCBtMCfuJiCtE44AhqtoilOnHkVzRVv19k587rl5paWKG\/0iCxHp+PFSBChrnS0lbA8+O3yC1dVqlNmzT0yffuyZZ+aGhaXDnpAdc3mrv38KQvqrry7+8MOVU6YcQVXBzuzzWx68QnQbeGF1c+IefXT65MlHbl3oDKR1wu5BC9myJRftFs3DwyP+rrsmnjpVfnOjZuT9zz9f+\/LLi06cKFMq6byN3YBkDZVjZIaPHqkcnXpU1EgUVAkIDlnY0zMBcbhnz3F33z0pK2t\/fr60oEB2\/TODrAgiyMmT5S+\/vBAvDC8PvUvv3lOrqlTsw9aAtE7YKyaTeRoe9P3AA1OYsy5iceInn6y+aR0jQ8ELzGqoUVGZ5eVK9oF6QB9arYEup2l1cPwtM4PM8\/UlEk1hoeyhh6b17DmeOUWOSO7uHo\/i65vk758cEZGRnZ0PmbbcKfLrQa+vRQTZvbvAxycJ1Qwvb8CAuWfPVlr9m3zSOmGXMAPttLQ9d9wxAVmM+a4JEZt9+KbAL2TubOfiErNw4elGGxuS4H\/\/u+rrr9djZ3YTYROYmUHoVpnJQdXV6kGDVrz33grm\/Dg8jn6dqQno4728EmfNOo6CPdnntyp48Xjl06YdRTCvmxOHl9dCp+9J64RdcvmyJCQkDf5FI+nefWxS0m4EN+YeAjcNTAE7oD106TJGKtWyW68GvsA+bdqMbGYlGaIlKC6WZ2XtT03d85\/\/zMfnbvnozQWfFwry71dfrfvxx02TJh1Gl4\/CwD65tamsVMXF7cRIAtVVJDKvBsq8QvZha0NaJ+wMxORfftnCzKtGOnv22XkYWSP13GIbwej4rrsmMo4YPnxbU+NiZrYqad0GaLXG7Oz8NWsuvPnmEm\/vJA+PBAjRzS2OiedI5XffPQmffnLybqlUg1rBnBxrofx7K2zalOPvz86J69p1TFmZEm+NfaxlIK0TdgPMe\/FidWTkSDhdKIwLDU1bseIc2rNVUs+RIyXu7uauws8vGf1EU7+TtN6ilJTI8\/KkAwcuDQ1NDw5O8\/VNwgHHZ41jjoLxWXR01vDhW8vKFOXlypoas82hcs6E8qtAB1NRocIbwQgP9So4OHXixMPogWzQ8ZDWCfugtFTRt+9sb2\/ztcYBASmrV5svLrZW6kGHMWDAXLQEGASD5WYaHmndisDI1dXq4mJ5fr70mWfmouCT9fVNZi5fQbz190+OjMzA0V679uL69ZdQB6BFa10F2KLI5do33ljSrl0W3gi03qPHuLy8mpYO6XWQ1glOYzSapFLtL79sQVJzdTV\/G4YhORq5dVvIjh15PpYV2DFYViqbi\/+k9VsBxxX5urJSVVAg\/fXXbd9\/vxHWDgpKxWHHUUXBOAxmx+GNidmRlransFCGnauqVLX2c90RIsLmzTlQKjP4Q72dO\/fkzS3tctOQ1gnuolYbli8\/9\/jjM1BH0UgiIjLefXc5ht7sw1ZCrdZ\/88165k\/Mm3eS3doEpPUbBeFaItGUlSkWLTqNMmQIVD7Szy+ZObWCYI5IHhiYimyL8u23GwoKZBKJuqnvNrgMogY6oddfX4yIIBDE4P8DBy4tKbnhOXG3Dmmd4CJoIRDBkiVnxGLzeUkMYz\/8cFVFhUqvt37kuXChCmbBX0Fs\/Nfrmknr\/woiuVKpQ2jNzZXg2P722\/a2bTMRWnHcmIJjiA80Kmpkly5j3npraX6+FO5jn2y3QOi7dxeEh6eLRHHIB127jjlzptXWfyatE9wC0QYhHWNw5jZGyHRIdrt357fQGBb9xODBa9AGPDwSVq06z25tGtL6tdTWmvR6Iz41qFwqNd8E7rHHZjzyyHS4G8cK\/SU+RJgOP\/r6JqFs3ZqbnZ3f6GwvuwN9GKqQVKrp3n0sc9U83iZ8io6N3aM1IK0THAKCwBgc1ZE5L4monpq6Jze3hn24BSgqkiOkM1eeXc8EbtI6A3pfFIN5clCtRKIZMmQjPjUfnyQcHEbldZOD4PG0tL3Tph0tLJSxT3YIIHRUV3RmWVn78ZZRhQSC2GHDtp492\/o3aSGtE1wB7WTixMMIO5ACKmXv3lPhC7gD21sOmUz7+edrYfYRI7Zdzx8irQOdzjh27EGU77\/fiAMCfUPi+NSYdRfwj88++\/OLL9bBccjvUD8+RMvsG\/bpjgGEPnnykdDQdLx3vOsuXcb89tt2tVrPhbdJWidaH7T8EyfKkPUQ0pF67rpr4ooV59BsbHD9A\/6EVmuwTGa5ru\/onFbrZ85UbN9+BYMnfEze3okiURwKhM6ovF27LKjkpZcWWpYm1+KQ4njiY3U0l\/\/NhQtV33+\/CdWVGZTgveONY+DCkfdLWidamZoazZ13TggIMF\/iBmXcd9\/k8nKlXs\/RCyGcROswskSizsuTjhlzoFOn0R06jAoMNC9QLhLF4+0jj\/v5JUdFZfbrNxuCy8mRlJUpEczRE7PPd1zwNi9fNs+Jc3OLEwrjwsMzrlypwUZOdWCkdaLVQMCZP\/\/U44\/PZGaER0Rk7NqVhxaCMTu7B\/dwYK1XV6tLSuSQ1NtvL0Pujo7Ogrs9PMzjJ7xl\/BsKa9s2c+7ck8uXnzt9ulwiMU\/ytMGIijts2HD52WfnIXyIxQlhYekLF56uqLDmgrrWgrROtAIajaG0VPHkk7PE4kSMYRHVf\/99O1oI9x0RE7NjxIhtqal7YDR2k92i05nvPYKxUXz8rri4ndHRmcHBadA3M8kTn0twcCrK0KFb8JYPHCiqqFBC5XYxydO6oFoigsTG7oTQMVLB\/995ZxmOm3XnxFkR0jphUzBUvXSpevr0YzAI9AGtP\/fcfCRE9mGiJYGGoCeofP36S2vWXJg9+wRGSEidTB7Hx+HtnRgUlNq\/\/5z\/\/Gc+AntxsRzFwL3Fs2wG3rtcrsXhQgTBIRKJ4nG49u8vat3rF5tHLtfdddck0jphC0wm830PCgpkEIdAEOvuHo8k+MsvWxwg9nIWWEmp1CsUuspKVVGRDHrq2HEUOlQcfDR7fAroVr28EgMDUyIjM7p2HXPxYnVZmVKtpk\/EDEYzJSXyTp1GM1dnod4yIb0l5sRZEcQmX1\/zlaakdaIFgdD1eqNUqv3uuw0Wm5jvXDN16tGiIjm7hw3BcMForHXgm1bjUMNH6CyR2jZtynn66TlPPTUrKmokc8mKUBiLVO7pmYBg3r591qZNlzdvzjl\/vorL32fYnlrLTVoSE7O7dh2LoYxQGBcYmJqTI7GLLxJI60SLA40iLf7882Y\/yw2CkXruu2\/yrFnHW2vRD1gPf33duksOc24BvSZ0Ay8z3dXPP2\/57ruN7duPwtFGgZVwzNGVIpuj\/PHHjpEj9+3fX8Q+mbgGHEyMbKKiMpnqii4wIWEX+5g9wGgdvfiHH5LWiZZh5868gQOXWi5wNqee\/\/53lUZjviC9ta4Hq65WI7GivPXWUge4IA+hctGi0xMmHOrceUzdteTQN3O6HKOi119fPHjwmm3brtRdSw7120XqbBVQLb\/8cp2HRwKELhYnwoyoMPaVABitBwenFhe3wmjYZpDWW4eaGs2uXfmBgSkQDQb+d989SSrVwumtJXSgVP5zC6QhQza21ojhVkAqP3iw+MCBoi1bckNC0nx8zDeagM2hcuZ94Tg\/8MCUJ56YVVqqkMm0SqX5tkEOMzRpOVAzd+8uwJgS4QNRt3v3ccuWncVGuzs9xWg9NDQNFYDd5IiQ1m0Novi8eSe7dRsL4yDytGkz8vDhkqbuDmpLjh4txetBEEO9l8u1rTZkuEGkUk1BgQw2v+228T17jvf2Ns\/zRBLHG4HHvcyrIWZ27Djq1KlyFBxnudw8M8iBvz+wLhjElJQoHnhgKuoGjicO7z33TIITOTsnrnlI64SVQbSRSDTvvrucsae\/f\/LPP2\/GMJYLuRi59a23lqLdCoWxsbHN3QKpdamtNcHLaJPZ2fkffLDyvfeW33vv5ICAFOgbLx5BEv9Ao+3QYdT06cdmzz6B2C6RqBHM2ecTNwKO24IFp4KCUjHiQcX46KNVmzfncHxOXPOQ1gmrwazkN2rU\/rvvNl8z6+GRAO+cPl3Onavl9u4tRHVnOpvmb4HUDKNH78\/I2Dt58hHrnpeHxysrVWiHY8ceTEvb88QTM9EsLXf4M+dxDHrgHWz58MOV33+\/ERrCnvARnVq5FTQaw4wZx554Yha6STg9LCz9p58233TF4A6kdcI6wHEY\/kdHZ0JAAkFsz57jhg3bWlXFoe+a0IaHDt0CRbq7x8+d+y+3QGoGvEH8kltfPABhUCrVouzYkbdt25Unn5wVGTkyODgN3aElkpunMqJxPvroDCgevUhRkbysTAnpsM8nbgF4+8qVGvSO6DhdXWNxqBHS0a2yD9s5pHXiVoG4MWL9\/PO1gYEpCMIeHvGRkRmI7VyLPAUFsoAA8ysMDEy9lbP8N611HCh0LUjlEonaMjlI3rHjaBRoBb8QfSH6G8RGjCSYYI7GefmyBE9hn09Yg9pak1Kpq6hQhoSk4ZgjpIeHZ+BQO9KcONI6cUtotYZz5yqfeWYuMqZQGOfrm7x06Vn2MS5hNNZ+8slq2BO9zqxZx9mtN8X1ax0G0euNKFAzrFFcLH\/99SX9+s0Wi9k8jiOGApvjd8IyCxee3rDhMrzPPp+wKsgZ6FnRpz777DwcfyaCjBt3MD9fyu7hKJDWiZsEWdxoNL344kImbGIwGx+\/i7NKKiw0R3W8zk6dRt\/iknvXo3UcHBR4fNiwrUOHbnniiZnMKXKm8Pnmgo4wIWEXyqJFp+30igv7Aj3rH3\/swGDI8hGY1\/R31B6UtE7cDGghyLyImYytkNZ37MhDFOLsd00PPzwN6Qwv+Jtv1t\/iTJzmtb5y5fkFC049\/\/x8\/C2RKB59Hgr+NCP0Pn1mDhy4dPToA8jvKDhiKHg9XD1sjsP+\/UWDBq0UCs2fBT4a5oJ0Rz3upHXixkBjOHeuElJD20DkDAxMxZBWIoGiuHtJBmo5k9Giokbe+tdi9bWu1RpzciTHjpW+8soijAZQxOJExHBmBCMUxkVHZ95554SkpGz83epqtcJyownK5rZEJtPee+9kjCbhdB\/LTVpqajhdXW8d0jpxAzDXLzLT8Nzc4kaM2AbFq9Vcv5HCE0\/MgmrRD3311bpbX3uP0Tp+Ya9eE++5h72cHEcDG1FCQtJg\/E6dRu\/cmXfoUHF5uRIjfdif8riNQZ2USrULF56+666J+HTw6UdGjjx4sNiRvhptCtI6cV3A3cOHb0XwhNQ8POLbts2cOvUogqdd2KqkRD527MFu3cZCsuymGwEiKCtTFBbKPv10DQqTxOsKfBEamh4RkTFx4mGUsjIlUrlcrqVI3orodEZ8Xg8+OFUsNi\/tgiDy7bcbMLqyx7UibgLSOvEvQNxHj5bGxe1EC0HqQTiNjd0pkdzSJdu2R6MxKJW662nVeL\/orvAGCwpkU6YcmTDh0ODBayBu5hvXuoKEPmjQiv\/978\/fftsOlXPzzmdOiMFQW1OjmTTpcFBQKj4mRJCPPlp1+nSFM4T0OkjrRJMwLWTfvkJ\/\/xSBwLw8KcazkJ11Z1dyAUhfJtPizR47Vor3+8MPmzAcwbsWCs3BHJ2ZZWZQcvfuYx94YAqzolbzV8IQrYJCoduzp6Bduyx0uhB6p06jhwzZiA+XfdhpIK0TjVBba76NUXGxvGvXsVCYq2sspLZx42WJRMPuYecwkRwFKq+uVg8btvW228Z37ToG+sb7RXF3j\/fwSEDbQEh\/993lp06Vnz1biT3x3OavhCFaBUQQdMyffLIaNke\/i+o6Z84JDKGc8xoj0jrREMukds17762A4\/h8880b+\/adbe9z1tG8jUbz1YQ6nXlykFyuGzhwKQosAEfz+eZbTCCbi0Tm79ZQZs8+sWDBqUbPxZPWOQUiCD7TixerYTF8joggvXpNXLnyPPuwU0JaJxqyfPm5p5+eA6FDXkisu3cXcPxCl+sBUS4jY198\/K5PP\/2TmQ2Ed1dXxOLEb7\/dEBu7s6xMiXjHlKYgrXMHRJDNm3Nee20xc7rMyysRAy981uzDzgppnfiHykpVly5jEM8FgpiwsPR33lnO\/YsXmwLB\/PDhYqS24cO3YtiBVO7mZp6pz1zH4uIS063b2BdeWPDxx6slEo1azd426Hre7OuvL3nppYWnTpU7QG9n16hU+sWLz2BohZEW+un\/\/Gd+TY1GrzfS50JaJ8zD2Koq1ejRB5jbGCGNduw4urhYrtXa2XdNJSUKVOjU1D1BQal4L7A53gtsjrE5VI6NnTqNfu65eei98H6lUi28gPH7jVoAfQCeSHeoaEU0GsOVKzVRUZnorSF0P7\/kggIZPhQSOgNp3dmBu9FC4DukHugvMDA1I2MvlHfr03ZaGmZ596IieVGRrG\/f2U88MTM8PB21GW8EEq8rGHZs2HB527Yrly9LGJWzzyfsE6iqX7\/Z\/v7JcHpAQMpPP20+frwMIy32YYK07sxguIrQOmTIRmZiPYJtcvJuKJ7LF4QhKVdVma8o\/\/nnzV9\/vb5t20xLME9lFl2B0NHOQ0LSBg1agR8FgphnnpmLmk1t3jGorlbHxOy4444JzLKX0dFZZ85UqNV6p7zapTlI605KTY1m5szjbdqMFIsTUR59dHpW1n6tlnNz8HQ6I7M6+ezZJ1AyM\/fjNcPdIpF5sr6rayz+jfLOO8vfe2\/5J5+syc+Xok7D7HgU+6xYcc5+b11GMJhMJrj75EnzTVpEong43d8\/Zfjwrcz1psS1kNadDoT0ixerXnxxgaWFxCLtbtqUI5NpORJ54HGlUieX6zBuOHWqfMmSM1FRmRERGdA0Cpq0WJzg7Z2ILbfdNv6eeyYhuaPUnelGMJ848TBGHojqHTuOYjYS9gs+WYlE8+WX6zCmxGfq7Z10992T0Hlj3MbuQVwDad1ZgLWhPBjz8OESP79kZnnSPn1mQp3sHq1EreVeE2ilUDnGEKtWnX\/ooWn33z+FSdx8870mYj08zLcNwsvu3n3c7t0FBw4UNXXrA\/yGHj3G4YkYgqxZc4HdStghqBgajaGwUHbXXRMtY694qGrLllwOjim5BmndKYDT0RhmzTr+8MPTBQLzCuAYxk6bdlShaJ3bCBiN5slBCOZ4VVKp5uuv17\/33vLo6CwmkiOUWSYHxYlEcUhn6el7Z848fvx42b9e54DR+tixBxHn0RmgV2C3EnaIZU6c9uWXF6I+IIK4ucVNmXLE7i7Nai1I606BXK5NSspG82Cm4XzzzfpWvL06\/uyoUeab97dpM9Ji8BjLC2NfG8rnn68dMmTj\/v2FFvubYHML7NObAW\/ziSdm4Tf4+CSdPVvBbiXskIULT6NHt4zV4l5\/ffH27VfoitLrh7Tu4KjVhm3broSFpaN5wJtRUZnl5UrEZFs6XaXSZ2fnb9x4edWq815eiSiI4chfdZevPPTQtKefnvPss\/MwekBBKMMrvImvOjFCxy\/H7+zde2rLXaAZHJyKvzJjxjEuXzJkv+zYkdex42jUEFQPDLlefXURjvNNVAZnhrTuyBQWypjV7KDOoKDU0aMPVFSobNBCkK9rajQFBdJdu\/Kjo7NCQ9MRn8Vi840smDyOHxHVe\/QYl5tbg5onk2kxerjFK8rRH9x772S4AL\/8\/PkqdmsLwCwegPflMAufcQGmzkyceNjPL1kgiPXwSPj++40VFUrqO28C0rpjgvbw7rvL27bNZGaNdus2FpJFCm65jC6VaoqL5RgsP\/fcPOTunj3H+\/sn408zkRxdS0REBvqYP\/+8iHLgQJFEorbuXM2jR0uZqP7yy4tadM4Ro3VnWxNGrVZXVFQUWygvL5dKpaWlpbW15o\/vo48+euedd+RyObPnTaDVGvPypN27j4PN+fwYHNs1ay601hc\/DgBp3aFA5EFjgFvhUDc384mO4OC0yZOPSKVWXvwIkR9\/CJ0Hyh9\/7BgxYlvv3lODg1O9vc0L26JlIptjfIC\/jswVF7dz1arzGChA\/ezzrY1arQ8LS0fKg9mXLDnDbm0ZnErrJpNJpVKdOnUqKSlpxIgREydO\/Pnnn7t27frxxx936NDBaDReuXIlNDQ0IiIC0mefcyPo9caTJ8t\/+GFTQEAKn29e4AHVqahITjPIbgXSuuOAlgB1vvHGEh+fJGRktJM331xSUiK31jBWpzPK5brKStXq1RcWLTr92GMzwsMzUJjF8\/B\/KBXN8j\/\/mf\/aa4vnzDmB8G7Fv948CHdMVO\/TZ2ZLL+DnPFpnnD5kyJA77rjj4sWL+Dc24v9Hjx718vJKSUmB1nfu3Il\/9+\/f\/0bTOqpTdbUafTD6Y1RX5IAHHphSWCjj\/qoV3Ie07gggOyMIHzlSAsnCOAjp0dFZ589XoeWwe9wURmMtIjlKbq4kJ0eCVNWp02jUFcZraIowKUq7dlkdOozq2XPchQtVJSWKVlmZfe3aix07jkZPNm\/eSXZTi+EkWq+trVUqlf\/73\/\/c3d1LSkoMhn+655qamocffnjy5MnYB1oPCgpau3Yt+9j1oVLpz56tjIwc6e4e7+oaGxiYun79JcucOPpq1AqQ1u0euBsh\/b77JmMMy0RmhOWbm4OH7gG\/Tas1otWhjSFuP\/74DKRygcB8fhweR4chEsXDaxgQoCnu2JGHwpHpIejY0PG09OAAXR2j9bZtM+3uhq43hFqtfv\/9911cXF599VX8m91qAYH95ZdfLioqgoWh9TvvvFMmk7GPNQukjTElatfTT89BRUWN8vCIRx07eLCY3YOwBqR1W4Daj1xzLezDFvAjAlGDjc1TW2vCM9LT90I0cDqCzw8\/bDpxouyGIo\/ltbF3DkIk\/+67DV98se7BB6fCXCh8vvmicmYGE7Iw\/tbYsQdXr3bS2Zs4UBs2XEbHhiPz22\/bHXv++uXLl3k8nlAo3L59u9HYZM+dnZ1dXn5dE5VRK5EAFi48\/cQTs1CdUK\/8\/JK3bs1lHyasB2m9xYGskWgmTpw44WoWLFjA7mGhoKAAg9n4+Hj25+tg2rSj+OQQpeH09u2zhg7dAjvfkNO1WsO8eadg6r59ZyOJo7HVTQ6CuYTCuGefnffZZ3\/OnHkcCoP3EeehNhT2+U4GjkBCQjYOCw7Ozp15DnzCQKPRjB49WiAQ9OnTp\/7pl2tBELnOKlddre7efRzqGFO7Bg9eo1DonLYutSik9RYHlV6n02VlZXl7e0PcyD5arXbDhg0hISFhYWHFxcVMq+jYsSNaUWxsLPOsZoBbL1+WDB++lRnGisUJGRl70UL0+us6GXLgQFF2dv6AAXPxwXt7m280IRKx9wxC6dVr4qOPTh81ar9UqpXJzKuTQ\/3QmQMr7PrBcYiP31WndXarIyKVStu3by8SicaMGXNDI8hG0WgMU6YcQXVFBUeNfeihaRUVKiT3G4ogxPVDWrcFGMNC62gkERER1dXV2FJVVYV\/u7u7T58+nWk2bdu2DQgIyM39lzEpWgg+M3xgcDFST7t25q9G1eomv6WElCsrVfn50pwcSefOo1F8fJLQwJjLV5DQAwNT2rbNjI7OxO+5eLFaItGgh7jF71odFefRek1NDSokauz48eNvRetKpT43t6ZHj3FicSKiQ1BQanr6XsQFCuktCmndFiDu3n333Qjj3bp1UyrNN7MvLy8PDg729PScO3cuk1nQimJiYjD4tTyjEaBapOwXXlgAL0PoYWHp8+adrKpSN5jRg18GL5eVKeHxd95Z9sori0JC0vz9k\/EsJo8jngcHp7VvnzVnzomlS89iT6i8pkZD0elfcR6to5Z27dpVKBSmpqY2OLGu1+sVCgVzsWPzIJIPGrTS1zcZQkf1mz37BHOTFqpoLQ1p3RYg\/bq6uvJ4vEuXLqE9VFZWfvzxxz4+PlA5fmR8evvttx87dozZvwFI3OXlysTEbIQdgcA8Of7llxeWlf1z0x+VSs9EcuyD8vbbyyB97MacWmFWDsCWoUO3oGRm7ispUVhua2fHkVyvN19QYZuL4utwHq0jiJw\/fx6xA7W0rKyszuyorocPH37ggQdKS0uZLdeCJI6Qvnt3QWTkSAwHUfr0mTlt2lEbf1jODGm9xUGTOHHiBKI6hrSrVq3auHEjbB4REfHiiy\/Wv4Tg22+\/bTQByeW6NWsuhIamM8tjRURk7NlTAIkjX0ulmq1bc9etu\/T552uxPTAwlcnjIlE8nO7nl3z\/\/VMGDJj7ww+biovl6BjY3+gQ4O3ffvv4RYtO5+XVsJtaHgyM0tP3oo\/Esd23r5Dd6qAgsA8ePNjPzw91dfXq1evWrdu8efMPP\/xw\/\/33FxY2+d4xpty1Kx\/DRGjFwyM+MDDl+ecXoLqyDxM2gbTe4mg0mg8++MDFxQUZ58KFC2fPno2KigoJCUHzuPZqX4xw0ZyASqVGC5FINJ07j0HzsMg67umn55w+XVFUJP\/22w3t2mVFR2cxDyHCQ+VeXokwe3h4+uDBa3JyJHl5UoWDrqphNJomTDjk6ZmAfq5jx9Hs1pYHORSjnIICGY5tq8y6sjGojbm5udB6mIUOHTogwldVNb6MGgZ\/6GtPniy3LKhrPtf36KPToRX6nsb2kNZbHIVCgXjO5\/MHDBjATOvA\/xMTE4VC4aOPPsrsw6DVamdMnfrygAGvDhjw8n+eT0\/f0aPHOCibyeCdOo1+8slZ3t7mKfIozPAWjQc2Dw5OXbLkzObNORUVDhXJmwJuve++yTgIdAskLoDeTmu5Sctdd02E0F1dY\/G5\/PnnRRJ6a0Fab3Fqamp4PB60Xn\/RjMWLF2Ojr68v+7PlOsgXnn++P4+3ksfDE+LwFJ4Lj\/crI\/EGxcUlJjExOyVld3W1Go3KTmDf6a0zffoxiAPHISgold1E2BDm42SuWAcI6Rg+ImHA6Rg1fvnluiNHSrCd3ZuwOaT1lkWn061cuRJO79GjR92pc\/zj559\/bqD1wsLCQf7+Uh6vlscz8XhKHu8TnosL77883m\/1hV5XmJmfCOyBgSnjxx+aOfM4x8uCBaesspCkXK7r338ODILB\/pkzdAskW4Mx5fLly6dNm\/bRRx\/t27dvzpzjzNqZ+EQ6dx5TWanS683CZ\/cmWgPSesuiVCofe+wxgUDwxRdfoD0wGy9evBgQEODn53fkyBFmC8jPz1\/o56fi8f6yFC2P9xmP78Lr3VRgrysCgXmpFnf3eI4XpDkfnyR\/\/+RbLPglzLUoeOP4nQ0evfUSEJDy1VfrDh4sPny4hPsFSZmtQDZBIpH06NTpAbH4kLt7nFDY3cvLy6Obi8sIfBBJSdkKhc5ItzHiAKT1lgISr6ysPHjwoI+Pj4uLy4cffpibm1tQUIB\/dOjQoW3btocPH9br\/\/naDTv3CAkp+Vvr8PsggeDox98cO1J07Fhpo6VDh1FRUSO5X7wsS+baS7GcSYjDa8ZogPulS5cxvXpNtF3p\/t6r7u41ltiBUsTjiXnh0dHJR4+Wqlry1iXEDXH8eBk6WtK69YGy161bt3Tp0hkzZsycOXPhwoUrV65ctWrV\/Pnz586dC4nrdFddpoIf3x84sL+XVx6PV8jjDXd17RQZaVQozPOLmkAq1VZXq7lfNm\/OmTHjmFXKsGFbmYvxn3pqdoOHbr0kJmaHhaVzv4SGpqPXcbHcdsrGxZPX58LfyYMpPjzXs2cvNZgTR7QukZEZAkEsaZ0TyGSy+bPmR3rdGS70\/+DNTyoqKuh7p\/qo1Ybw8HTLhRYJs2YdZ7daD2baF\/dLWZlizZoL33674Ztv1tu4PPnIBwPd3JDTIXQTj6fm8bq5u5deucIeQYIbBAWZp7CQ1rlCRYUqPDzJy2uEY09ivDmWLj2LoSXq6333TbbKt683CjpZrdYok5kXQXPOm\/iUlpZ2Dw\/fJRRKLddrJfJ4\/3nwQdX1LbZO2AxG68jsjj0RzL60noEhNmm9PvCpTmeMiDAPLUWiuJkzrR\/VrwdmGlT37uO6dBlz9GgJu9WZ0Gg0OTk5HSPadOGJuvDd\/xsQWFxQ0PzKvYTtYbQeF7fLsW8JQFq3b+DTefNOurmZL4Bp1y7Lxpd\/1OE8a8I0T25uFY\/3sVD4nV0vK+TAMFrPzNzH\/uygkNbtG+hj+HD2y9JDh1rtBmmkdYbc3BocAaEwlm4nzU1I69yCtN4oJpPZ7G+\/veyeeya1yll1BtI6A2md45DWuQVpvRk0GoNarW\/FCS+kdQbSOschrXML0jqXIa0zkNY5DmmdW5DWuQxpnYG0znFI69yCtM5lSOsMpHWOQ1rnFqR1LkNaZyCtcxzSOrcgrXMZ0joDaZ3jkNa5BWm9jtpaE6yBwp2FcUjrDKR1jkNa5xak9TrKyhTt24+KidlRXW2+UyAXIK0zkNY5DmmdW5DW6\/jkk9XMXTFffHEBu6m1Ia0zkNY5DmmdW5DWGSoqlCEhaaiaAQEphYVcWSCwTuv4gPbtK2S3Oh+kdY5DWucWpHWG995b7uYWh9Kv32zu3MC+ttYEo23dmrtrV75G47zLFpLWOQ5pnVuQ1kFJibxt20zUS9TOoiI5u5XgDKR1jkNa5xakdYDq6O4eD2t89dU6Zw7FnIW0znFI69yCtF5To\/H1TUKlDAxEVKfb7nAR0jrHIa1zCyfXusn017RpR0WieIEgJikpW62mm9lzEdI6xyGtcwsn17rBUOvuHo8a6eeXfOxYKbuV4BikdY5DWucWzqz1+rdA+vTTNSoVRXWOQlrnOKR1buHMWofH3dzi+Pw\/\/P2Tz5yp4M6aAUQDSOsch7TOLZxW61qt4f33V6AuovTuPZWbUb221iSVagsLZVVVame+OzNpneOQ1rmF02rdYKjdt68wIiLDxycJB6EV72zXDEZjbXr6XrSZsLD0U6fK2a3OB2md45DWuYUzn4SByvH2588\/xZ1ppQ2gNWEYSOsch7TOLZxZ69yHtM5AWuc4pHVuQVrnMqR1BtI6xyGtcwvSOpchrTOQ1jkOaZ1bkNa5DGmdgbTOcUjr3IK0zmVI6wykdY5DWucWpHUuo9EYPDzi+XzzxfWkddI6ZyGtc4v09L3u7vFOovXKStVjj83Iz5fay5Je0DrjdNI6aZ3LkNa5xa+\/bsPn4SRa\/+KLdXinISFpCQm72E3chrTOQFrnOKR1buE8Wi8rU7Rrl4U3GxiYyp27lTYPaR3gICQlZeMIkNY5C2mdWzBaDwhIOX26gt3koEyffszdPd7VNfbrr9er1fZxCyTSOqip0TC3JCStcxbSOrdgtN6hwyj2ZwdFrdYzt0BCB2YvUR2Q1gFpnfuQ1rmFM2jdZDIxt0BycYnB+7WjddW1WoOXV6JYbC579hSwW50MRuvo3jw9E0jr3IS0zi2cQetGowlOx9tEYD9woIjdStgJjNZForhx4w7W1tKa+FyEtM4tHF7ryHd1t0B6662ldAsku4O0zn1I69zC4bUOj7u7m2f0IKqfPl1OXrA7SOvch7TOLRxb61qt8Ysv1uINovTuPVWppKhuf5DWuQ9pnVs4ttZhhOho80UUYnFCebmSm7dAIpqHtM59SOvcwoG1jqg+ceJhvDs+\/4933lluL9eqEw0grXMf0jq3cGCtKxS67t3HikTxHh7xVVUcvVsp8a+Q1rkPaZ1bOLDWdTpjbm7NgAFzR4zYZjDQ9c72Cmmd+5DWuYVjn1u3d0wm8\/xYFHRRTms00jr3Ia1zC9I6l7EsHhCDD6hLlzEymZbd6mSQ1rkPaZ1bkNa5TN2aMKR10jpnWbv2olicSFrnEKR1LkNaB6R1jrNq1XlPzwTSOocgrXMZ0jogrXMc0jrnIK1zGdI6IK1zHEbrvr5Ju3c7+CKjpPXWQas1\/vnnRYjAMVZwJa0D0jrHYbQeGTmyqkrFbnJQSOutw8mT5eHhGdHRWTk5EnaTPUNaB6R1jkNa5xyOpHWDofb228cLhXFCYezPP29mt9ozpHVAWuc4pHXO4TBaN5n+ys7O9\/IyX2gVEZFRWekINYy0DkjrHIe0zjkcRuto8O+8s5y5XcasWcdheQeAtA5I6xyHtM45HEPraO3nzlUyt8sID093jKgOSOuAtM5xSOucwzG0rtUavvxynUBgnme\/f3+RwyzsRVoHpHWOQ1rnHA6gdaOxtrxcyUT1jh1H4d\/sA\/YPaR2Q1jkOaZ1zOIDWlUr9s8\/Ow7tAmTDhkE5nZB+wf\/R648svLwwNTbvnnklOe8c+0jrHIa1zDnvXutFoKi1ViMXmucvt22fJ5Tr2AYfAZDIpFLqyMoVUqnHaJeNJ6xyHtM457F3rsF6XLmPwFvj8mO+\/3+hIUZ1gIK1zHNI657BrraOR795d4O2dCKd7eCRoteR0B4S0znFI65zDrrWuUunffnsZXr+bW1x6+l6jke5s54CQ1jkOaZ1z2LvW33tvOV6\/WJxIDd5RIa1zHNI657D3kzBaraG6Wu3wK4I6M6R1jkNa5xz2\/pUpMJlMjrEML9EopHWOQ1rnHA6gdcKxIa1zHNI65yCtcxmDoTYubieKRKKm69ZJ69yEtM45SOtcpm7xgF69JqpUNMuUtM5FSOucg7TOZWhNGEBa5zikdc5hd1o3Gk06ndFJmjdpHZDWOQ5pnXPYl9ZNpr8OHCj68cfNxcVyk2PcKaNZSOuAtM5xSOucw760jlb96adrRKL4wMCUXbvy2a2OC2kdkNY5Dmmdc9iR1tGk8\/OlHh4JMN2DD05VKBxqscZGIa0D0jrHIa1zDjvSet0tkLy8Ek+dKjca6SSMU0Ba5zikdc5hL1o3GmsrKlQeHuZbIDlJVAekdUBa5zikdc5hL1pXqdhbIHl4JJSVKZ1ksUbSOiCtcxzSOuewC60bjaaSEoWXl3ld9XfeWaZWO8vEHNI6IK1zHNI657ALrSuVup49x0FwIlG8Jao7S9smrQPSOschrXMLNJIRI7iudZPJtH9\/oY9Pkqtr7CefrHaqxRpJ64C0znFI69xCLtf17z+H41pXqfSDB6\/Bi\/TwSNi\/v8ipGrZF6zGkddI6lyGtc4vSUkVISBrHtX74cImfX7JQGNu372xna9UYmgwcuBTl66\/XQ\/HsVieDtM5xSOvcorhYHhycymWtI6r\/+us2gSDGxycpO9vxp5U2wGT6S602oDjPMjjXgloaEJBCWucspHVuwWjdzS3uttvGs5s4hkKha98+SyiMi47OgtrYrYQzAWtgrEZa5yykdW7BaN3bO\/HixWp2E8fQ642HDhX\/\/vv2ggIpu4lwMlasOIcBJWmds5DWuQWjdX\/\/5Px8TkvTYKhVq530zDLBaN3dPX769GOkdQ5CWucW9qJ1wplhtC4WJ8rlOidYjNn+IK1zC9I6wX0Yrfv4JLE\/ExyDtM4tSOuOhMlkMlpgf3YUSOsch7TOLUjrjoRarU5KSjp69Cj7s6NAWuc4pHVuQVrnMgZD7ZEjJStXnkfZvv1K89d3qlSqESNGBAYGktYJG0Na5xYc1Hptram6Wo3iPOt5NYVGY3j\/\/RVoMCi33TZeLm9uifm8vLyAgABvb2\/SOmFjSOvcgoNa12oNX321rmPH0e++u9xJ7pXRFGq1YeDApTAaSvNrwlRXV6empgYFBZHWCdtDWucWXNM6EnplpYq5W6m\/f8qlSxydJGUbrlPrGo3m\/fffv3TpUlhYGGmdsD2kdW7BNa3X3QIJ5b77JjvtmoUM16N1OH316tUXLlwoLCwkrROtAmmdW3BK67W1JrweL69EtGE3tzj822BwwKXV9Xq9UqksLS3Ny8vLycm5fPmyTtf4uabr0frixYurqqrwO8vLy0nrRKuwZMkZd\/d40jpX4JTWlUr9I49MRwPm82NefHEhkjv7gAOh1Wrh8b59+44dO\/bAgQO7d+++8847161bZzA0sjRCfa137z62wVemJpMJUb1fv36VlZX4B9J6SEgIaZ2wPaicrq6xpHWuwB2tm0x\/HTpUjKaLBowqsnNnnoNFdVgYmXrw4MEwb2pqqlqtZrZXV1e7ubktWbLk2mlE9bU+d+5JrfafHfDb0EP88ccf06ZNm25h1KhR+M2kdcL2iMUJ+IBI61yBO1pHNh8yZCOf\/4dAENunz0y93tGmSsLCzzzzjKur62+\/\/YZwzW61aJ3H47m4uKhUDZtEfa1XVl71KH7DRx99tHbtWsR8KB6UlpbSSRiiVSCtcwvuaP306Qp\/\/xRUDnf3+MWLzzjYQn2QL2wrEAgiIiIkEgkszD7wt9bB9Wtdp9MdOXJk+\/bt9QM+nVsnWgtG608+OUupdMATp\/Uhrd8A8Fds7E7kdFfX2PDwdMeL6gqF4vnnn4e7X3zxRaVSyW61fH2an59\/o1o\/efJkUFDQtGnT6roHPPfChQu+vr7oOSIjI2UyGbPdMSCtcxxG61u25Dr8ssmk9RugsFAWGGi+956XVyIqB7vVUUBULyoqEolEcPf+\/fvrfzsKxd999918Ph8pu\/6ZGYamtF5TU7N27dpt27axP1u6h+zs7A0bNvz5558bN26sqKhgH3AISOsch9H69u1X2J8dF9L69aLVQl7LhMI4RPW2bTPhMvYBRwFR+p577oG7xWJxA3dLJJJOnToxJ9yhZnbr3zSldWeDtM5xSOvcggtah7BCQtKYdpuTI2G3OhAymaxnz54CgWDIkCH1L1FHbN+3b5+Xl5evr69cLq9\/wp1BqzV+8MFKPp+0TlrnNKR1bsEFrVdUKHv2HOfrm\/Tss\/Mc8isXhUJx5513CoXC33\/\/vX4kh+47dOggEolmzpzJbqpHbW2tUqk6dfKyF\/8bD\/efy8pqsIV9zMkgrXMc0jq34Mi5dZVKf+BA0enTDnVGuA4k9D179kDfw4cPr9M6Ns6fPx85PTQ0tLS0lNlYH7VaPfDNN7uEhe3g8bqHhLz0\/PP1v2t1KkjrHIe0zi04onWHRy6X33vvvQ888IBKpbLcv8g4bdo0Hx+fbt26VVZWsjtdzaVLlzoGB1\/g8f6ylGAeb\/u27Xq9Ua+vbaoYjbVN3eqzttbUYGcU7I\/tDcq154LqwCMNdm6qNP07buaXkNa5DOqQ2DOOz\/tt27ac5j54h4C0TvwDQvqECRPuv\/\/+++67b\/To0ampqQMGDJgzZw4zmYjd6WpOHDr0Pp9v+lvr53k8f4GfUDhUKIxtqvTtO1su17LPv5o5c0402Bnlu+82TphwqEFZt+4SjM8+7WpQSaZOPdpg\/2vLjBnHmlmjraZG02D\/pkrdLyGtcxZUYFTsrm7ur\/Jchg75\/sSJE+wDDgppnfgHuBsNQGlBo9Egs6vV6vpXOjZAKlV2a3\/3wr+djoLY7oP\/eD9BcE2VwMBUfKDsr7iaWbOON9gZBWYXieIblBdeWNDUajwTJx729k5ssP+1xcMj\/o47JrDPuRqYunPnMQ32b6p06TKG6aWu1frtt4\/39U361xIWlr5rVz77nKspK1M22LmpEhmZ0VTrUCh0r722uMH+KFu25GZn59cv+\/YVss+5BoOhtsHOTZXDh0vU6sY\/GnxkeLTB\/teW3bsL8F4wEmKfdmugAp8\/e7azu7uEz1fyeHlCYefg8I0bTzb4ozYrZ89WtvSKI6R14uaZN++Ep\/vngTw3+d9aP8rjLQhq07ltStu2mU2V7t3HVVezS800YNmysw12RgkKSoU964sepZkvrvEUoTCuwf6Nlq5dx7DPuRqJRINf0mDnpsrBg8XMuOFarXfoMKr+nk0VsbjJaRBFRTi0DfdvtLi6xi5ceJp92tWUlChwDBvsj+LpmeDllVi\/hISksc+5Bpi6wc5NlXbtspqanf\/LL1t8fZMb7H9tQa8cHp6u1TaSJ4zG2rFjD3brNrZz59H\/WvDn8LJzcireevXtOD7fYKmiGh7vfwKhh8cjDf6ozQo+i44dG77UWyzs0fkb0jpx88ycedzd\/Td3QdSzYv83eLwPeby727cvvJgjl6hgxqYKsm1T9ztFS26wM0p5uRK6X7TodP2C1NNU5LlypWbJkjMN9m+0rF9\/iX3O1Wi1xrVrLzbYualSd2+sa7V+772Tw8Mz\/rW0bz9q797GY3JlparBzs2UlSvPs0+7GvwSDD4a7IyCYVB9y6Ogg2Gfcw3oRBvs3FTB4AODDPZpVzN48JoGOzdTGo38+NBjY3de+8obLTiwAwbM8\/WN9XEPL+fxjH+Hj2\/N06V7NdjZrgt7dP6GtN4cGAZi2Ojo36\/cPDKZ9rvv1n\/11crs7DNDhw6dNHRoTXV1MydtHJtrtS6VaioqlP9aqqrM57rY51wN+r8GOzdTmvolTGfZYGeUX3\/dNnTolvrl99+3s8+5BrySBjs3VRISdjV1G8jly8812Bnlyy\/XoSdAhq0rwcFpTz89p9G+H2k9PX1vg\/0blGukP8KVd\/swHg\/9EpyuNWtd8BDvnqv3sfvCHiALpPUmQS7A+PqHHzYdPlzc0ufC7BccmabOcTsb9JXpzYH6gwEZ2nhdKSlRyOW6Rr+lx0Y8lJdXk5MjKSiQ1X9WXXnyyVlXn4X7XeDycxtfv00eHhtcXDYIhQNu6\/XSgEkDBsy1oxIQkOLnl9xMYQ+QBdJ6kyCKPvzwdD7\/D\/T\/Tn4TaoxaqGP7V0jrLQdqIMYcaIYY2ZSWKpYuPXv\/\/VMa3LCljtzcGmaZVRSBINbbOykyMj0vL2\/RokVt2rRZ06GDzA4XI4ID8\/KkzRR2Pwuk9cZBNcKRQrXg82PQVTptIMWYF0P78+errlypYTcRTUBaty5Go0mvN2o0BqVSX1mpev31xf36zY6MzGB8jZKd3cjlQ9gfKT4iIsPFJcbNLa5bt7Hbtjn+\/KMGkNYbp6aGvRYCvf26dZecM6tiwLts2dmnn56D44AxIH3H0DykdauAaoZQhXLiRNnQoVs+\/XSNh4d5dmhdQdJCgbV37y5gn2MB1RXPeu21xUJhLAbZ3t6Jycm7m5ma4MCQ1hsHKhcIYlAeeGBKU5dtODbV1erJk49AUmg\/jK2OHClhHyMag7R+66CtLV9+rnfvqSJRPLK2q2ssqh+zihxTsGXQoBWDBq1E8ILE2adZQvrUqUfd3eOZ6tq\/\/5wNGy4jjTV6gt7hIa03AmpMdHQWKgdqyZw5J+rXHidhwoRD\/v4pIlEcGklwcNobbyxB6qHT681DWr91FArdHXdMgLsZiTMlKirznnsmoRJKJBq0TRgcpa5VarWGkyfLu3Ubi9aKnQMDUwsLZUqlzpmrK2m9EcaPP4QqgroVFpbuVFEdb\/bKlZpevSZ6eMRjnOvpmdC2beaZMxVNXTlH1Ie0fj3I5bqCAll5eeMXtqOm3XffFIEgNipqJMqBA0XHjpUWFcnwrEYrYWmp4r77Jvv6JjM3QhgyZOOFC1VNrSrhPJDWG4JY+thjM9A+vbwSt251tFsgNYVeb6ysVH355To\/v2QmIgUGpqSm7kE+okZynZDWr8VkMiGAl5Up4d+hQ7d88MHKPn1mBgSYJyE3OknYaDRJpdpZs45XV6tRmkncsHxMzA5EewgdIQyJfvbsE9jonGddGkBab8jChachdPT80dGZTS1t4WBgYDtq1P6IiIy6kA6\/YySLoS67B3EdkNYZEBGQjaDyyZOPZGbue+WVRRj1hoam1V8BAkfp5i5QgbTRKk+cKEtMzEY7hdPRSfz22\/amlqNoBqlUOnPmzCwLkyZNmjVr1rRp00pLSx1gZWnS+lWoVHrmwg9v76TLl6vZrQ4NwvigQSuY85JCYWyvXhOzsvZTQr8JSOuw+d69hRs3Xu7YcRQ8zqxvXldQu8TiRFj4wQen9u8\/5ybmghiNtRKJ+ttvN0AFAkEsDvWTT84qKJDd3ElCtVp9\/vx58zoCPN6nn36al5f32WefRUdHv\/322zA+u5N9Qlq\/iosXq729E11cYiB3J5mChLHwhx+uRJJCT4ahMZI7+wBxg5DWz5yp8PVlT+KhoB1h5IeCYxIYaD7xcvJkeV6e9CZmgdTWmjB2xAgAHQZ+MwbTfn7JmzblaBtbDuz6kUgkjNaZhK5SqT7\/\/HNPT89HH33UrtfAIK3\/g8FQ26nTaFQamB2Jg93qBOzZU\/DGG0t27sxjfyZuCgfWusnETA6qhUbVaj1SM\/vA1VRXq3v2HIdUjpQAmyOYL1t2dvnys4cO3dLyG3gu0sZbby3FLxQIYvDLH354elNTTK+f2traiooKOF0oFELozMY9e\/b4+PiEhYUhvDNb7BHS+j\/s3l3g5ZWIlvnMM3NvvdIQzoYDa12vN86bd+q337a\/\/PJCJOVmZjBMmXIkJmZHU0tj3hwLF55iGiY6DMh9+\/YrVrnmWC6X33XXXa6urr\/88kvdPdnLy8vhdG9v78OHDzNb7BHS+j8gFHzxxdru3cdOnXqUvk8nbhRH0npVlWrlyvOLF5\/5+OPVHh4JHh7xIlEcrIqwjPfYrl1WUyfrEOQR6q011UMi0dx11yShMI7PjwkKSn3\/\/RU6ndFav7ykpKRt27aI6nPnzjUa2euYSeu2w2bn1rVao0Khu8UTdhxEqdSfOlU+ZMjGRq8qI6yCvWtdozGgknz11ToI1Nc3SSyGzROuXgrRXDp2HP3II9NbtCJB3BUVKqSrwMAU9CXoVLp1GwsJWLdhHj9+HFFdJBIhqtfFONK67bCZ1h2S8nLla68t9vZOQvnww5XsVsLa2LvWJRI1aghSef3J+m5ucXBrmzYjo6Oz9uwpQEGCtpxeb6nhLPJ4Xl5Np06jYXMXlxj86ezsfKlUa92rsxQKRZ8+fQQCQVBQUP2heUpKiru7e9euXWUyGbvJDiGtOyzMTJCdO\/PCwzPQONFEkbyefHIW+zBhbTiudb3eWFOjqaxUNXUhSnW12tMzAU4PDk4LDU2PidkxduzBSZMOl5QoqqrUNrhECuI+d65y8OA1aOk4kngxGRl78\/Kkt\/J1a1NUV1dHRUUhqk+ePLlO61Kp9KGHHvL09Jw0aRKzxU4hrTsmiDyrV194882lsIxAYF6hFCPrTz5ZXVamYPcgrA3XtA5ZIVlD1vDyjBnHxo07iMSNsn174\/OA1GpDcvJuVBI0N9QTG5+KlEo1U6YcCQtLR0IXixMffnhaWtqelpsQd+zYMT8\/Py8vr\/379zNbtFrtnDlzsPG+++6rqbHvZajtQ+uHDhWjtZDWrweMjtGSd+3K8\/Y2XzyAIhYn3Hff5KIiOc0abVFaXetItUjiiNXHj5ehyaBER2dGRY0MDExhhmtMZVi79iL7BG6A13z6dMXbby9jFmJC\/li+\/JxMprXWV6PXYjAYpkyZwuPx\/P39mS0KhWLXrl1hYWE9evQoKbH7lUrtQ+svvLAANZK0\/q8gYZWXK2+7bTwOF0bTzKyNAweK6HpNG9C6WlcodOi5e\/ee2r37OOZywPpFKIzz8IjH9oiIjC1buLLSEfohvGy8Zm9v8\/rPnp4JDzww5dy5SvbhlsFoNEql0jvuuMPDwyMkJERt4ZFHHgkNDUVar7DDGyddi1Nr3WRiZ1i0xMk7G4Noo9MZ09P3MqdHBYIYZJ+33lqKjeweREuC47906VnU0tbSes+e4+u+6uTzY9CjoyCki0TxqAlffbVu7tyT3Fm6zmQynydcuPD0Y4\/NYF5qQEBKU2eHrAuC+dKlS+deA+TO7mH\/OLXWpVJNu3ZZqPQpKbtb7pt924CQ3rHjKKZhoyV\/\/vnaU6fK63\/FT7QolZUqBOFW1Poff+xgFvZBEYsTf\/nFfFP\/xYvPwJ7ociyYZcoR1Gp9bOxOdD9Mjf3ii3Uqld5mL485HA1gH3MI7EnrL7200Lqxeu3ai0xSuPvuSfYe2DEAZ7TSvn3WkCEbMQRpuVOTxLVUVLSU1uHlNWsuoCDPdu48Wipt\/C5u1dXq119fMmnSYaVSB0XiWXq9EWGFa77SaAxTphzBmFIoNN8rY8CAuVVVarxaBxNr62JPWn\/11UXsz9aAier4tcg4U6YctXcJolsqLpbPm3eypkaj1dKJF1tjRa2XlSmvXKk5d66ybdvM4ODUwMAUSBDFxcW8HMrSpWfZ\/a4GFQDGhMrZnzkJwkdkZAbeC7JUUFBqUlK2XK6j\/GF1nFfr06Yd9fAwV6\/Q0HTH8KBeX9vUGkxES8NoHdodM+YAu+m6gZERMgoLZU8\/Padv39khIWm+vslicSKTZ+uKWJwQGpq2evUF9ml2BY7PRx+tQpBCi0O769hxVF6eFGNKyugtgZNqXS7X9u9vXlfdy5lugUS0HIzWUZ1u4ns\/tdrw4osLAgNT+Xzziit1BeNIKD4sLP2tt5ampOxGEEGQt6+rVE0mk1Kp37OnACFdJIpzc4t7\/PGZ06cfQzfG7kG0AE6q9T\/\/vOjtnSgQxCI+NDXpjoPIZFqENQzPrTuRmrh1mtc6hoMSiQYfH\/vz1SiVOoR0xuN+fskYPr7xxpK33172xx87SkoUULlCobPHVKvTGTdtynnvveW+vuY5cf7+Kfh3ZSW7BC7Rcjij1hGOnn12Hn4hzH7xoh3cAglNGi2kvFzZufNoDGCjokZW3\/gtvogWpYHW8XlB1tBxXl7N2bOVs2Ydb9s2s0uXMczODUAAHzRoRY8e4779dsOVKzXMV4jsY\/aJ0WiqqdEcPlzCzIkTixPx3g8eLLL392UvOKPWL1+u9vExT3948slZaHjsVq6CFoKUl5m5r1On0a6u5pVRAwJS0tL2sA8T3ACZGinb0zNh3bpLMNr8+aceeWT6gw9ODQpKRdVlird361z7aEtQXdFLoZO7997JfL55hXR0dbt25dt4KQInx+m0XltrYu6bhdrW1EUFHAEhHY0Eg1bmih0UdEVw+rRpR+3oxJHDgxql19fOm3cSNYr5mOoXqA2fGvpjCA6fHfscBwWHAuPIjz5aJRYn8PnmCXHffLP+6NFSutbFxjid1utugdSnz8ymznVyBLVaP3z4VsTzutmDgwevKSiQUiPhFAUFssDAVLi77mOqX1DZPv549U8\/bYbvHP46pUmTDkdHZ+JQ4I1HRmb88ssW1FW61sX2OJ3WMShGtUOaGDv2IGf9qFDoNm3KCQ5OY1Zowgvu2HH0r79uUyrpIl\/OIZGo64ZTiOR33jnhqadmoVRVqeVyLT4y5nJyB\/7g8NZyciTx8bvQh6GuenomxMXtVCr19MV+a+FEWkflw0jZwyMBvwqZwgbrR98cpaWK3r2nouMRCMyXLYtE8XB6ZaVKq6WZeDYFLs7Pl6Lg+Ldtm9nUClkGQ+0HH6wMDU1D1YLRNm68DJU7TwcMfb\/22uLg4FSRKM7bO6lTp9FQPAaa7MNEa+BEWocSr1ypad8+y98\/eenSsxxcLQCvcMeOK+Hh6cydxhDV77138p9\/XuT4ySKHATKqqFChkrzxxpIXX1zwn\/\/M9\/NLRhFYbuD59NNzmloIU6XS5+bWQG2Iq7ZZr4oL6HTGw4dLBgyYi+SB4xMamr527UUMUGhOXKvjdCdhMGQeM+YANy+AgdbR3yCn480GBKT8\/vt2usi3pUHvXl6u3Lo1NyZmxy+\/bEGfCo\/XrU7OFA+PeHwc3bqNbWYSza1MR7I7MHDEQfvjjx3oyVxcYhDSn39+PkaZHIxKzonTaZ3joL9BSOzff866dZdoaZeWRq+vhYWhcma97zqPCwSxnp4JUPn9909BbP\/22w0FBbLq6uYuJ3cerWPIsmbNhbCwdJEozt09\/rnn5qFTxEY6Q8gdSOucA2an75qsiNFY29SpXrXaACsxKofHxeJEKD46OrNz59Fnz1YWFspkMu11ysrhtY7jgF6toECKg4NjhZ7P3z8ZfR73Z344IaT11sGyYiqlm5YC\/SLGOiqVXi7XXrxY\/eyz85oK2oiZiOooGzZcRuqsqFCyD9wgjq312loTDtTYsQeFQvOEOGaxmhMnytiHCY5BWrc1sLnBUDtq1H77WrOJ46CLhHpQcGxRhg3b+vXX6++9dzKTxKGhqVNbdu1lR9U6DiwiSHW1ukMH8yQ+F5eYNm1GTpx4mGovlyGt2xS0kP37i8Ri8z0ERo7cR23DWsA7kycfmTDhkEgU7+YWx6yyULcgImn9pjl5svynnzajujJ3Mvroo1WI7TiSNNTkMqR124H28PjjM8TiRGY6Yrt2WZy9dt5eOHeu8r\/\/XeXrm+ztnQR3M1fa1RUPj\/hevSbimB8\/XtrSa5I4ntYVCl12dn5wcKpQaO4mu3Ydi45TpdK3aO9IWAUH1zoa87p1l3r3nlpSomA3tQYymXbt2oudOo1mLkhHCQtLR5vh+L1suA8qRv2LEZEofXySIiNHdus29sSJsgsXqtBx2ma6o4NpvaxM8cQTs\/B2BIJYP7\/kgweL8AZ15lvTsTsQXMbBtV5WpoRAMYRs02Yku8m2aDSGoiL544\/PREjHW2Au8p0z50RlpYqc\/q\/AyBUVSolE09QXnqgYUE9AQEpU1MiRI\/fNn39q797C6mo1nmjjSTGOoXUkcYwp33tvORPS0Ue+8caSTZtymrmyk+Agjqx11MXY2J0iURwq6Pvvr2C32hBExVGj9gcFpTJne319k9FgENuNRso8jYNeEB1eebly6dKzqal7vvhibXh4eseOo6uqGp+WBZnGxOwoLJRVVanV6tb8osIBtI6hLQLHc8\/NY651QR7avDmHrl+0RxxZ67ADqiae6O+fYsuLsUwm85LTly9L2rcfheaBFyASxXfoMCo3V6JUUiP5B4zooRKZTItIvmVLLlIhHB0ZmYFPDX7EcWMKxjfjxx9in8NV7Frr+BQKCmQrV55nDjtC+ttvL0PzoZBupzis1g2GWlRNWNXybU\/jd6VpIfT62t9\/3x4YmCoQxOKvo5F8++0GNHv2YcICPiCIIz19Lzo8ZkBT53EUPp+ZH2Se6hkdnVlWdpOXk9sMO9U6PgVEjbFjDwYHm++kivwREpKGREJCt2scVusYlTNX2sILxcVydqtNQFR\/7bXFQmEsOpXQ0PRLl+zgvnq2p6ZGU\/cFMgr6P5hdJIrz8DDP9vT1TVqz5sKff15o3VMr1489ah35Az3rgAFzmVmjyB+pqXTXLUfAYbU+bNhW5gTIiy8uYDfZCqPRtHVr7oMPTps+\/ZjTph6TyXwyygK7pQHo\/N57b7mLSwxTBg9ek5y8e9So\/Xa6XKXdab221vT77zuQzdFGkNNvu208XW7rMDim1ktLFZGRGRjIBwamFBbK2K02BG0GQresEMBucSoOHSqeM+dEYmK2n1\/ywoWnGz0IiIrjxx+C2eVy9kYTBkOt0WivE13sSOuolkeOmG8ezUwyeuihabNmHUd1ddLK6og4ptYXLz7DRHVkdrqOsKXRao3HjpWiTJp0ODg4zd8\/Bcrw8DDP9kQMh9kb9QW2wexqtcExbGIXWoe7z5+vfPLJWfiAIHRf36T7759SVaWywXX9hC1xNK1DEXK5FmaBUPD\/c+cq2QesDfK4TKZFcc6rFdVqfXm5cubMY\/fcM6lXr4nMalnoSnHY8UkxBWEQH0GHDqOcIQVyX+toF2vXXvT3N68mj4EsXi16YssF\/hTSHQ1H0zpsO2bMAZHI\/F3cjz9ubqGbb+HXxsbuRNK5665JaBjsVmcCTm\/ffpSnp\/mOH\/VLQEBKWFh627aZ48YdnDHjWF6e1EnO2HJZ6xqNobhY3q\/fbLw8gQBxJ3nq1KOVlSoD3fXCQXEorTNz5Hx9k5EZfXySDhwoYh+wHmq14fTpipSU3XVGW7LkjEPmHalUW1WlhhHYn6+mokIZGpru6hqL4XxwcBo+oC++WItSWCgrK2tuXqijwlmto2fNzNwXHJwqFif4+SV\/+umaQ4eK2ccIB8WhtG40mi8Yh3D5\/BhkE+vmaL2+FsFz6NAt\/v4peDHoOXx9kx56aBoE5wCph7nXhEymxXvcvbsApUOHUW3ajJw9+wS7x9Wge0tKyn7iiZkXL1aXlChoLiLXtG6yzInbu7cwJCQNva+7e3z37mPz8mpUKrp5tOPjYFo3ISoiSiM\/FhRY8wIYtJCiIlmXLmOY08ciUXxQUOq5c5UYH7B72CF4U1A5PI5UjkH6vfdO7t59HN4jMwphCvend3IE7mgddVKrNWLAhIgDoaOIxYlZWfvLy7k+pYuwFo52bt3qoKtAMn333eW+vsl4DQJBLEL6rFnHbTzFyYogx+n1Rgh94MClr7++GP1TncSZgn6LmRyEPmzy5CPs04hm4YjWmfOQ77+\/Ai8GHyU+RPTTq1dfaOpkGuGQkNabw2isXb\/+klAYW6e8fv3myOV2OV+mDgj9tdcW172jBgVOf\/zxGSNGbBsz5kBLr1HuSHBE63v2FMDpdR\/lkiVn6XtRJ4S03iQ1NZq7754kEsUzd73o23c2WqxOZ7TrEy8AUT0hYRfT8lFgomefnYdj+8MPm1QqPQpsjn0wTHGGCxOtRatrHSF90aLT\/v4pGFAiiDz22Ax8lDZenZjgCKT1Jikpkbu6xsLpaCr9+8+RSDTcDz7l5crz56tWrDgXGJgaGZnBbr0a2BoNvmvXsR9\/vLqsTIneS6HQYYuzXbtiXVpX61u35gYHp3p4xHt6JnTsOCo\/X0pfYjszpPUmQcPo12\/28OFbT50qh\/U4GNKRxaRSTWGhbNmys336zHz00ent2mX5+CR5eJgvvhSJ4mbOPN7oxZd4LzKZVqMx2PvIgzu0itaRM\/DpM3dSdLFM6P3ii7Xop2lmtZNDWm8SKE+t1ltmt7NbOAKG22jMP\/646csv191xxwQEc7E4Aa0ah4gpGGRA7m3ajDxwoIjEbRtsrHUIHcPHlJTdgYEpfH4MOvLISPPHjfzB7kE4MXavdQSTY8dKKyvNN1pkNzk0GEO88soiNGZm0Zu6IhLF+\/omhYamvfvu8k8+WX3hQhVEwz6HaHlsqXVEDYwg27bNtEzR+ANd+08\/ba6qUtPSLgSD3Wsdzalduyy0qCNHSthN1w2SLNLN5cvVnOoS0FEplU2e6UYHhveLoyEUxnp7J0HlvXpNROnff25urgSP0qVsrYJttA5x41MeMWJbQID5q1Ff3+S7754kkagdcp4zcdO0gtYNBoPmGsw3h69tMms0pXXUZiRT5FZU8Ru9BRKGsdXV6ocfnobWOHfuyVY8WYF3YZkZZJDLdTU1mpMny3v3nrpq1fmmXtIXX6z1909+6KFphw+XHD9uu5v5Ec1gA60jghQVyfFXXCwT4sLDM2x5K0fCjmgFrS9fvvy\/\/\/3voEGDPvjgg48\/\/njw4MH4\/9dffy2Xy43GxiNqU1qHl5lZkQgv17+uuslkgtOXLz\/35JOz8Fx0CQ8+ONWWV7nA10ZjLToyRHKt1nDyZNmgQSvefXf5bbeNrztF\/swzc+liBjui5bRuMpkjiFZrRCtg1jrGEG3q1KN2er8Rwga0gtZh1UWLFvH5fC8vrwMHDiCkX7p0KTg42NfXd+vWrexOV9OU1lNT93h4mE8xv\/TSwuv\/YhPtITExGy2QuSAdWu\/Xb7bNtI7Xefp0+ciR+zCUZr7qROHzmfLPufKwsHSa7W1HtJzW0fenpOwWCs2r6aJiPP\/8\/LVrL9KcAqIZWufcOrTO4\/HgcSaew+yRkZEuLi4JCQnMDg1oVOsVFcrIyJGwIaL69a8AM2nSYYQdNBLLSDbuiSdmHT5crNHY6HIXjKPR8j08EhC7LBfF\/3P5Cgra7dNPz3n22XnnzlXiJdFcEjuiJbSOhL5t25V7752M2oLqwSxDRBWD+FdaQes1NTXt27cXCoVt2rRhtsjl8rCwME9Pz7S0NGZLAxrV+rp1l5ioPnToln\/9zrO21lRdrUbDY9bqwrN8fZMHDlwql+tsefpFqdThT9cVdEjR0VmdO4++eLG6rExRVqZUKHSWOxtQu7UzrK51qVSzcOFpb29EkFjU2M8++xM5hq51Ia6HVtB6RUVFeHg4JL5t2zbk9JKSkscee8zPz69Dhw7V1Y3cpB8Jd8CAuZBgndaRrKE\/OBHV3c8v+ejRUmZ7U0CU\/\/vfn126jGHSsadnQkzMDmaSEbvHLYMMVVWlysurefnlRc8\/vwC9RaPDZOwWGZmBsnr1hfXrL126VI3Wi505dSkOcRNYUetqtf7337fffvt4VFQMKKOjMzdsuIyNdOKFuE5a5ytTLwtDhgxBPA8JCWnbtu1vv\/1WXl6u1zfiWWRYZpXBOq0jetfdAunzz9c2Y2fmqvYvv1yHXM\/nm4Xes+e4tLQ9t\/5tJAI10hPKiBHbfvlly5AhG9Gq\/f2TMRrAkBl\/otHEbTSaKitVdGMax+PWtQ5poyafOVPxww+b8HuEwrjAwJTExGyJxCluL0VYEVtrHeL+8ccfeTxedHQ0cnpRUdGbb74ZGhravn17ZFeDoZFrrvPzpYjkdVpHZoGUsQVRHbV\/z54CZrdGQQp+5ZVFeK5AYD4Fn5Gx91aWdsEQGH8aEXvRotPz5p0MD89Aqb++IwpelVicGB2dReJ2KkpKFAgfN6119PfV1ervv9\/o75\/i6hqL\/NG799TCQplaTbMQiBvG1lqXSCRt2rQRCoUPP\/wwu8mS30UiUceOHeXyRhYxZ7QuEMS+8cYS\/AhTf\/fdRmgaDr333slK5b\/k7s2bc9DeevQYh0ZyixenX7lS06XLGGSo+h5HYdqhr29yhw6juncft2bNhYKCW\/1bhH2RlJTt4ZFwE1pHPVGr9Zcvo12MRCZASkAmQGiQSimkEzeJrbVeWFgYGBgYEBCAnM5u+uuvDRs2eHp6RkREVFZWspvqwWgdDebAgSJEdZlMi9Eun2++RQAeYndqGq3WePFiI6fsGwWhCSm7KSO\/++5yGBwex1\/HP9zd48XiBB+fpMjIjC1bcg8dKnbO21UT4I8\/tqNi3KjW9XpjVZW6b9\/ZgYGpzEnCu+6aRGddiFvE1lpPTEyEwR966CGZjL0kEaZ++eWX3dzckOKrqqqYjfVhtB4cnFZSIkdUT0zMZr75fOqpWXUaNZnM5eaAxBmb6\/W1aGO\/\/rqtqRFAaakiLMx8X2Y0v+++2zBx4uEdO\/LoZAsB6rSOKsFuahZUV9ScRYtO4ykQOgajSAnoEugiKOLWsbXWn332WT6f\/\/rrrzNf6+P\/x48fF4vFvr6+hw4dYjY2oIHW09P33n77eJi9pkZTt7tGY1i16jz7w42AuIQnjhlz4J13lqFdQdmRkSMrmlgkSy7XxcTsYM7Oo\/mhP2j0BRNOCKP14ODUS5eua2iIQedDD00TCMxz0Ly9k4YM2YhKRdWJsAq203plZeX69eu9vLx4PN7jjz++ffv2LVu2vPLKK3D6I488UlJS0uj3paC+1lHtkalVKvM98utOlVy5UsPclrr5r0\/rUCh0e\/cWrl9\/KTw83dsbowfzZWQQOhoYWib+gcDO7no1llzf5CkawplhtN6uXRZGfuymxkAFLiqST59+DFUaNc3DI\/6RR6ZjFEhXuBJWxHZa12q1cHdeXl5OTk5BQUF5eXlZWVlhYWFubq5MJmtqNRhQX+vspr9RKvWDBq0IDU0TicyrfaFRsQ9cAzqDvDzp+PGHOnUaHRWVabnXhDmboynWFVi+bdvMmTOPSyRq9mkEcX0wWm\/fvskaCFAJEUEi\/p4Th3HhhQtVcrmWzuMR1sXWJ2Fugmu1jsiDxL1\/f9FLLy1E1kZzEgpjg4JSx449yOxwLWq1oU2bkdi5\/nx9\/BgengHLL1t2FqWqSlVTo9FqKTcRN0zzWrd8baP65psNqMmogWJxwuTJR6B4EjrREtif1tESysuVb765BImbucwRjw4bthWNpKBAhsbT6AlKyPrLL9dhf3\/\/lODg1HffXT5ixLYpU45UVCirqymbE7dKM1qXSjUJCbsQ0mFzsTjx0Uenjxq1X62mi6aIloLrWtdqtRcuFIR6fxTu\/8mlS0VlZbIVK86Fh6fXhe4ePcZ9992GJUvOzJt3Ei0H0bvRawlqa01SqfaFFxagkygulltx2QCCAI1qXak0f4vz4YcrmW\/jkSfmzz9V\/2shgmgJuK71PXv2dA4PX+rmFu\/u3jUkPCRkOGPzuhIYmOLra56DiuJiXoo6mQa2hO1poHW93lhTo7nnnsleXokYI3p6JnTrNhZ5gnmUIFoUrmv94d69NwqFWh7vLx5vBY8n5PnxeL8yEr+2uLnFIcsjlSOMa7UGnc7I8aI33xKKgpvdYzAYfhuxUcAb1j46VafTaTSGZcvO3nvvZKEwDnUyKCh17dqLcjndFIWwEdzVuslkvpqwl7d3pcXpKBIery3Pjcf7sIHNry1t2oz88st13323kePl11+3YUiOt8n5YkL3Yy+FrUC2AhV12rRp\/R58cBiP187X9\/vvfvzmm\/UYOFomGcV8\/fV6OuNH2BiOah0qyc7O9\/D4pAvf7Sa0zufHoEUJBLEcL66usUhzIhHXi7d3YmJi9rRpR+2iYBjEViObIJPJ+j300HwXFz2PJ+Xz+whEAsELPN7vEREZ+flSyyQjdk+CsA1c1HpNjQYDWLE4kc\/\/TcAL2cVzYU7CFPB4d\/r51xw4ih0aLeXlygcemGIXBa5s0BVxuaCbFArNs9vtovj6Jvn5JduseHsPvU8ollqqaC2PV8njCwSi33\/fKpVqkE7YOk0QNoRbWpdKtYsWne7ceYxQWGe9j8LFoXe6ud8rEj0YEXHm2LG\/GluTnQEDcLlcZxflzJmKU6fKuV8GD14TFZXJ\/RIenu7llVjXD9m2dJzDEyr\/HlPKeDxXV1elUkMrARCtBVe0rlYbiopkjzwyXSw2Ty+qK8HBSdOm7Vu7dv2CBQuqqqp0OvreyaaoVHqJRM39UlmpWrXq\/OzZJ2xfJk\/e3sXHr8zidCPSuovLh35+xiZWwiAIG8AJrZ8\/X5WUlB0UlFoX0l0st8j47rsNxcXm5b3Y\/QiCe2g0mvfffPMdX98xbm6ZAsHTfn67N20y1dLpF6LVaE2tY5SKkL59+xUIvW55FoHALPTevacuWHDK9lc1EMRNUFNTk5OTM2DAgJf69Svbu5fdShCtROtoHb623NNZ\/dVX6xDMGaGjIK0HB6eeOVMhl2vZXQmCIIgboRW0bjSa5\/G\/+eYSGLxO6JC7m1vcoEErDh0qZvcjCIIgbhxba91k+mvjxssvv7ywTugofL55ua7U1D00cYMgCOIWsanWZTLt7NknfH2TBZaVF+vKsGFbFQqdZeIGnUwnCIK4JWyn9UWLTgcGprhbbiDA2Bxyj4wcWVmp0mqNJHSCIAir0OJa1+uN+fnSBx6Y6umZUCd0N7e4kJC0xYvPFBTIyOeEQ8Lc\/IsB\/5bJZAqFgn2MIFqSFtS65Y4w6uHDt\/r7pzC3CWWKl1div36zy8uVWi1N2SAcDYPBUFpa+v333z\/99NMLFy6cO3dujx497rzzzs6dOx8\/fpzdiSBakpbSukqlP3SomLnPXJ3QRaK455+fv2TJGZmMrl8kHBCNRgOVd+jQYcqUKVKp1Gg0arVapPXw8PA2bdqoVCp2P4JoSayvdYT0s2crv\/xynb8\/e3cLpoSGpvfpM7OmRsPuRxCOBZy+adOmgICAkSNH1r\/lOsy+ZMmSTp06sT8TRAtjZa0rFLqCAlmDC9IR2AMCUnJz6Ya8hMNiMBjWrFnj7e3t6+tbWVnZ4BKAbdu20RkYwmZYR+uowwjpGo3hqadmC4XsMgCW2wjE+vgkLVp0mi50IRyb8vLysLAwkUiUlJTEbiKIVsI6WofQY2J21F8GAMXdPf777zcWFEjZnQjCcVm\/fj2iekhISG5uLruJIFqJW9W6VmtYv\/5St25j60I6U3r0GJecvFunM9JyXYQzEBMT4+Li0q5du1pau5FobW5J60VFssjIkV5eiXXrL6Lgx9Wrz0ulWlpQl3Ae\/vgDlZ\/Xvn179meCaD1uUusqlf6bb9Z36DCqTuh8foy3d9ITT8zcsSNPo6EL0gnnIjEx0d3dPSoqSqlUspv+Ri6XSyQS9geCaHluTOsm019KpfmC9K++Wlf\/NkaQe3h4+vr1lxQKHZ11IZyQysrKiIgIsVi8ZcsWlUrFXCOg0WhKSkoGDhy4bt06ZjeCsAE3oHWjsbayUvXJJ6v9\/JIFAjakQ+g+Pkmvvba4vFxJV7sQTotOp9u1a1d4eHhYWNjnn38+a9as2bNnz58\/\/\/bbb1+0aJFWS\/PvCNtxXVo3Gk0ymfbIkZLIyIz6ywB4eibceeeEy5clCOnsrgThrMDs5eXlr7zyym1\/c\/z4caR4cjphY\/5d6zqdsaJCdd99U+psjuLmFuftnfTrr9tphXSCIAhO0ZzWa2tNer1xypQjYnFindBdXGJcXWPHjDlQWChj9yMIgiA4Q3NanzDhUNeuY+pPMsK\/77138vjxhywrpLO7EQRBENyhEa0jpOfm1mRk7PXySqzvdJEobsCAuUql3nIbI3ZngiAIglM01LpOZ8zJkQQFpULifP4\/d73o1WtiaamCzqQTBEFwnH+0rtcbz52rfOaZub6+SXUJHSU4OHXlyvMSCS2oSxAEYQeYta7VGsvLlb\/+ui04OK2+0P38kv\/3vz937cqnZQAIgiDshca\/MnV3j+\/QYVROjkStprMuBEEQ9kTjWicIgiDsFNI6QRCEQ0FaJwiCcChI6wRBEA4FaZ0gCMKhIK0TBEE4FKR1giAIB+Kvv\/4PYYEESe\/8t00AAAAASUVORK5CYII=\" y=\"0.5\"><\/image> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" font-weight=\"bold\" id=\"svg_2\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"301.89999\" xml:space=\"preserve\" y=\"171.5\">&gt;<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" font-weight=\"bold\" id=\"svg_3\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(147.93380737304688 12.912493705749526,234.1000061035156) \" x=\"5.89999\" xml:space=\"preserve\" y=\"242.5\">&gt;<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" font-weight=\"bold\" id=\"svg_4\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-90 128.91250610351562,6.100006103515619) \" x=\"121.89999\" xml:space=\"preserve\" y=\"14.5\">&gt;<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"24\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_5\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"139.89999\" xml:space=\"preserve\" y=\"12.5\">z<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"24\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_6\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"305.89999\" xml:space=\"preserve\" y=\"184.49999\">y<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"24\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_7\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"1.89999\" xml:space=\"preserve\" y=\"226.49999\">x<\/text> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{\\sqrt{3}}{5}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\dfrac{\\sqrt{3}}{2}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\dfrac{\\sqrt{3}}{4}$<\/span>"],"correct":"3","level":"2","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>C.<\/strong>&nbsp;<span class=\"math-tex\">$\\dfrac{1}{2}$<\/span><\/span><\/p><p><span style=\"color:#16a085;\"><\/span>+T\u1eeb h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 Oxyz v\u1edbi&nbsp;<span class=\"math-tex\">$A\\equiv O(0;0;0)$<\/span>,&nbsp;<span class=\"math-tex\">$B(a;0;0)$<\/span>,&nbsp;<span class=\"math-tex\">$C(a;a;0)$<\/span>,&nbsp;<span class=\"math-tex\">$D(0;a;0)$<\/span>,&nbsp;<span class=\"math-tex\">$A^\\prime(0;0;a)$<\/span>,&nbsp;<span class=\"math-tex\">$B^\\prime(a;0;a)$<\/span>,&nbsp;&nbsp;<span class=\"math-tex\">$C^\\prime(a;a;a)$<\/span>,&nbsp;&nbsp;<span class=\"math-tex\">$D^\\prime(0;a;a)$<\/span>.<\/p><p>+Ta th\u1ea5y <span class=\"math-tex\">$OC\\bot(BB^\\prime D^\\prime B)$<\/span>&nbsp;v&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{OC}=(a;a;0)$<\/span>&nbsp;n&ecirc;n suy&nbsp;ra m\u1eb7t ph\u1eb3ng (BB&#39;D&#39;D)&nbsp;c&oacute; m\u1ed9t vec t\u01a1 ph&aacute;p tuy\u1ebfn&nbsp;l&agrave; <span class=\"math-tex\">$\\overrightarrow{n}=(1;1;0)$<\/span>.<\/p><p>+\u0110\u01b0\u1eddng th\u1eb3ng A&#39;B c&oacute; vect\u01a1 ch\u1ec9 ph\u01b0\u01a1ng l&agrave;&nbsp;<span class=\"math-tex\">$\\overrightarrow{A^\\prime B}=(a;0;-a)$<\/span>&nbsp;hay&nbsp;<span class=\"math-tex\">$\\overrightarrow{u}=(1;0;-1)$<\/span>.<\/p><p>+Ta c&oacute;:&nbsp;<span class=\"math-tex\">$\\sin\\alpha=\\dfrac{|\\overrightarrow{n}.\\overrightarrow{u}|}{|\\overrightarrow{n}|.|\\overrightarrow{u}|}=\\dfrac{|1|}{\\sqrt{1+1}.\\sqrt{1+1}}=\\dfrac{1}{2}$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2025-01-12 11:42:06","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.