Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Sinh học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Lịch sử - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 3. Đường tiệm cận của đồ thị hàm sốBài tập cơ bản
{"common":{"save":0,"post_id":"7520","level":1,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5382","post_id":"7520","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=f(x)$<\/span>&nbsp;c&oacute;&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to+\\infty}f(x)=1$<\/span>&nbsp;v&agrave;&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to-\\infty}f(x)=-1$<\/span>.&nbsp;Kh\u1eb3ng \u0111\u1ecbnh n&agrave;o sau \u0111&acirc;y l&agrave; kh\u1eb3ng \u0111\u1ecbnh&nbsp;\u0111&uacute;ng?<\/p>","options":["<strong>A.<\/strong> \u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho c&oacute; hai ti\u1ec7m c\u1eadn ngang l&agrave; c&aacute;c \u0111\u01b0\u1eddng th\u1eb3ng x = 1 v&agrave; x = &ndash;1.","<strong>B.<\/strong> \u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho kh&ocirc;ng c&oacute; ti\u1ec7m c\u1eadn ngang.","<strong>C.<\/strong> \u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho c&oacute; \u0111&uacute;ng m\u1ed9t ti\u1ec7m c\u1eadn ngang.","<strong>D.<\/strong> \u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho c&oacute; hai ti\u1ec7m c\u1eadn ngang l&agrave; c&aacute;c \u0111\u01b0\u1eddng th\u1eb3ng y = 1 v&agrave; y = &ndash;1."],"correct":"4","level":"1","hint":"<p>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang.<\/p><p>\u0110\u01b0\u1eddng th\u1eb3ng <span class=\"math-tex\">$y=y_0$<\/span>&nbsp;l&agrave; \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang (hay ti\u1ec7m c\u1eadn ngang) c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 y = f(x)&nbsp;n\u1ebfu &iacute;t nh\u1ea5t&nbsp;m\u1ed9t trong c&aacute;c \u0111i\u1ec1u ki\u1ec7n sau \u0111\u01b0\u1ee3c th\u1ecfa m&atilde;n&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to+\\infty}f(x)=y_0$<\/span>,&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to-\\infty}f(x)=y_0$<\/span>.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>D.<\/strong> \u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho c&oacute; hai ti\u1ec7m c\u1eadn ngang l&agrave; c&aacute;c \u0111\u01b0\u1eddng th\u1eb3ng y = 1 v&agrave; y = &ndash;1<\/span>.<\/p><p>D\u1ef1a v&agrave;o \u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 ta ch\u1ecdn \u0111&aacute;p &aacute;n <strong>D<\/strong>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-29 01:29:02","option_type":"txt","len":3},{"id":"5383","post_id":"7520","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 f(x)&nbsp;c&oacute; b\u1ea3ng bi\u1ebfn thi&ecirc;n nh\u01b0 sau.<\/p><p><span class=\"svgedit\"><svg height=\"140\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"142\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"142\" id=\"svg_1\" stroke=\"null\" width=\"321.99999\" x=\"-1.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYEAAACpCAYAAADN0YHLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABJTSURBVHhe7d0hjB1FHMfxCgQCwSUIRAVJEQhExYmKiroiKhAkh0RgmiAqEORCcpI0iIoKziEqTiDJKQSiAoHgEkQFuVRUIHoJAoGoeOT3uv92Zrrv3s7uzNuZne8n2dzNe3vX7f135rc78+7elRUAoFmEAAA0jBAAgIYRAgDQMC8Erly5wsbGxsa28M31RgiUqNTjAoDaEAIA0DBCAAAaRggAQMMIAQBoGCEAAA0jBACgYYQAADSMEACAhhECANAwQgAAGkYIAEDDCAEAaBghgOxOTk7WNbPt\/Py8ewalsppRq+ULx1NCAEndv39\/XS8NKnL37t11+\/Hjx+s2ymL1sY0QSEv94fbt212rDKqzixBAMhpAbDAxdoVZWkfAmwGgjRBIq9kQ6Lv60w9Cj+mHEivVcY2h47127dr6GPTx9PS0e+blAGfP7e3tjfq\/LYk7DWR0DthjDDBlcsOAGqU1JAQuLi7WNdAYohpo\/7Ozs1fP6XvYc+EYNIa+jytpCLgdXpv9592TrKYQsB++hZk6yMHBwboIek7Hpf+bntcA2HoQuHU27jlhU0QoCyGQj8aDbSGg5\/f391\/97NVn9Jja+mjjih63ccfGpDH09a6kIWB04HZS6aCndv5UxxVLqdt37AoC+7+5FA4qWKvcuhtCoHyEQD7bQkA\/776fu+4AbJYhHPAPDw\/XY9BY+p6uLCHgdnydYFNNPS53cNq2uQVTuy9xtY8KFLL\/d6sIgToRAmmMGWc2jRkKAV1Q9o2f24Jlm\/Df81p9BzOW\/UBKCIGx+u4EdLWv49Htmwrlav1OwB1MDCFQPkIgn7F3Arra11jSd8VfxZ2A2InVd8UcK+VxxdCgruO3uwF9tHRW0VRcCwJ9VDucImqJ\/u+qlVsvNwQYYMpECOQz5Kpdg7r2sZ\/98fHxuha6aNIYpPoY7aMxyMakMfS9XVlCQAftDghTDlhSHdcYFgQ6Bn10B3mt4Kt42nRn0HIAiE5Qq7mxENjWETAfQiCfISEg2k+Du2qgsUTjjlEYuOOM+9wYbv+UZCFgA6U2u+3XQattSTZ2IJhyXNgtC387B2yAmXohgHzcvkud0hoaArsUjqfJQsBOInfe170y1Db2KkNfi3pYEEytO\/Kyi7S+DWk0FQI5cVICQBqEAAA0jBAAgIYRAgDQMEIAABpGCABAwwgBAGgYIQAADSMEAKBhhAAANIwQAICGbQ0BNjY2NrZlb643QqBEpR4XANSGEEAWR0dH3WfbxewLIC1CAFnE1Ih6AvMhBJAFIQDUgRBAFoQAUAdCAFkQAvVy32NYbzWJZQv7n9cqtXMyaJQvpkbUsxz2FpP2FqD2fsNYrrC+XqvU4nNSli+mRtSzDHo\/cNXCfQ9cuyvQe+OWSkHlvpc54oT9z2uV2jkZNMoXUyPqWQYb8N0Q0OCvx0qeFiIEpgn7n9cqtXMyaJQvpkbUsww29dMXAtpsiqg0hMA0Yf\/zWrvonHb1EXOlsYvjwjQxNaKeZVAdtBECbQn7n9cKn8zBTjBtjx8\/7h693C6OC9PE1Ih6lsH6YckhoDHCjueyzf0\/4HL6ebm8VvhkDm5RCYHliKkR9SwD00FtCvuf15rSOVUYd4rHTqa+Yumki0nuKceF3YipEfUsg\/qgatEXAm5fLg0hME3Y\/7zWmM6pYujrbLOre5v710eXChj778Tuj92LqRH1LIP13b4Q0MdSEQLThP3Pa43tnLpt1Ndqc4ujAHDbOtnGnFxjjwu7E1Mj6lkOuxuwqZ8xF2m7RghME9bXa00pvp08YQikUPpJibgaUc+yWBBoUz\/GsoX9z2tN6ZwWAnalrzAYuvC7zZTjwm7E1Ih6AvMJ+5\/XmtI57WrCQiDVXYAwaJQvpkbUE5hP2P+81pTOaSGgwV+fp8SgUb6YGlFPYD5h\/\/NaUzqnBn99vbbUizYtDRo2rbZtK+013DqmoWL2LQW\/tISl0Hnq8lrhkzEsBFJOA5kpx4XdiKkR9QTmE\/Y\/rzWlc+oKKNcrCxg0ykcIAHVIFgKa8tH+7uuLc01RMGiUL6ZG1BOYT9j\/vFZM53SnfxQIOeeoGTTKF1Mj6gnMJ+x\/Xiumc9qdgLYc6wAuBo3yxdSIegLzCfuf1yq1czJolI8QAOpACCALQgCoAyGALAgBoA6EALIgBIA6EALIghAA6rA1BNjY2NjYlr253giBEpV6XHgtpkbUE5gPIYAsCAGgDoQAsiAEgDoQAsiCEADqQAggC0IAqMPiQ0B\/02h\/f3\/9NdoODg5WZ2dn3bPIJaZGpZ5nQAvC\/ue1Su2cQ49L72+sffXeBhcXF6vj4+N1e29vr7h34lqamHNnzHmmr7Et1\/tWAC0I+5\/XGtM5d2HIcWmQt0Hi9PS0e3S1DgA9lvsvnbYu5tyJ2detq7sRBKidLlZ14bpr6j8urxU+WYohx2V3Adp0F2D0g7bHkU\/MzzdmX4W33t\/XWC21pX4va2CXCIEIQ45r02Bvb36jjbWBfIbUyMTs6waAuO9jQQigZkNCQBe0GsNsRkNfY+OYntPX23O6O3ZnQTYJ+5\/XCp8sxZDj2hQC7h1COKAgnSE1MjH7hlRDqyfrPKjZkBDQPnqhi53rOv\/1mNr6qADQ99DjNtZtG+fC\/ue1pnTOnIYcFyEwryE1MjH7hqyeqjdQM53Dl4WArYeFFzu6A9BVf9+Ydnh4uH5F5GXC\/ue1pnTOnIYcFyEwryE1MjH7huzkB2piY9CQzYJB45XaIYWA7gD6Xuyir912gRR+T6\/V9w+WYMhxbQoBJaM9zvRBPkNqZGL2dVmgj6njw4cPV3\/++WfXAtJ49uzZ6smTJ10rztg7AY1pCoG+K\/6m7wQ2DfYWDrykMK+YcydmX2NXRWPv5n788cfVxx9\/vPr333+7R4BxNPA\/ePBgdfPmzUnn5LYQEI1r2s\/GNPvdJ70oQovA7t2A9lE4bDuesP95rTGdcxeGHJcNEtrcFXKbPtj2w8Y0MedOzL5iV0Thyd13O3yZL774Yr0BscKB37arV692e8QbEgKifewVQFokdsc3hYG+j7bwuU30fVxeK3yyFEOPSz8I7auPmjezlxPqh6M28ok5d2LPM+3ft6nOMXQXoLsB3RUAQ33zzTe955+2e\/fudXvF0\/k7x8WpjtvltcInSzH0uOx1s3b1b4snBEB+MefO0H3tDmDTNqYDaV3g\/fffZ30Ag+niIbwDsG3sVJAQAhFyH5cWDZ8+fdq1MEZMjeY+z1gfQCydK+4fptQ2ZSpoTmH\/81pzd85Nch+XQuDWrVtdC2PE1KiE84z1AcTQFf+77767vnjQ+atN00Q1Cvuf1yqhc\/bZxXEpBBQGGCemRiWcZ6wPYCgLgJ9++smbGvrjjz+6PeoS9j+vVULn7LOL49J0kOaKmRYaJ6ZGpZxnrA9gGzcAjIKg5rtIQuASegkY00Lj1BgCwvoANukLgCUgBC7x4sWL1Y0bN5gWGqHWEBDWBxBaagAIIbCFfgX8vffeY1ooUs0hwPoAXEsOACEEBvj+++9Xn3zySdfCEDWHgLA+AFl6AAghMIBNC3FlOFztISCsD7SthQAQQmAgTQvpylB\/MwTbLSEEhPWBNrUSAEIIRNC00J07d7oWLrOUEGB9oD0tBYAQAhE0LaRfFWdA2G4pISCsD7SjtQAQQiCSfitQrxZiWuhySwoBYX1g+VoMACEERjg6OmJaaIulhYCwPrBcrQaAEAIjaFro+vXrq0ePHnWPILTEEGB9YJlaDgAhBEbStJDmiZ8\/f949AtcSQ0BYH1iW1gNACIEJNC302WefdS24lhoCwvrAMhAALxECE9i0UOsnUZ8lh4CwPlA3AuA1QmCi33\/\/nWmhHksPAdYH6kUA+AiBBL7++mumhQJLDwFhfaA+BMCbCIEE\/vvvv9VHH33EieVoIQSE9YF6EAD9CIFEfvvtt\/VV4T\/\/\/NM90rZWQkBYHygfAbAZIZCQpoUYDF5qKQRYHygbAXA5QiAhmxb6+eefu0fa1VIICOsDZSIAtiMEEtO00AcffND8tFBrISCsD5SFABhmJyFw+\/Zt73udnJys2\/fv3+8eiVP6oMG0UFyNSq9nDNX9888\/71qYCwEwXNj\/vNbUzqlC6HvYpsFfNPirrXAYY+px5aYrQd0NtDwtFFOj0usZw9YHfvjhh+4R7BoBECfsf14rVefU99HmXvnr86XeCcivv\/66unr1arPTQjE1qqGeMbQuoD83rr8vhd0iAOKF\/c9rpeqcNh3kDvp3797tPotXy6Dx1Vdfrb788suu1ZaYGtVSzxhaH\/jwww9ZH9ghAmCcsP95rVSd00LABn4Vy6aGxqhl0LBpId0VtCamRrXUMxbrA7tDAIwX9j+vlapzavDX97IQmHIXIDUNGgoABUFrV4QxNaqpnjFYH9gNAmCasP95rVSd00JAdwT6\/Pz8vHtmnNoGDU0LaWtJTI1qq2cM1gfyIgCmC\/uf10rVOe3VQNrGLga7ahs0WpwWiqlRbfWMxfpAHgRAGmH\/81qpOqeFwNiXhIZqHDT0ctGWpoVialRjPWOxPpAWAZBO2P+8VqrOadNBqdQ6aGggaGVaKKZGtdYzBusD6RAAaYX9z2uN7Zwqkr5WH0V3APZ5CrUOGvqdAf3uQAvTQjE1qrWesVgfmI4ASC\/sf15rbOd0p39UtJQBIDUPGpoW0h+Z0x+bW7KYGtVcz1isD4xHAOQR9j+vNbZzqlj6Wm2p1gFctQ8amhbS3xdaspga1V7PWKwPxCMA8gn7n9cqtXPWPmhoWkiLxPqLo0tFCGzG+kAcAiAvQmAmS58WIgQux\/rAMARAfoTAjPTm9EudFiIEtmN94HIEwG4QAjN6\/vz5+t2oljgtRAgMw\/pAPwJgdwiBmekkX+K0ECEwDOsDbyIAdosQKICmhY6OjrrWMhACw7E+8BoBsHuEQAFsWmhJgwAhEIf1AQJgLoRAIXTiX79+ffXixYvukboRAvFaXh8gAOZDCBRkSdNChEC8VtcHCIB5EQIF+fvvvxczN0wIjNPa+gABMD9CoDCaG17CtBAhMF4r6wMEQBkIgQLduXOn+mkhQmCapa8PEADlIAQK9OzZs\/WrhZ48edI98tLTp0+7z8pHCEyzaX1gCXcHBEBZCIFCaUrgxo0b62khDf63bt2q6k9MEALThesD+qhpIr2kuFYEQHkIgYJpWujTTz9dvfPOO+v\/s149VIuYGrVSzzFsfeDhw4ert99+e\/2z+uWXX7pn0zg5OVm\/+9+1a9fW31+bPtdjFxcX3V7TEQBlCvuf1yq1c5Z6XCnp6v\/mzZuvOqW2\/f397tnyxdSohXqOpekf\/dlx9zx48OBB9+x0Gpj1Pff29tafi70plLZU7wdCAJRLdXZ5rfDJUpR6XKnoqs+u\/t1NUwO1iKlRzL4tsekf9xzQpkXjVCwEDg8Pu0decv+9qQiAsoU19lopToAcSj2uFPSH5L777rt1p7FO6G61LAzqWIeK2bcVf\/3118ZzQC8hzs3996YgAMoX1thrTT0Bcin1uFLSL47pis86om1aLEzt7OxsdXBw8OrfcOeCz8\/P1217TtMD2n8b7TtUzL4t0Tlw7969V2sBtr311ltZf49ENbd\/a8p0EAFQB9XZ5bXCJ0tR6nHloPca0KuErFPqHclS0mCv+WB34NdCoTq\/PadFQj2mTq2w0GPbFgxjatRSPcfoC4Ocv1GsqSH9G6rzkMDvQwDUI+x\/XqvUzlnqceX06NGj9e8OaL0gJQ3uGuRD6sQaBPoGfC1QHx8fd61+MTVqsZ5juGGg8yEHDfqqhzadG2MQAHUJ+5\/XKrVztjpoaD3gsitA67xDNr0CRPSx75ZfHVn79Q0E2t++fhN97VAx++JlGITvRmf1Grpp\/5Dd+en5sQEg3377LQFQEdXb5bXCJ0tR6nHVaNOdgK729XjfYM+dwPIoAFRX1WJKAKA+Yf\/zWqV2TgaNtNT5NQ+sgUCb1gdsPliPu4PC6elp7xRRKKZG1HN+tvi\/LdyxPGH\/81qldk4GjbRs4NfPVZsWf90FQQWBpoBs49VBy6JgVw10Drj0KiEFft\/UEZYj7H9eq9TOyaBRvpgaUc\/56ALA1gE2bYTAsqnGLq8VPlmKUo8Lr8XUiHrOR9M\/+vlfto19mSjqoBq7vFb4ZClKPS68FlMj6gnMhxBAFoQAUAdCAFkQAkAdCAFkQQgAdSAEkAUhANSBEEAWhABQB0IAWRACQB22hgAbGxsb27I3F5dkANAwQgAAGkYIAEDDCAEAaNZq9T\/RFukGkR0dBgAAAABJRU5ErkJggg==\" y=\"0.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>T\u1ed5ng s\u1ed1 ti\u1ec7m c\u1eadn \u0111\u1ee9ng v&agrave; ti\u1ec7m c\u1eadn ngang c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho l&agrave;<\/p>","options":["<strong>A.<\/strong> 1","<strong>B.<\/strong> 2","<strong>C.<\/strong> 4","<strong>D.<\/strong> 3"],"correct":"2","level":"1","hint":"<p>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang, \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong> 2.<\/span><\/p><p>T\u1eeb b\u1ea3ng bi\u1ebfn thi&ecirc;n \u0111&atilde; cho ta c&oacute;<\/p><p><span class=\"math-tex\">$\\displaystyle\\lim_{x\\to-\\infty}f(x)=0$<\/span>&nbsp;n&ecirc;n \u0111\u01b0\u1eddng th\u1eb3ng y = 0&nbsp;l&agrave; m\u1ed9t ti\u1ec7m c\u1eadn ngang c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1.<\/p><p><span class=\"math-tex\">$\\displaystyle\\lim_{x\\to0}f(x)=-\\infty$<\/span>&nbsp;n&ecirc;n \u0111\u01b0\u1eddng th\u1eb3ng x = 0&nbsp;l&agrave; m\u1ed9t ti\u1ec7m c\u1eadn \u0111\u1ee9ng c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1.<\/p><p>V\u1eady \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho c&oacute; 2 \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-29 01:43:23","option_type":"txt","len":0},{"id":"5384","post_id":"7520","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 c&oacute; b\u1ea3ng bi\u1ebfn thi&ecirc;n nh\u01b0 h&igrave;nh sau.<\/p><p><span class=\"svgedit\"><svg height=\"170\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"172\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"164\" id=\"svg_1\" stroke=\"null\" width=\"320\" x=\"0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZMAAADPCAYAAAAwJzxZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABnHSURBVHhe7Z0hjBTJF8YRCASCTRAIBAkIBAKBQCAQl4BAIEhAIBAISBAIBCGXrECQDQKxgk0QiBMkh0CQDQJxAoFAHAkCQTYnEAg2QZxAIPqfr+\/V\/mvr9e50d9XMvtf1\/ZLK256Znamp76t+U9Xd1fsa4c8\/\/5S\/CCGEkGHsQxIJhRBCCBnD1shk3759LCwsLCwsvUvMtmRiEav1IoSQmmEyIYQQkg2TCSGEkGyYTAghhGTDZEIIISQbJhNCCCHZMJkQQgjJhsmEEEJINkwmhBBCsmEyIYQQkg2TCSGEkGyYTAghhGTDZEKKsLm52Tx48KDV5927d\/IoIaQWmExINkgex48fb7VhMpnNhQsXttoKf5PtoF1WVlZki3gBusUwmZDexKORuDCZ7ExIugH8jcdqB56JPcRk0h+0lYUfJbGvAZMJ6c3a2lpz+\/btZmNjY1tSYTLpBp0e7YM2C4RRyosXL+SR+kgTCQqTSX+qSSboOHiveAcTOtAYw5SqV19Qx\/BrEnF9fV2eadodQHhuaWmp6g6A7452QGEy6Sb4Pk4moX9Y2BnsNXFSqbkvDQVtNcs\/mEWA17CfCn77+PHj1nN4j\/Bcup\/rC\/43plgySX9thC8bOg\/KGMPg\/xZFaOCwc8Qv8KtXr7YNjedQF3wfPI\/EUnNCCe2BwmTSTWifrmSCUjtMJuNAW81KJnj+zJkz7T4MoK3xGLYRw74Lj4e+PLQfpx4ulkwCqGhskNzhfKl69QEZuqu+SCjh+8QgyUCUGgkGRGEy0aDThvZhMumGyWQcaKvdkknwXkgkAYxIwsxK2mcxbY393BBSDxdPJrFB4k40ljH1ihParBKLgu2uHSNeAxFSwnf1Rvz9Z5WdOjmTye4wmcwm3lcwmXQzZl+2034JyQQ\/frv2y7MSVBfpZ2xtdX34WEID7FUyGUvXyASjD9QBQ0aIEcORyX8mZjLpJrQPk0k3TCbjmLXj32lkgtEH9lddIxCTIxMQOkzXr\/mhlKzXLJAcUOewc0QMmRzCQMCQUBCxXWsnYDKZTZhS6EomQ38FThEmk3HMSiYAyQGvCQkFZ2KinfFjGfu52JN4DfZzQ\/sx3i+meDJBJUvuaErVqy8hoeBzEWOT42wICISCkUrNHaCkxlMltFFXMsk9ljgFmEzGgbbq82MEr0OSQPtif4V9WwD+i\/dl8XN9wfvGFEkmYeeLEjoJKont0JH6fPkucupF5gOSaqw5NE6nAMl\/hHYK4G88Rrb\/IIkTLtmdvslk3sS+BkWSSTBE\/GsrzNuFks7f9QX\/S2wQ\/5LcqRBNnHgt7AT2GuwnYs\/EhSO22Uw6mcwTq\/UihJCaYTIhhBCSDZMJIYSQbJhMCCGEZMNkQgghJBsmE0IIIdkwmRBCCMmGyYQQQkg2TCaEEEKyYTIhhBCSDZMJIYSQbHZNJiwsLCwsLH1LzLZkYhGr9SKkL8vLy\/LXf6TbhHiEyYSMgjvE8ahOR0+30FO+YTIho+AOcTxsu27YLr5R+kk0KyQNZgN2\/PGw7bphu\/hG6SfRrJA0mA3Y8cfDtuuG7eIbpZ9Es0LSYDZgxx8P264btotvlH4SzQpJg9mAHX88bLtu2C6+UfpJNCvkVA0W7qfuBWUcA3W\/fft2W6xjse0s4KldvPXXRaD0k2i2oaYqIJNJPkwmvvHULkwmGqWfRLMNNVUBmUzyYTLxjad2YTLRKP0kLqSh0PHxOcePH5dHZjNVAZlM8mEy8Y2ndmEy0Sj9JC6kofAZoUCcPiyiXosgJNJZ5cWLF\/IftkDdYtLtRRC3027FGmmdLNZxL7DcLt776yLA94\/Z2kqfmAchu6PUlkxSODLJhyMT33hqF45MNEo\/iVkNhWmreOpqZWWlfb+urH3hwoW29GWqAjKZ5MNk4htP7cJkolH6SRzVUEgW+L9QwmgjDBHTjo6EM\/Rzhr7eC0wm+TCZ+MZTuzCZaJR+Ekc31MbGRvu\/KPFIBJ083sZoBCOWoUxVQCaTfJhMfOOpXZhMNEo\/iVkNFUYcaTIpAQW0gTIOdekN264btotvlH4Ss4QMySSMPJBUwpRXLjSYDZRxqEtv2HbdsF18o\/STmCUkprDw\/yGZlJx6oMFsoIxDXXrDtuuG7eIbpZ\/ELCFDMkESGXKmVh9oMBso41CX3rDtumG7+EbpJzFLSCQR\/D9KfNykBDSYDZRxqEtv9qLt4j65WyndX4eAz49Jt4ltlH4Ss4QMxi05vRWgwWygjENdesO264bt4huln8QsITG1FV+0WBIazAbs+ONh23XDdvGN0k\/iICExNMbrcY0JQCIJf5eGBrOBMg516Q3brhu2i2+UfhIHCRlPayGxzCuRABrMBso41KU3bLtu2C6+UfpJHCRkGJmgzOM4SQwNZgNlHOrSG7ZdN2wX3yj9JJoVkgazATv+eNh23bBdfKP0k2hWSBrMBuz442HbdcN28Y3ST6JZIWkwG7Djj4dt1w3bxTdKP4lmhaTBbMCOPx62XTdsF98o\/SSaFZIGswE7\/njOnz8vf\/1Hul0r9JRvlH4S2ydYWFhYWFj6lphtycQiVutVG8o41IVkQk\/5Rukn0ayQNJgN2PFJaegp3yj9JJoVkgazATs+KQ095Ruln0SzQtJgNmDHJ6Whp3yj9JNoVkgazAbs+KQ09JRvlH4SzQpJg9mAHZ+Uhp7yjdJPolkhaTAbsOOT0tBTvlH6STQrJA3WH9ykbGVlRbbKwo5PSkNP+UbpJ9GskDRYf5hMiCfoKd8o\/SSaFZIG60+fZPLx48fm6tWrbbui4H40m5ub7XO4yVm48RkK3g+vB6kO6TYhQ6GnfKP0k2hWSBqsP7OSCZLG0tLStgSCG53h\/8JzuAUzHnv37l2bdPAYnmPHJ6Whp3yj9JNoVkgarD+zkgmSBJJFChIHkkZIHDFnzpxp1tbW2PFJcegp3yj9JJoVkgbrBu3St4QEg4iEk4Jkgtch2aSEBIXnY9JtQoZCT\/lG6SfRrJA0WH\/Gjkww+sDjXf\/LkQmZF\/SUb5R+Es0KSYP1Z1YyAUgODx48aKezUHD8BNNbONCOx+PRyfr6Oo+ZkLlBT\/lG6SfRrJA0WH\/6JJOQQNCuKDjIHs7YAkgoeJ9QeDYXmRf0lG+UfhLNCjl1g3358qU5duxYc+LEifYOfCjXr19vbty40dy7d69ZXl5uPnz4IK\/enT7JZCzs+KQ09JRvlH4SzQpZg8HOnTvXfs+uguTy69cveeXuMJkQT9BTvlH6STQrZA0Ge\/XqVfs904LRyvfv3+VVewvqE5NuEzIUeso3Sj+JZoWcusGQLDCVhe8Zl4MHDzafP3+WV+09qQ7pNiFDoad8o\/STaFbIqRrs06dPzc2bN5tDhw61x0fu3LnTfleU\/fv3N2\/evJFX2kAZZ6K6kMVBT\/lG6SfRrJBTM9jr16+bixcvNkeOHGlHJN++fWsf\/\/HjR3PgwIH2+z558qR9zBLKOBPThSweeso3Sj+JZoWcgsF+\/vzZrK6uNidPnmxOnz7dPH\/+vH0s5datW+1oxSLs+KQ09JRvlH4SzQrp2WBfv35tT+\/FVNbly5ebt2\/fyjPdYJTS98ytRcOOT0pDT\/lG6SfRrJAeDfb+\/fvmypUrbRK5e\/duey2Jd9jxSWnoKd8o\/SSaFdKLwTCiwFIkWK4EFyE+fvy4PQ4yFdjxSWnoKd8o\/SSaFdK6wZAwHj161Bw9erS9+PDly5dmp6pyYMcnpaGnfKP0k2hWyBL1Ckuso+DvEuAaEBwwx\/Ug165d673kiVeUcYz6hfiBnvKN0k+iWSFz64WFDbG8Ot4HJTeZ4PoPnNp7+PDh5v79+1un9k4dZRyjfiF+oKd8o\/STaFbI3HphFVy8RyhjkglO43369Gl7ai8K\/u46tXfKpDrk6kIIPeUbpZ9Es0Lm1CtMb2GZdUSUIckEow6MPjAKwWjE2lXpiyTVIUcXQgA95Ruln0SzQo6tV5jewiq6KHgflD7JBMc\/cBwEx0NwXMTSGll7hTKOUb8QP9BTvlH6STQr5Nh6YXoLyQRJpU8ywRlYOBPr7Nmz7VInOEPLyoq9FlDGMeoX4gd6yjdKP4lmhRxTL9xuFv8XEsduyQSn9uKaEJzai2tEcK3IFE\/tzSXVYYwuhMTQU75R+kk0K+TQemEkgvuW49a0gTSZrK2ttTeSAg8fPmyvVu8z\/VUzyjhG\/UL8QE\/5Rukn0ayQQ+sVJ47dSkgmpB9os5h0m5Ch0FO+UfpJNCtkiXoNPQBPNMo4Rv1C\/EBP+UbpJ9GskCXqxWSSjzKOUb8QP9BTvlH6STQrZIl6xdeZILGQ4SjjGPUL8QM95Ruln0SzQubWq+sYCkcnw0l1SLcJGQo95Ruln0SzQtJgNmDHJ6Whp3yj9JNoVkgazAbs+KQ09JRvlH4SzQpJg9mAHZ+Uhp7yjdJPolkhaTAbsOOT0tBTvlH6STQrJA1mA3Z8Uhp6yjdKP4lmhaTBbMCOT0pDT\/lG6SfRrJA0mA3Y8Ulp6CnfKP0kmhWSBrMBOz4pDT3lG6WfRLNC0mA2YMcnpaGnfKP0k2hWSBrMBuz4eaQrMeC+ObVDT\/lG6SfRrJA0mA3Y8ceDe+ugvdJSe0JBG8Sk28Q2Sj+JZoWkwWzAjj+OjY2NbffOiUcouK10zdBTvlH6STQrJA1mA3b8cXQtKookgvZjMqGnPKP0k2hWSBrMBuz45cBIBe0X31q6Rugp3yj9JJoVkgazATt+OdB2KLXfCoGe8o3ST6JZIWkwG7DjlwEH3dF2vEkbPeUdpZ9Es0LSYDZgxy8D2q326a0APeUbpZ9Es0LSYDZgx88Hx0riM7tqh57yjdJPolkhaTAbsOPngdFImkhw2nDN0130lG+UfhLNCkmD2YAdfzzp1e9xqfkgPL5\/TLpNbKP0k2hWSBrMBuz449jp6vdQaib9\/rW3hzeUfhLNCkmD2YAdn5SGnvKN0k+iWSFpMBuw45PS0FO+UfpJLCZkuLo3kHtePQ1mA2Uc6kIyoad8o\/STmC0kDiTiPUIJK6KGg49jT4nMrRcpQ6oDdSG50FO+UfpJLCYk3gclHongb45MfKOMQ1228evXr+aff\/6RrbKsrq42nz9\/lq3pQE\/5RuknsZiQYZorTh45V\/zSYDZQxqEuW7x69ao5ceJEu9OfB0+fPm3OnDnTJqwpQU\/5RuknsZiQIZmEBILpr5ybANFgNlDGoS7NX3\/91Zw9e7ZtC5Q3b97IM+W5dOlSs7y8LFvTgJ7yjdJPYjEhw3n1IZnkjEoADWYDZZyKdfn777\/bnTvaIC7zmuYC379\/b44cOdK8f\/9eHvFP6qF0m9hG6SexmJAhmWCEgr+xZEQONJgNlHEq1AU79Bs3bjT79+9vv39cDhw4IK+aH2E67d9\/\/5VHfJN6KN0mtlH6SSwmZDh7C2XsQfcYGswGyjiV6vL8+fPm4MGDWx4P5dSpU\/KK+YJkdufOHdnyTeqhdJssjnB76SEaKP0kFhMyJJOxpwKn0GA2UMapWBdMZ8XHSlCuXLkiz84XjEqOHTvWvH79Wh7xCz1lg7W1tWZpaWnLy31R+kksJmSY5ipFyfci41HGqVgX7NAx3XTz5s2tKa\/79+\/Ls\/MHJ7UcPXq0nXbzDD21t8Sjkbj0JX3t1taQN4kJFyuG1U9RufB3CcbWi5RFGadiXTDNhEQCcDD+9OnTzbNnz9rtRXHv3r2FjYbmBT21t+CHP2aSNjc321PP0f5DNFD6SRwtZDythSRSMpGAsfUiZVHGqVQXTC9hmik+CP7z58+FjxJwzQmSGI7heIWeskM8QumL0k\/iaCHDyASl1HGSmLH1ImVRxqlQFyQMJJLSP5jG8unTp+bw4cNzPSV5ntBTdjCRTOYNDWYDZZwKdcG0EqaXLPH48ePm\/PnzLq+Op6fswGRCFoYyTmW6\/PHHH+20ksWdNpIJkoo3avdUCeKZoT5lp1E1kwlZGMo4Feny9evX9upzHGy3CKa5MN1ltX47UbOnrMFkQhaGMk5Funj45R9GTjgZwAs1e8oaTCZkYSjjVKLLkydP3ByTsHhMZzdq9ZRFmEzIwlDGqUAX3EPE09lSONsMFzNiNWMP1Ogpi6yvr7dtHwquiO+D0k+iWSGt1qs2lHEmrovX6ziwDD4Syo8fP+QRu9TmKWvE6yh2FYxWdgOvidnaSp+wgtV61YYyzsR1+f3335vLly\/Lli9whf7169dlyy61eWpqKP0kmhWSBrNBTR0f9wzB2Vte177C1fknT55sXr58KY\/YpCZPTRGln0SzQtJgNqil44dFHL2vyouEiOM9OK3ZKrV4aqoo\/SSaFZIGs0EtHT9exNE7uM3vxYsXZcsetXhqqij9JJoVkgazQQ0dv2sRR8\/gJALcd2V1dVUesUUNnioNriP68OFDuy7bXqP0k2hWSBrMBlPv+NYWcSxFOL0Z0RpT91QJvnz50l6Qevfu3XaZeNweGvfQweN7jdJPolkhaTAbTL3je7vgbwgYmWBHZO3Cy6l7aiwYGV+7dq05dOhQ2yZpsXIfG9QlZmsrfcIKVutVG8o4E9LF8iKOpbh06VJ7urMlpuypXOBJtEdXsbIGG+oSs7WVPmEFq\/WqDWWciehifRHHUoTvibO8rDBVT5UCI2W0SVywtI8VUr22ttInrGC1XrWhjDMRXbwu3z4GXHeC056tnGAwVU+VAuvCoU3ighUOrJDqtbWVPmEFq\/WqDWWcCejiaRHHUuDK+Fu3bsnW3jJFT5UAfsTp6bjwFCeE4MQQtA2mYi2h9JNoVkgazAbKOM518baIYymwZhd2ThYuypyap0rw7du39nRuHOMKI0hMwR48eLA9jmIJpZ9Es0LSYDaYUsfHLz+PiziWAqsKW1guZkqeKgGuH4EuOFEiHS1jesvaCFrpJ9GskLUbzApT6vieF3EsBQ7u7nUbTMlTueCHDUbKL168kEfso\/STaFbImg1mial0fO+LOJYCV1JjdPbs2TN5ZPFMxVM5YLSBCxIx9ej+tssSzQpZo8EsMoWOP5VFHEuBnRcujNur40ZT8FQO+EHz22+\/tSeBePxxo\/STaFbI2gxmlSl0\/Ckt4lgKnBZ97ty5PZmPn4KnxoK1tTAagSetHQvpi9JPolkhazKYZbx3\/Kkt4lgK7MiQTB49eiSPLA7vnhoLrvfBiHAvpxhLoPSTaFbIWgxmHc8df6qLOJYC01zYuS16zt6zp8aCkz+srUQwFqWfRLNC1mAwD3ju+FNexLEUOJvo1KlT7YH5AEYt8xzJefbUUNCOuHYEC25avmHZEJR+Es0KOWWDecJrx69hEcdS4FRhnFkEsMQ5Lp6b54VyXj01FFwgi6vZb9y4sS1Ze0fpJ9GskFM1mDc8dvxaFnEsBaYD0V5IKLjiGhrfv39fni2PR08NBRcb4vqRKa7\/pvSTaFbIKRrMIx47fk2LOJYgLOUBbUOZ570zPHpqCA8fPmwTydu3b+WRaaH0k2hWyKkZzCveOn6Nizjm8OrVq3bHB13jMs\/FBVMPpdtewfERLKiJY1AW7og4L5R+Es0KORWDecdTx691EcexYPFHHC+BpmnBdNe8wPvHpNsegeeQgOOFGqeK0k+iWSGnYLAp4KXjYyRS8yKOOWABSJxtBG3jMq+zj1IPpdveCAtoLi8vyyPTRukn0ayQ3g02Fbx0fC7imA8WG8SyM9AYZV5z\/l481YenT5+21+rggsRaUPpJNCukZ4NNCQ8dn4s4lgMjPBx3wnQhdpTzwIOnZoF2whI9SL5YIqUmlH4SzQrp0WBTxHrHx\/w0F3EsD46nzOvUauuemkU4+w2LNdb4A0bpJ9GskN4MNlWsd3wu4ugP657aDdzI6ujRo+01ObWeMaj0k2hWSE8GmzKWOz4XcfSJZU\/tBk7uwPGR2k\/yUPpJNCukF4NNHasdn4s4+sWqp3YCIxCs8TaVhRpzUfpJNCukdYPVgtWOz0Uc\/WLVU13gRwuOjeAYCY6VkA79JJoV0rLBasJix+cijr6x6KkucJYWTu7AQo302v9R+kk0K6TVetXGvDv+yspKc\/z48fZ9EdfX1+WZ\/657CM8tLS21rwVYd4uLOO4dYzSLST2UbueAuoQLMNPPx5TohQsX2udQbt++3WxubsqzGtw4bHV1VbZIQOknsaiQJbFar9pQximoCzo6Onw47rGxsdFcvXq13SHgOXwWOjyex05qp50TWRwlNJuXp\/CZeK+1tbV2G4kCn\/3gwYOt55BMUNeQdLBNhqH0k1hMyNJYrVdtKOMU1AW\/YLHDScHOCZ+T7oSwA8DOiewdJTSbl6eQxFBSUCfUIU0cSDb47I8fP8ojpA9KP4nFhCyN1XrVhjJOhy7x1MGsEndobIdfuDF4DXZaKeHXJckHO9hYl1klgL9zNZu1PbZuqEOazEB4P4yiUvB41\/chOxO3OdjaSp+wgtV61YYyTkFdun7l4pcsPgNTEOl8Nkcme08Jzeblqa6RCRIIPh\/1TpMGRybjUPpJLCZkaazWqzaUcQrqgh1N3MkR0fGxQ8BOAL80w84JcadfnmRxlNBsXp4KiSMkO2wjwYUkh7rEiQPHUvAYGYbST2LRnUNJrNarNubV8QNh54T3RYx3POj46Owo2CEwkdggV7N5eip8Pt4zJLk4ueHYTqhb\/Bzpj9JPYlEhS2K1XrWhjENdSCb0lG+UfhLNCkmD2YAdn5SGnvKN0k+iWSFpMBuw45PS0FO+UfpJNCskDWYDdnxSGnrKN0o\/iWaFpMFsgPtbx6TbhAyFnvINkwkhhJBsdk0mLCwsLCwsfUsMf\/YTQgjJhsmEEEJINkwmhBBCsmEyIYQQkknT\/A\/VY9m6Hh5HxQAAAABJRU5ErkJggg==\" y=\"0.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>T\u1ed5ng s\u1ed1 \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang v&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 y = f(x) l&agrave;<\/p>","options":["<strong>A.<\/strong> 3","<strong>B.<\/strong> 1","<strong>C.<\/strong> 2","<strong>D.<\/strong> 4"],"correct":"4","level":"1","hint":"<p>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn \u0111\u1ee9ng, \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>D.<\/strong> 4.<\/span><\/p><p><span class=\"math-tex\">$\\displaystyle\\lim_{x\\to-\\infty}y=4$<\/span>,&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to+\\infty}y=-1$<\/span>&nbsp;&rArr; \u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 c&oacute; hai ti\u1ec7m c\u1eadn ngang l&agrave; y = 4 v&agrave; y =&nbsp;&ndash;1.<\/p><p><span class=\"math-tex\">$\\displaystyle\\lim_{x\\to-1^-}y=+\\infty$<\/span>,&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to-1^+}y=-\\infty$<\/span>&nbsp;&rArr;&nbsp;\u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 c&oacute; ti\u1ec7m c\u1eadn \u0111\u1ee9ng l&agrave; x =&nbsp;&ndash;1.<\/p><p><span class=\"math-tex\">$\\displaystyle\\lim_{x\\to1^-}y=-\\infty$<\/span>,&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to1^+}y=-\\infty$<\/span>&nbsp;&rArr;&nbsp;\u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 c&oacute; ti\u1ec7m c\u1eadn \u0111\u1ee9ng l&agrave; x =&nbsp;1.<\/p><p>V\u1eady \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 c&oacute; 4 \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-29 02:09:09","option_type":"txt","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.