Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Sinh học - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Lịch sử - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 3. Đường tiệm cận của đồ thị hàm sốBài tập nâng cao
{"common":{"save":0,"post_id":"7524","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5372","post_id":"7524","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 <span class=\"math-tex\">$y=f(x)$<\/span>&nbsp;x&aacute;c \u0111\u1ecbnh, li&ecirc;n t\u1ee5c tr&ecirc;n R&nbsp;v&agrave; c&oacute; b\u1ea3ng bi\u1ebfn thi&ecirc;n nh\u01b0 h&igrave;nh b&ecirc;n d\u01b0\u1edbi.<\/p><p><span class=\"svgedit\"><svg height=\"100\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"102\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"95\" id=\"svg_1\" stroke=\"null\" width=\"319.00001\" x=\"-0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAc0AAACHCAYAAAB08QKjAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA9jSURBVHhe7d0hbBTpG8dxJJImJxAnSHriBAJRcQKBICkCgSAp4gTiBE1OnECQhuTECdIgEBU0OYE4UYFAkAZx4gQCgbgmCARpTiAQNEEgEIj5\/3\/Tecrbt2\/bd3dm3nnnne8neUN3dlmWZ\/eZ377vznTPVAAAIAqhCQBAJEITAIBIhCYAAJEOheaZM2cYDAaDwWA4w3UkNEEdAAD7CM0I1AEAIIRmBOoAABBCMwJ1AAAIoRmBOgAAhNCMQB0AAEJoRqAOAAAhNCNQBwCAEJoRqAMAQAjNCNQBACCEZgTqAAAQQjMCdQAACKEZgToAAITQjEAdpmVra6t+znd3d5stGCs9jzYWFxebrcD8\/DwgNAOowzSsrq4e7GA1CM3x0nPnPpc2CM7xWF5ertbX15tL+dDryEVoBlCH8vmBqUFojpeez5cvXzaX9nvYhlYSkD9Ccw62TOYWTj9rmwqaypB12N7erpaWlurHsLCwcKgW2imoDrpOQzuKvb295lrMww1PQnO83MAU25doEJrjEBOa2t+pZ7Vv1HOrv7Ozs3Nwnf6+XadVBu1P29J9ubIJTf3b7hD3hT+F0FTj69\/e3NysL9uLYG1t7eA61UEvBAvXlHUpEaFZJusXntfxiAlN3Ub7PXtObSKhy\/rTJhrarj\/1\/OvnNnQfrmxCU+w\/qaGftUMbwlB10P839H9WLfRi8ANSoarHau+0MDtCs0y2L\/F7BvnSc6Xn7Tjqz1Cfaj+oWaWu8wNSE46VlZXm0nx0v66sQlP0GDSG\/AC\/bR3c8I8Z5rgXjd1faKeu7W3fSU0ZoVkm24kiT9ZzMcP2idrP6bJPoalJxXETjrZvnPx\/89Cl0ANKzQJizKE5r9BMUztyvSBUDz8cmWm2R2iW56Q3mcjXvDNNzSa1jwzNKCcx03Q\/xxzqRT9UHfT\/1ZNvBy7ostbvNRSQelG5AakXRNt3UVNHaJbFZiOsvozPaaEpts+zXtXxH3q+tc\/UcR7upMP2p21fC34eZBWa+o\/rP21LK6cVsC9D1kGhqBeFHoMtOSgwRX\/qXZOuV5C612E+hGY59PzpefR3ku6OFPmKCU3RbbRv1HOt\/aB7hKwyRPdj+8gij551d1r24lZRdNmWaLU95Q5tiDpgGPYGTYPZybjZ8+gP7UCRv9jQTE2vIdfgoalC6d\/13w26OzNbrkxliDogLXvdhQbGxWaYx40cd8Q4itAcMeoAABBCMwJ1AAAIoRmBOgAAhNCMQB0AAEJoRqAOAAAhNCNQBwCAEJoRqAMAQAjNCNQBACCEZgTqAAAQQjMCdQAACKEZgToAAOTU0GQwGAwGg\/FtuI6EJqgDAGAfoRmBOgAAhNCMQB0AAEJoRqAOAAAhNCNQBwCAEJoRqAMAQAjNCNRhGnZ3d+vn2sby8nJzDQDs8\/OA0AygDuXb2to6CEt3EJxAWi9fvqx7L1f+YyM0A6hD+RYXF5ufjs44AaRDaBaAOpRNIenTDFPP++rqarMFQAqxobm9vV0tLS3Vt11YWKjW19eba\/bvw3rY+nhvb6+5th3\/sRGaAdRhWtR8es5ZmgXSiwlNu83m5mZ9WYGovl1bWzu4Tv2rYLVw7aqf\/cdGaAZQh2nwl2U19FkngHRiQlMzx9AqkIJTs04\/IBWqus+dnZ1my\/z8x0ZoBlCHaVEz6jm3oSYG0D1b1YkdRqHoLscau7\/QRy7a3kUvu49DCM0A6jA99m5XI9Scvo2NjerJkyfNJQDzmnemqaDULFMH9fnhyEwzMeowTXo3q+c+JjTfvn1bXbp0qbp161b1+fPnZiuAWcWEpgWkfXyiy\/rcUkMBqd51A1KfdfKZZkLUoWy2pON\/fmnLtKGlnpAvX75Uv\/32W3XhwoXq1atXzVYAs4gJTVEo2htbBaj61Y6Q1Z8rKyv19QpS97q2\/MdGaAZQh7JZOGq4s0pdnudAoOfPn1fnz5+vHjx4UH39+rXZCiBGbGgOxX9shGYAdSifnmN\/tPH+\/fvq6tWr9dDPAOIQmgWgDuOjoNLnjEPSLFOzTc06NfsExi6HvhoaoRmBOozDu3fvqocPH1aXL1+unzP\/CLqh6PNNfc6pzzv1uScwJrn21VAIzQjUIV9v3ryp\/vjjj\/rIVT1PNr7\/\/vvmFnn49OlTfWStHufU36kjf2PpqyGoDi5CM4A65On27dsHzeyPe\/fuNbfKy59\/\/lkv1z5+\/LjZAuRljH2VkurgIjQDqEOedD6kLRn5499\/\/21ulR87p\/PmzZv1DBTIyVj7KhXVwUVoBlCHfKnB7ZsObPzwww\/NtfnSQUJ2TufUPyNCfsbaVymoFi5CM4A65EuBo+VOt8H1WcxYvHjxon78esyc04lcjL2v+uTnAaEZQB3yZI2tP90lJR3tNyYfPnyoz+e8cuUK53RicKX0VV8IzQjUIT9Pnz49aGyjBv\/111+bS+Nj53Q+e\/as2QKkVWJfdY3QjEAd8qLG1qHvJZ668fr16\/pzzjt37nBOJ5Iqua+6RGhGoA75mEJj6529zum8ePFifb4c0DcCMx6hGYE65GFqja3v5\/zuu+84pxO9IjBnQ2hGoA7Dm2pj6+ALndN548YNzulE5wjM2RGaEajDsKbe2DoV5e7du3UN3AM0gDYIzPkQmhGow3Bo7G90Tqdqcf\/+fc7pRCv01fwIzQjUYRiPHj2qjySlsb\/ROZ3Xrl2rz53777\/\/mq1APPqqHUIzAnVIT439448\/1iGBo\/RVTTpISDMGIBZ91R6hGYE6pEVjx9E5nfp9oDqnU6epACehr7pBaEagDunQ2LNRWP7888\/1OZ18AwWOQ191h9CMQB3SoLHn99dff9XLtRsbG80WYB991S1CMwJ16B+N3Z7O6dS3Uly\/fr36+PFjsxVTRl91bxShuby8HHV+mm7Tx3lshGa\/aOzuuOd0\/v33381WTBF91Y8sQnNxcbH+tzT0s1EAatssQej+\/a6kqsMU6YuYNTuisbulwFRw3rt3j3M6J4i+6o+fB0lDc2trq\/43LBgtJHd3d6v19fWDn2exurpa32+X+q7DVKmxdb4hR372Q0u0Oqfzp59+4pzOCaGv+uXnQbLQtIDUsJmkhaj9qeCclf5O17PNPuswVTR2Olqm00FCXb+ZRH7oq\/75eZAkNN3lWBs2o9Sfts0VClKbjeozTzPvDPUk\/mNBOzR2ejodRed03r59m7oXir5Kw8+DJKHpBqM\/m1QAaruWWY3d1oZYiGq4oam\/p21dvqu2fxPt0djDUc0VmgpPzuksC32Vjp8HSUIztDQr7nZ\/pmgzSA397Iaqy0KX0MwPjZ0H9ca5c+fqZVuMH32Vlp8HSULTnSW6LBiP+0zS\/s5Jn1na0i+hmQ8dvUlj50UHBunoSh0oxDmd40RfDcPPgyShaUuo7rKqhJZmXaeFqrvs685g29L9YT5q7Js3b9Yn3NPYedFzo1NSzp8\/zzmdI0NfDcfPgyShabNB\/\/PM02aJ7gw1dKDPcTPYtrq+v6mwxtbQz8iTAlPBqV+KwPOUP\/pqWH4e9B6aJ80GLTRDs0QFomagxwWu2EzVn8G2pfvEbGjscdESrWYtWrLVr+NDnuir4fl50HtonjQbtEC0WaQt42rYkq2\/RKvtun1fS7Oi+0Q8Gnu87JxO\/QJ45IW+yoOfB72HpgVhaDZo15njPuO0cNWwpVwLU\/+2XXAfE05GY4+fTkfR7yzVV47xeVke6Kt8+HnQe2ha4FnYuWwWOg\/9PZt9dq2POpSIxi6HwvKXX36pz+nUl11jOPRVXvw86CU0dT+2jKqfT7pfBZ8tz8byZ6hd6\/O+S6Gd7I0bN2jswuiNrJZrHz582GxBSvRVfvw8OHSpi7CwX1igYLNwO+kzRzVp6CCf4+i2XR\/44yM0T6bG1rlid+7cobELpHM69Uvfr169yrdmJERf5an30BTdj42YWWRsaCosZwnYeXVVhxJZY+ska5RLO207p\/PFixfNVvSFvsqXnwe9hObYUYcwGnt67Hs69Zwz++kHfZU3QjMCdTiKxp4uO6fz0qVLnNPZMfoqf4RmBOpwGI0N2djYqA8SevLkSbMFbdBX40BoRqAO39DYcOmczosXL1a3bt2qPn361GzFrOir8SA0I1CHfTpyUkdR0thwaYevIzwvXLhQvXr1qtmKWPTVuBCaEajDfmPrt8Q8ePCg2QIc9vTp03q5Vq8RDhKKQ1+ND6EZYep1sMbmS4txGp3TqWVGndP5\/v37ZitC6KtxIjQjTLkONDZmpVnm\/fv363M6nz9\/3myFi74aL0IzwlTrQGOjjX\/++efgnM4vX740W0FfjRuhGWGKdaCx0QWd06nfnapzOt+8edNsnS76avwIzQhTqwONja7ZOZ2PHz9uthym11zp6KsyEJoRplSHt2\/f1l8HRWOja5pp6pxOfWOHe06nvsBBYVLyEbf0VTkIzQhTqYMaW59B6dQBoA\/6bNPO6VRYKjz1s3pMs9ES0VdlITQjTKEONDZSevbsWb1cq5mn+ktDR9uWdsAQfVUeQjNC6XWgsTEEndBvgWmjpOVL+qpMfh4QmgEl14HGxhD0O2vPnj17EJY2NPts+zts9Z297n3qi+1To6\/KpdeUi9AMKLUONDaGoN9Vq4NiLNT88fvvvze3nJ0+J9V9rK6u1pcVmLqc4svqDX1VNr2eXIRmQIl1oLExFIXm69ev668Uu3v3bv3dnHYwkMa5c+fmnm0uLi7W96HwFHfWmQJ9VT7\/tURoBqSuw87OTrWysnLQ7HrXvLe3V1+nnYAu23XLy8v17Weld\/M0NnLihqmWb2flBqSFpti2FMu09FX59FpyEZoBKeugcFxYWDgUlGp2haNdp3fT2qYdg8JV2+y2wFTZUqxGKDRtyRZow88DQjMgZR3U+ApFn3YCCsdQQC4tLVWbm5vNJWCa9LmlBSShib74eUBoBsxbB2vWmGEHKuhPzSp92gnodqElJt0+5YEOQI4ITaSg15KL0AxIWYfjZpqaTWp7KByZaQIszyINPw8IzYDUdVAIrq2t1cuwGmp2LcvqgB9td2eb29vbfKYJ\/J+txmiEQjO0SgPMys8DQjMgdR0sKK3ZdbCPe4SsglNLsjbmOXoWKJF\/yolYHwFd8F9LhGYAdQDGwWabthRrS7Z85o+uEJoRqAMwHu4yrQbLsuiSnweEZgB1AAAIoRmBOgAAhNCMQB0AAEJoRqAOAAAhNCNQBwCAEJoRqAMAQAjNCNQBACCnhiaDwWAwGIxvw8WUCgCASEdC009VAAAgVfU\/iGrGeEZvbD4AAAAASUVORK5CYII=\" y=\"-0.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>T\u1ed5ng s\u1ed1 ti\u1ec7m c\u1eadn ngang v&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{1}{2f(x)-1}$<\/span>&nbsp;l&agrave;<\/p>","options":["<strong>A.<\/strong> 4","<strong>B.<\/strong> 3","<strong>C.<\/strong> 1","<strong>D.<\/strong> 2"],"correct":"1","level":"3","hint":"<p>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang, ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p><p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{P(x)}{Q(x)}$<\/span>&nbsp;c&oacute; t\u1eadp x&aacute;c \u0111\u1ecbnh D.<\/p><p>\u0110i\u1ec1u ki\u1ec7n c\u1ea7n: Gi\u1ea3i Q(x) = 0&nbsp;&hArr; x =&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;l&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng khi tho\u1ea3 m&atilde;n \u0111i\u1ec1u ki\u1ec7n \u0111\u1ee7.<\/p><p>\u0110i\u1ec1u ki\u1ec7n \u0111\u1ee7:&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;kh&ocirc;ng ph\u1ea3i l&agrave; nghi\u1ec7m c\u1ee7a P(x)&nbsp;&rArr; x =&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;l&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong> 4.<\/span><\/p><p>\u0110\u1eb7t h(x) =&nbsp;<span class=\"math-tex\">$\\dfrac{1}{2f(x)-1}$<\/span>.<\/p><p>*) Ti\u1ec7m c\u1eadn ngang<\/p><p>Ta c&oacute;&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to+\\infty}h(x)=\\displaystyle\\lim_{x\\to+\\infty}\\dfrac{1}{2f(x)-1}=0$<\/span>.<\/p><p><span class=\"math-tex\">$\\displaystyle\\lim_{x\\to-\\infty}h(x)=\\displaystyle\\lim_{x\\to-\\infty}\\dfrac{1}{2f(x)-1}=0$<\/span>.<\/p><p>Suy ra&nbsp;\u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 c&oacute; m\u1ed9t \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang y = 0.<br \/>*) Ti\u1ec7m c\u1eadn \u0111\u1ee9ng<\/p><p>X&eacute;t ph\u01b0\u01a1ng tr&igrave;nh:&nbsp;<span class=\"math-tex\">$2f(x)-1=0$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$f(x)=\\dfrac{1}{2}$<\/span>.<\/p><p>D\u1ef1a v&agrave;o b\u1ea3ng bi\u1ebfn thi\u1ec7n ta th\u1ea5y ph\u01b0\u01a1ng tr&igrave;nh&nbsp;<span class=\"math-tex\">$f(x)=\\dfrac{1}{2}$<\/span>&nbsp;c&oacute; ba nghi\u1ec7m ph&acirc;n bi\u1ec7t a, b, c tho\u1ea3 m&atilde;n a &lt; 1 &lt; b &lt; 2 &lt; c.<\/p><p>\u0110\u1ed3ng th\u1eddi&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to a^+}h(x)=\\displaystyle\\lim_{x\\to b^-}h(x)=\\displaystyle\\lim_{x\\to c^+}h(x)=+\\infty$<\/span>&nbsp;n&ecirc;n \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 y = h(x) c&oacute; ba \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn \u0111\u1ee9ng l&agrave; x = a; x = b v&agrave; x = c.<\/p><p>V\u1eady t\u1ed5ng s\u1ed1 ti\u1ec7m c\u1eadn ngang v&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 y = h(x) =&nbsp;<span class=\"math-tex\">$\\dfrac{1}{2f(x)-1}$<\/span>&nbsp;l&agrave; 4.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-28 00:54:54","option_type":"txt","len":0},{"id":"5373","post_id":"7524","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 y = f(x) li&ecirc;n t\u1ee5c tr&ecirc;n R\\{1} v&agrave; c&oacute;&nbsp;b\u1ea3ng bi\u1ebfn thi&ecirc;n nh\u01b0 sau.<\/p><p><span class=\"svgedit\"><svg height=\"120\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"122\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"119\" id=\"svg_1\" stroke=\"null\" width=\"318.99999\" x=\"1\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcoAAACnCAYAAACRgRzsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABY0SURBVHhe7Z0vjB3VF8crKhAImiAQCJJFIBCIigpEBUkrEAiSRSAqEKxDIMimSUVFs0EgKtgEUYFYgUA0DaICUVGBoAkCQTYVCEQ3QSAqEO\/3+973zu7ZYe57583O3zufT3La++bNm7fvzLnnO\/fPzL20AAAAgCwIJQAAwBoQSgAAgDUkobx06RKGYRiGYc6MU6EE\/AAAAEsQygz4AQAABEKZAT8AAIBAKDPgBwAAEAhlBvwAAAACocyAHwAAQCCUGfADAAAIhDIDfgAAAIFQZsAPAAAgEMoM+AEAAARCmQE\/AACAQCgz4AcAABAIZQb8ME2ePHmy2N3dTedPdvXq1cWjR49W7wIAbA9CmQE\/TA+JpM7blStXFsfHx4tnz56l1zLEEjahmFGsHB0drbYALPF6gFA68MP02NnZSedtf39\/tWVx2rrUewB1SBgVI2YI5Tg4ODhY3LhxY\/VqWBQXBkLpwA\/TwlqTMt96VGWz7doHwFMVSRlCOQ4QyjVY4MpJhiW7Pp3Wtx\/0G61FpP99spdP7D11K3rfwBKLEZkXRJ8IDw8PV1sBzuPjBKEcB6rTkZzfR+7U543BhVLf7U34AC5VKHXydBItwWusRF2GOuEmAHt7e+l9+QOx\/C\/mJ5kXSpVtOz6DHAjl+FB93ZTztU8fuVPHMQYXSmE\/TqayfuQQ9OkHXfHUVU4bX6ueWAWBTjic4eMGoYRtQSjHh+rrJqHsK3fqWMYohFJYwMoJQ9HEDzqp9rdvMh8Aeu2Tu6F96nxgyR\/OQCjhIiCUwzL23Ok\/k0pNDtI2lvSmJpRNqbsq0pWP\/gbdB3hycrLauoQW5X\/JCaX5UUYChBwI5fhQnfaiWEdfuVPHM0YjlD5o1ec8BH36QSdPJ9wSvP7XyVS3s36\/gsVOuP7Xa1pH58kJohfQoWIJxg9COT4iQtlX7lRcGKMQSgWpfqR+vP6WoQShbz\/YCdf36n\/\/u3XjvE6wTFdJQ\/lkzKgSqILIf\/4+SsWStm2qcDBvEMrxERFK0Ufu1LGNwYTSkplMZaEfZD9c2BVCXwzhB7gYFjMSTMWKKonKMpUBcvgc1DSZQrvoPIzlAtfrwWBCKWfoe00kDbtKkPV9lTeEH+DiKE505Whxo9lviCTksIurOvNj3dA\/COUEwA8AACAQygz4AQAABEKZAT8AAIBAKDPgBwAAEAhlBvwAAAACocyAHwAAQCCUGfADAAAIhDIDfgAAAIFQZsAPAAAgEMoM+AEAAARCmQE\/AACAqBVKDMMwDMPOzDgVSsAPAKVz586dVWk90f2gXBDKDPgBoGyidZxcAAhlBvwAUDYIJURBKDPgB4CyQSghCkKZAT8AlA1CCVEQygz4YZpoRXSdO9lYVkeHcRKt4+QC8DGQSgTFEvwwPXZ2ds4H9P\/L2gZQR7SOkwvgXF5J\/xAUCfywmb29vWRj4ODgIJ0z\/\/dY6\/Lo6Gi1BeCMaB0nF4CPgVQiKJbgh82MSShNFP3fo7K20QULdUTrOLkAfAyk0hiDQgkv0io4Pj5urfVA5djMmIRS50tWJ5ScS6gjGhfED\/gYSKUug0LHNtNVvkTNXkvkqmib3ttG\/Noak9L3wnrGIpQWJzKEEqJE44L4AR8DqdRFUNj4kcxafSpbd5lM+3hsnydPnqy2xNBxqsdqgr4bzmPnapP1DUIJTYjGBfEDPgZSqe2gqGs1Ssis5WfveXGTOGpbk9aKfd9FaeMYpaPz0+QcdYHFEUIJUaJxQfyAj4FUajModKyqVZFAVrfbviasok48TRR9d2vTlmgVHQPWMyahtFtD6oSSyTxQR7SOkwvAx0AqtRUUEjnfJSYBq2KJzItaXXKzJGim45pwyrxQmvBetPtVx4D16Fx5YRoSO+\/+77FYqos9gGgdJxeAj4FUajMorHUn861DocRWvdL3wlptEfpj1X3WsOSIUHbPmIRS2AWVobK\/iALwROs4uQDO5ZX0T4tBYVf50WTlxbAO37LMYROEEMp54mOELldYR7SOkwvAx0AqtRkUJlrRVoe1BnMJbpOQCnv\/ot1t674DAKZPtI6TC8DHQCq1GRQ6liwqWptag35csm6yjn+\/2tW7LToGAJRLtI6TC8DHQCq1FRRNRMuEsk5YdTy9v66Vai3SNsaldBwAKJdoHScXgI+BVGorKLYdnxQmgtZatGPI9J6odr9qH9vftl+021XY8QGmitWHTTZXor99rj7yjZ11Zrm5ZPQ7jVTyGy7CupZfDhNGa4Hmxizt2DLrpjUBbeuk6VgAUC7ROk4uAB8DqdRWUOg4MmvtRbArmCbjizbbsS3aPBYAjI9oHScXgI+BVGoaFHYPpHWFqtxkrFAtwm3EVVRbom3Q1A8AMA2idZxcAD4GUqlpUFjXp0TLukabCJdEcpvuWn1vG5N3qlA5AMomWsfJBeBjIJWaBoW1KM0ugo07bkKCuo2obsNFfwMAjJtoHScXgI+BVCIoluAHgLJBKCEKQpkBPwCUDUIJURDKDPgBoGwQSoiCUGbADwBlg1BCFIQyA34AKBuEEqLUCiWGYRiGYWdmnAol4AeA0onWcXIBIJQZ8ANA2SCUEAWhzIAfAMoGoYQoCGUG\/ABQNgglREEoM+AHgLJBKCEKQpkBP5SDnkNsD+oHMKLxQNyAj4FUIiiW4IcyODw8XFy5ciWdT84peKLxQNyAj4FUIiiW4Idp41uR3gCMaDw0jRt9btu1dWGc+BhIJZLJEvwwbbT8mpZrOzk5WVy9ejWdT84peKLx0DRu9DmEsgx8DKQSyWQJfigH37IEMKLx0DRu9LlNQvns2bPF7u7uaXzqAk8Xd0K9Inpt7ymOtT\/0j\/xvpJLfMGfwQzkglFBHNB6axo0+t04oJYgaP\/fieHR0lOLV3tvZ2UnbdBwJqrbZvtAfPgZSiWSyBD+UA0IJdUTjoWnc6HPrhFICKCGsos9IEOtEUcMImqAG\/eJjIJVIJkvwwzjQeYiaxiTrQCihjmg8bNpPwmbxFTETT8WrYrOKHU9CWkX75+IcukPnw0glv2HO4IdyQCihjmg8NI0bfa5Ji1KtRm2vE0RalMPgYyCVSCZL8EM5IJRQRzQemsaNPrdOKIWEb39\/P3WxyjReqS5XTdrRdt+qfPToEWOUA+FjIJVIJkvwQzkglFBHNB6axo0+t0koTRwtPjVhx89slVgqfs2Y9ToMPgZSqWlQlAZ+KANdhVsSktFtBUa0jjfNBfrcJqFsk2+\/\/bbX75sTPgZSqWlQlAZ+mDYa39E5zJmuzmHeKA4iRPeros\/1KVz6rjfffHPxww8\/rLZAW\/gYSKWmQVEa+AGgbKJ1fEq54Pfff09iWTdjFpqDUGbADwBlU6JQConl22+\/vfjmm29WW+CiIJQZ8ANA2ZQqlOKvv\/5avPPOO4t79+6ttsBFQCgz4AeAsilZKIXE8v3331988cUXqy3QFIQyA34AKJvShVL8888\/SSw\/++yzxb\/\/\/rvaCtuCUGbAD+Pi+fPnaeylbzTO8+DBg9UrKIk5CKWQWH788cfJEMtmIJQZ8MOwqEJruvvt27cX7777bjofT58+Xb3bH\/rON954Y\/Hll1+SZAojWsdLyAWKXQnlzZs3k3DCdvgYSCUEYgl+6B9VYE1r\/\/TTTxevv\/56OgdmmpgwFBrruXbt2uKDDz5YvHjxYrUVpk60jpeUCzReqa5YxHI7fAykUklBcRHwQ\/988sknye91NvTsPV2R37p1K027\/+2331ZbYcooriJE95sK6h1RL40uACGGj4FUKi0omoIf+kdipKtd+d7b5cuXF3\/++edqr2G5f\/\/+4rXXXuPpJwUQrePR\/aaExt7VS4NYxvAxkEolBkUT8MMwqEvorbfeSv4307jKmPj5559T1\/CdO3dWW2CKROt4qblAz4bVU3yGmCQ3NXwMpFKpQbEt+GEYNIaiK9333nsvnQPZGB\/HpVm4+hs\/\/PBDxnsmSrSOl5wL1DMisfz1119XW6AOHwOpVHJQbAN+6B+JpNbnU3eQTIKpbs6XL1+u9hgXEkiNq+rv\/OOPP1ZbYSoglEsePnyYZnaz8kgehDIDfugPm7penY0nsfz6669Xr8bL3bt3U1fsTz\/9tNoCUwChPEMiKbEkhutBKDPgh34wkdStF1PuwlSCkVjybM3pgFCeR92vLNNVD0KZAT90j4Tx+vXrxTwxRJMi1A2r+0AZtxw\/COV\/sWW6NNEHzkAoM+CHbpGQqKtVY3wliKSh36UJPproM5ZbWqAehLIexa0u+Fim6wyEMgN+6A6NPUpISl7VQI\/e05iPbiWBcYJQ5lEd1UMJvvrqq9WWeYNQZsAP3WCzWfV0kNLRWI9m7dKNNU4QyvVYrw\/LdJ2PgVRCIJbgh\/axMbw5denocXd6gALLHI0PhHIzEktNtJv7yiMIZQb80C4SSXVFznHcQw9SV7LRg9XVooZxgFDGsJnpsrHe09w1oxXKGzduhG6A1T5d3CiLULbHL7\/8Mvtp50o26m6WH+QPGB6EMo7iV70ic115ZDCh3NnZSd8lU9mQ6GnbNuLnP98WffmhdHQeeYj4GVoEWv5gMejhidZxcsEZtkzX3HpGfAykUtdBoed26jtk1hpU+fj4eHFwcHBa3oa9vb3WnwfatR\/mwOPHj5n5WYO1sFkMeliidZxccB49iUpzDeYklj4GUqnLoDBRlFmL0YTT\/pdYbos+03arsks\/zAGb8WnnGc6jJMNi0MMSrePkgv9iy3TNZeURHwOp1FVQ+K5WM2s56n\/b5qkTT2t1agzTaNoSXUf1b4E4Ekm1mFiRYD027sNi0MMQrePkgnqUn1XP5yCWPgZSqaug8GJYbTVK9LRdXaiG7WsmTDhlXij1OW3T+21h3wnboStNdbfO5UqzDXSfJeO4\/ROt4+SCPIpZ1ffSe458DKRSV0FR1+0q\/PZqi9BaijKVvZB6TGgRymGx7hiWnNoejeMq4bAYdH9E6zi5YD3K4aWLpY+BVOoqKHxr0GNimBtjtM+sG4O0bl2Ecjg0MWVuA\/xto2dsaj1OFoPuh2gdJxdsRiJZ8i1gPgZSqaugsO5R32Uq6rpdPZuE1HfptnlFo+NBDE0Z52b6dpBAavURPWeTlnm3ROs4uSCGhlsklm02WMaCj4FU6ioorNVXHZ\/c1Br0LdG6yTq5lupFaft4JaLJKErqc70JuUu0YDWLQXdLtI6TC+JILDU5rbQncPkYSKUugmJdq8+Esq41KBFUSzMnssJapNWW6kXRMSGPRFKPtLp58yYi2RG2GLREE9onWsfJBduhniUNw5S0iLmPgVTqIijWtfpMBK21aF20MuuOrXa\/arv276rbVeiYUI+EUQI59wcl94G6X9UNy2LQ7ROt4+SC7ZFYlrTyiI+BVOoiKEz86lp99p6RG7M0QZVZN60JaHXfNvB\/E5yhZK0KcOvWLUSyJ+RzTfDRRB8Wg26PaB0nFzTDcoXuFZ56rvAxkEpdBIWJnAmcx1qbTdDnrJXZNl34YeqUdpU4NXTrCI8EbI9oHScXNEdiaSuPTFksfQykUltBoeNYF6nK644rsbOu1yjVlmjbdHnsKWLjDqx4PiwPHz5MDyf47rvvVlugKdE6Ti64GCXMZ\/AxkEptBIXGC3UciZkJ2roxRLUq6ybq5NC+bU\/eqULlOOP58+dJJOe4luQY0ePuNLOwhC6tIYnWcXJBO9jKI1MUSx8DqdRWUOg4ZpHWYlQoJZDbiGpT2vLD1LF7oxDJcfH333+nK3QlHu5fbUa0jpML2kMPJtHktKnFrI+BVCIoluCHZcul5KdtTB21JlkMujkI5TDYoy6nJJYIZYa5+0Fd5Tyoexp8\/\/336X5L\/Q9xEMrh0EIAusCbyuIJCGWGOftBIjmHFQFKgsWgtwehHBZdhCtmp7AcH0KZYa5+UPCqdYJITg91ZV2\/fj0tBq0xTFgPQjk8msU9hYtyhDLDHP1gV3gsIjxd1Jr8\/PPPWQw6AEI5DqwHa8zPNUYoM8zND\/fv35\/UmAGsR\/dZaoz5xx9\/XG2BKgjleFD3q\/LPWOdEIJQZ5uQHm4Wm+yWhHJ4+fZqu1FkMuh6EclzYrWia6DM2EMoMc\/HD7du3JzdVG+KwGHQehHJ8KF7H+HAThDLDHPxgT8pAJMvm5cuX6SH2LAZ9HoRynCgfKVbH9LhMhDJDyX7QhA89\/myqj5OCZrAY9HkQyvGivDSmBRgQygyl+kEiqQcU0xU3Tx4\/fpzGLesWg9aqJHO6BxOhHDfKT7rVqbryiFqcfXfNIpQZSvSDAq+EJW\/gYmjSVnUxaE2kePXVV2c1SxahHD92YS\/TEILi9dq1a6lnpM8chlBmKM0PCjB1ZbDiBAi7aNJEH4mkJlAo5vV6LkTrODlxWJSvbKhIpvMh6\/OizsdAKhEUS0ryg57SMqb+fhgPd+\/ePU08ZnNZGDpax6P7QXdILPUQDR+nH3300erd7vExkEoExZK+\/aA1ObV2pxaxtkBQWdtOTk5We22P+vPVWtBtIABVdI+lxZtZnwloSPRbI0T3g26w7lcfo7LLly8vXrx4sdqrW3wMpJLfMGf69IMe4aTvu3LlyukzD7XmprbJmi5SbSLJWpJQh56zaTFWtTk8\/k6\/M0J0P+gG9YT52PSmJ4pF0brI\/rNqnETR\/kYq+Q1zpk8\/mFDu7++vtizRNrNtsadcbBNIMB90la4Zha+88sq5ODPTfZelo98ZIbofdINy2b1799LwkVqRPk6jY+qWY9VDJySSeq0GSQTta6SS3zBnxuAH\/Q1m22AiyVqSsAnNJNSj7tTroO4txY3iTQJa+oMoovVq2\/oH3aGuVq27qhnbepaxzk2k98OGtKzHzrcuI\/j9Uin6wdIZ2g\/+RG7b9apxJ0QSmqLHiCl+JKB9orF4XfFrCMLi\/tmzZ6fv6erf3lPie\/ToUXqvKdE6Ht0P+kW9Ipp4prVY1+FzqQmlsG2RLlgfA6nkN8yZof2gblj9DUoMliwASkbCqK40JTahpKZteq3\/VRckltpuY\/g+8W1LtI6TE6eNdbNW48W2WXfsOnwMpJLfMGeG9IOE0U7iNgPOAFPFrvpNJA21JKvdZoYuJnd3d1evtidax6P7wTjxEyMRypZp6gdzfsTqBpKVGKx7CZGEKVKN83VmdUAJTK+rWH2oS2b67LbDEp6676sjuh+ME4SyQ4bwg5KCup703YgkzIlci1KtRgllXcuRFiVEoOu1Q4bwg06Yvvfw8HC1BWA+SPhsTFKoHqg+KNFp4o5PaNpHAlrtjt2GaB0nJ04b662Q1QllpFHiYyCV\/IY507cflAj0ndWrmzYSAsBUUDeZDT2od8XPbFVCk5DKqu81IVrHyYnTp26cW6+bxEAqERRL+vSDH5fMGUIJ0C6qVxGi+8F4sValNUSsO7ZunkgdPgZSiaBY0qcfrItpnXGLCEC7qF5FiO4H48bE0izS5Wr4GEglgmIJfgAom2gdJxcAQpkBPwCUDUIJURDKDPgBoGwQSoiCUGbADwBlg1BCFIQyA34AKBuEEqIglBnwA0DZIJQQBaHMgB8AyubBgwer0nqi+0G51AolhmEYhmFnZtCEAgAAWANCCQAAsAaEEgAAIMti8T8IzJ8o+XyvPgAAAABJRU5ErkJggg==\" y=\"-1.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>\u0110\u1ed3 th\u1ecb&nbsp;<span class=\"math-tex\">$y=\\dfrac{1}{2f(x)+3} $<\/span>&nbsp;c&oacute; bao nhi&ecirc;u \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn \u0111\u1ee9ng?<\/p>","options":["<strong>A.<\/strong> 3","<strong>B.<\/strong> 0","<strong>C.<\/strong> 1","<strong>D.<\/strong> 2"],"correct":"4","level":"3","hint":"<p>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang, ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p><p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{P(x)}{Q(x)}$<\/span>&nbsp;c&oacute; t\u1eadp x&aacute;c \u0111\u1ecbnh D.<\/p><p>\u0110i\u1ec1u ki\u1ec7n c\u1ea7n: Gi\u1ea3i Q(x) = 0&nbsp;&hArr; x =&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;l&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng khi tho\u1ea3 m&atilde;n \u0111i\u1ec1u ki\u1ec7n \u0111\u1ee7.<\/p><p>\u0110i\u1ec1u ki\u1ec7n \u0111\u1ee7:&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;kh&ocirc;ng ph\u1ea3i l&agrave; nghi\u1ec7m c\u1ee7a P(x)&nbsp;&rArr; x =&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;l&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>D.<\/strong>&nbsp;2.<\/span><\/p><p>\u0110\u1eb7t&nbsp;<span class=\"math-tex\">$y=g(x)=\\dfrac{1}{2f(x)+3}$<\/span>&nbsp;c&oacute; t\u1eed s\u1ed1 l&agrave; 1&nbsp;<span class=\"math-tex\">$\\ne$<\/span>&nbsp;0, v\u1edbi m\u1ecdi x&nbsp;&isin; R.<\/p><p>Ta c&oacute;&nbsp;<span class=\"math-tex\">$2f(x)+3=0$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$f(x)=-\\dfrac{3}{2}$<\/span>.<\/p><p>D\u1ef1a v&agrave;o b\u1ea3ng bi\u1ebfn thi&ecirc;n ta th\u1ea5y ph\u01b0\u01a1ng tr&igrave;nh tr&ecirc;n c&oacute; 2 nghi\u1ec7m ph&acirc;n bi\u1ec7t&nbsp;<span class=\"math-tex\">$x_1 \\in (-\\infty;0)$<\/span>&nbsp;v&agrave;&nbsp;<span class=\"math-tex\">$x_2 \\in (0 ; 1)$<\/span>.<\/p><p>Do \u0111&oacute; \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=g(x)=\\dfrac{1}{2f(x)+3}$<\/span>&nbsp;c&oacute; 2 \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-28 01:07:42","option_type":"txt","len":0},{"id":"5374","post_id":"7524","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 y = f(x) li&ecirc;n t\u1ee5c tr&ecirc;n R\\{1} v&agrave; c&oacute;&nbsp;b\u1ea3ng bi\u1ebfn thi&ecirc;n nh\u01b0 sau.<\/p><p><span class=\"svgedit\"><svg height=\"130\" width=\"320\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"132\" id=\"canvas_background\" width=\"322\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"129.00001\" id=\"svg_1\" stroke=\"null\" width=\"327.00001\" x=\"-3\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAc4AAAC5CAYAAAChtt99AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABn6SURBVHhe7Z0hzBzVFscRCATiNUEgECRFIBBPIBAViJf0CQSCpAgEooImCASCNC9BPEGaCsQTNHkCgahAIEiDQCAqEAiaVCBIg0AgaIJAIJ7Yl9\/unnZmevfbO\/vtzr0z9\/dLbr5v70777Z459\/zvOXPnzlMrERERyUbhFBERGYHCKSIiMoKecD711FM2m81ms9k6bcgTwinaQURENiicmWgHEREBhTMT7SAiIqBwZqIdREQEFM5MtIOIiIDCmYl2EBERUDgz0Q4iIgIKZybaQUREQOHMRDuIiAgonJloBxERAYUzE+0gIiKgcGaiHUREBBTOTLRDfTx8+HB169at1ZUrV1YXLlxYnyPaq6++urpx48b2KBGR46JwZqId6gNxDKF88ODBWkgRUfpoiudpCLvLccGHw3dply9f3r4jtZHyf4UzgXaojwjgd+7c2fasVnfv3l330Qw8xwV7hm1pcjy6fttt+vDG72qbBHNuhiicCbTDPFA4T8NQNGlyPLAvGScMM098umUUzgO4ffv2+jN0DReZxpSBsZQd7t271ys\/Xrt2bV2SBAYYr+M97MHxLRP+QqttsC2BroDK8RiKY8Q4msK5XziJicTCWOvQjYW8x7+P9y5evNirUh1Cyv+rEU7+drdBNzAuXTg54Zzsrljy\/fne8R5OQB+DKxbJxLEtwvVOzhU\/W7bDqVA4p6Eb51onRzg5JtY6APGQPl7zk7jI\/0F\/TErOMyFJnZdeT+kTF1+Sxu+ISAlK2IHBgzAO4YTjCCmRxHlYadoifG\/OE3ZpPfM+FQrnNEQlqVS8q4l9whml7RDNgNhI\/OS9oUhev359nWgcSsr\/qxJO4DPQUiIyFeexAyctvkNOi5OMs+A0Q+L\/Q1iH7HOyGulOjnJairCJonlaFM5pwL4l410pwrdyWsS5GPtDoiqXmnzsiq25pP5eryd1wNREYJ2rcB7KroyTrJL+lEC2mHEilJGBK5qnReE8PZFtyoZ9ycCujJOskpiQyiybyDi79f6hcaailB0QQk4ysycagyoEgv5u1skFb94blm+XDN8VG3F+FM3To3Celoh1peJcjewTTiAWclzYLS7bYE\/iYjfr5BjiZFT2DiHl\/1UJJ1+cL02GxWfZZ8BTUcoOIZb8fRqzpK5AhMNEa008+P7YpTuBAAZLqXO2ZPCx8EU5LlFyHIpmN+i3CD6XE\/c5BkHEhkymuytniQ8RI4fvHULK\/3s9JQZIVyjCaTAKr6N0Sf+Us7ISdpCziUBzVpPj0rWtWdHxwJZd23abwlnfug3Oy5Diwhmz2qHDRNZJG2YYp6aEHeRsyL7DH1KN2acch+7Y67aYyMrh7JsATh3rakPhnDHaQUREQOHMRDuIiAgonJloBxERAYUzE+0gIiKgcGaiHUREBBTOTLSDiIiAwpmJdhAREVA4M9EOIiICCmcm2kFEREDhzEQ7iIgIKJyZaAeRNB9\/\/PH2N5E2yBJOm81ms9lsj9uQJ4RTtIO0xRh\/d2xIayicmWgHaQmFU2Q3Cmcm2kFaQuEU2Y3CmYl2kJZQOEV2o3Bmoh2kJRROkd0onJloB2kJhVNkNwpnJtpBWkLhFNmNwpmJdpCWUDhFdqNwZqIdpCUUTpHdKJyZaAdpCYVTZDezFs4bN26sP98Un9HgUA+3b99+dN5pDx482L4jx2KMvzs2js\/ly5cf+Te\/S12kfL7XU\/OguHjx4iPnIpiekprt0BIxWYrzfe3atfXru3fvrl\/LcRjj746N4xJxLeB3+qQeUj7f66l5UJBp8PloCufy6Z7vILLPWmblCPgSfGXMd6j5+\/LZ5jSpiokhE8Igss9TxzjJJ+XzvZ4SgyKyiCjBRTDqOlNA3xSzsRJ2kD4hkt1zEb5Bq6Fkq3DWBZ9tTsIZItmNdREPLdnWQ8rnez1TDopuRkFj9gURMIcCGU42RcDk70hZIoB0z0VXOGuYkSucdcFnm5Nw8nlpKeGs2c6tkToXvZ4SJytq\/F3nISgOnan7+tTotOWJiVL3XCicp2HMd6j5+\/LZ5iKc3cRhGOuiX+ogdS56PSVOVjhK13nIPkuW4nTa8tQonN2gdlarQdTHwGfOZcyxpwQbd22+q3XjSk0onPMhdS56PSVOVjhK1PRxqCjblkKnLU8qgJhxnoYx36Hm78tnm0vGCXxemsJZN6lz0espcbJiZVkIZ9eJSqHTlif8onsuusJZsiIRKJx1wWebk3CmLlOFcEY8lPKkfL7XU2JQRIDEifi9BscvYQfp0y1lBSFUtQQVhbMu+GxzEs6IfSnhnFu5f8mkfL7XU2JQdK9V1JBtQgk7yJNEYIkgEkGlluCocNZFTb6RS2SdAb8P7yiQsqR8vtdTYlCEcNbkLCXsIGm6JVtaDSXapTHG3x0bxyfEk2aJtj5SPt\/rKTEoIjDWFBBL2EGkFGP83bEhrZHy+V7PFIMirl11y2+11fMNDtISY\/zdsSGtkfL5Xs8Ug6JbmkVEaxNNMDhIS4zxd8eGtEbK53s9UwyK7mrJWi+CtxQcutdXzmpeW1wunN9cxhwr86cbA85qSyb1\/Xo9SzdALtpBWmKMvzs2pDUUzky0g7SEwimyG4UzE+0gLaFwiuxG4cxEO0hLKJwiu1E4M9EO0hIKp8husoTTZrPZbDbb4zbkCeEU7SBtMcbfHRvSGgpnJtpBWkLhFNmNwpmJdpCWUDhFdqNwZqIdpCUUTpHdKJyZaAdpCYVTZDcKZybaQVpC4RTZjcKZiXaQllA4p2X4cPYanxAlj0n5fK\/HQbHhUDswIHyCuxwDfPDu3bvbV6dljL8bI84H8QEbDpviWS+cnyG9ntQBLXKoHRROORb4oMK5LBBHYkTQzTx5oL\/UScrnez0Oig2H2iFXODkunoPJzzt37mzf2QyueO\/ChQu9gSbtwPnfJ5z37t1bXblyZX0sjeD78OHD9Xs8P5XX8R5+yfEpeD+XMcdKn+EzbbvPJp5qkiTjSfl8r8dBseFQO+QIJ8cgiDFQGDwEP8ST9\/jbBDzeR0QVzzbZF0wRSHyjK5b4C\/4X7zEBo4\/\/Bx+jL47tMsbfjRHHIybInCOpl5TP93ocFBsOtUOOcEYwGxKZw1AkEVQCnrQFvnCWcOJD+NIQ\/g3+khLJV199dXXr1q3tq8eM8XdjxPmJCXK3Sb2kzk+vxxO4IccOCGQ4\/b7WFVNepwIix+wKhPwbWSZxfnNb+M6uSVr8f6nJGcenqhccn8uYY+Vs4pzSUmNf6iDl870eB8WGQ+1waMZJVsnfJCMYZglmnG2CP6QmWMGujBMfoj8lkGac9dG9Dj28Bip1kPL5Xo+DYsOhdsgRToSQwBZBkZ8IIwOIgcO\/D\/Hk564sQZYNPniWcAJCeP369bWf0PAhfIlFQPR3J2gxARtOzGCMvxsjjkt3gZDCWScpn+\/1OCg2HGqHHOGEEE\/+zjA7IOjxf9AIjIpmm+Ab+4QzxJJjaVwn766cRTzDl2iuqi1LjPkh9HF+pE6S52z7c42DYsOhdsgVTpF94IP7hPNYjPF3Y8ThYLtokV1SFdCmdZM6P70eT+CGQ+2gcMqxwAcVzmURItltVAykblI+3+tJHdAi2kFaYoy\/OzakNRTOTLSDtITCKbIbhTMT7SAtoXCK7EbhzEQ7SEsonCK7UTgz0Q7SEgqnyG4UzkxqtsN\/\/vOf1S+\/\/LJ9JUvif\/\/7X5Fzq3CehinOJfHg+++\/376SU6BwZlKzHW7evLn65z\/\/uX0lS+Gbb75ZvfLKK6tPP\/102zMdCudx+f3331dvvPHG6uOPP972nI7PP\/989fzzz69+++23bY8cG4Uzk5rtQFZCgP3yyy+3PTJn7t+\/v\/rHP\/6x9jna119\/vX1nOsb4uzHibL799tvVCy+8sLbTFMIJH3zwweq1115bxwY5Pimf7\/U4KDbUbgdKMwzOP\/\/8c9sjc4MM4erVq6unn3567W\/RENKpGePvtY+NUiBa\/\/rXv3rncyrh5G8z+cKf5PikfL7X46DYMAc7MEiYacq8+Ouvv1b\/\/ve\/V88+++yjANttvD81\/N1cxhzbClzLvHTpUu880qYSTqA8\/OKLL64+++yzbY8ci5TP93pSB7TIHOzwxx9\/rK9t\/Pjjj9semQNkB1ynfuaZZx4F2GiczxKM8fcxx7YA16b\/9re\/9c5jtCmFE4gFfJbvvvtu2yPHgHM5pNeTOqBF5mKHL774Yn1tQ+bHTz\/9tH76TQRZGllLCcb4+1zGxlRQIWBBF5Oe7rmkTS2cwH64fJZff\/112yPnJeXzvZ7UAS0yJzu8\/vrrlmdmCueOa1ORfb777rvbd6ZljL8bI9IgoJzPEtc4h3CtlUlZibL\/Ekn5fK\/HQbFhTnYgc3nuuefW1zhkPnD\/3d\/\/\/vd16ZZzSOWAa58lGOPvxog0P\/\/88zrT43ongknJtJRw4lPcslZqIrY0FM5M5mYHZpjvvPPO9pXUDsGVwNq9Pk2wK3UvnsJ5fhCprlCyBqHk+gP+\/ksvvbS+ni7nQ+HMZG52oCTDijoXBdQPAklJ75NPPtn2lEfhPB9km1R9EKuaoJLBBI17S+VwFM5M5mgHVve9\/PLL68As9UIGUNvN6grn+SDbrDWzY0MNRL3EVo5LQeHMZK52eOutt4pdJ5P9RAbAz5pQOA+HDSvYjKTmhTiUkLme7oYph6FwZjJXO7AEPRYoSF2QYZJp1piZKJyH8+abbxbZX3gs7J3LxFrGo3BmMmc7MIjdBL4+aizRBgrnYbD4h4nqHG77INtkj2srUuNRODOZsx0IzNzD5Sbw9VBriTZQOA+DbHNO91DHIibWQ0g+Cmcmc7cDm8CzytZrGuWpuUQbKJzjYYxxu0eNFYSzQDQRT0RU8lA4M1mCHd577z03ga+Amku0gcI5Hm4p4lmYc4RyLSvwnVjnoXBmsgQ7cE8Zq\/1++OGHbY9MDaXZOczuFc5xcL\/0HLPNLmyYwoIh2Y\/CmclS7BCbwM95gM+VKNGytV7tKJzjmHO2GZBtcotKqW0B54TCmcmS7MAm4m4CPz2Uwwiwc0DhzIddeBCcJcBta1RE2CRBdqNwZrIkO1AuZMl8qX1QWySeiziX+2kVznwQza+++mr7av5Qdq55xXcNKJyZLM0OlGPcBH4aKNESXOdQog0UzjwQzKVkm13wVa7Z1rbXbi0onJkszQ7coM3AcLPn08MkZS4l2kDhzGNp2WYX9ttl4xTXQzyJwpnJEu2AaLIE3Yfbno65lWgDhXM\/bChy6dKl7avlQVxg4xQeUSh9FM5MlmqHt99+2y23TsQcS7SBwnk2nFsqNkt\/bB\/rIFgPcfv27W2PgMKZyVLtEAPDXUOODyXaue4RrHCeDbeezK38fijsiETVpORDuGtD4cxkyXYgI3IT+ONCkGFZP0+nmSMK525ayTa7\/Pe\/\/11v2fn7779ve9pG4cxkyXYgEHAtw3LMcYgS7ZxviFc4d8N55V7o1rh69er6e+PfrVO9cN64cWP9Ge7evbt+\/eDBg\/Xry5cvr19PxdKDA9vwMaN0+fn5YTHF3LcuG+PvSx8bXVgww6WNFsuWCCbl6Q8\/\/HDb0y4pn+\/1lBwU\/O1o165dW\/choNE3JVP\/vRKwAbybwJ8PrgfNuUQbjPH3FsZGwLNteXRYq7Amgv2u57694HlJ+Xyvp\/SgILPkM3QzTMTTjPP4kG2SdboJ\/GGQjXB7zxKCyhh\/b2FsQMvZZhfiA4uFWo4TKZ\/v9ZQeFFGq7Qol1+KidDsVrQQHbOsm8IdBCWspT5cY4++tjI3Ws80uTA7JPFvdtjPl872e0oMihPPixYvbntWjsu2UtBIcgBW2bgI\/jqWUaIMx\/t7C2KAaw\/l1\/9bHMFHkmmeLk+yUz\/d6Sg8KMiA+QwhnCdGEFoJDwD2dbgKfT5Ro2UlmKYzx9xbGBvfksgWdPAbBZJUtq21bI+XzvZ7SgyKEk8bvtBK0EBy6sJsQuwrJfph5v\/XWW9tXy2CMvy99bES26SYhT8J9nayL4D7Plkj5fK+n9KDorqKdekFQl6UHhyGRRbkJ\/NlQoiU7X9qN4WP8feljw2zzbO7fv79eLMRYaIWUz\/d6Sg+KUrefDFl6cEiBaLJDCiIqT7LEEm0wxt+XPDa4XGG2uR\/GQEuXd1I+3+spPSiiVDv1KtohSw4OZ8EzO5lxy5MssUQbjPH3JY8N723Oh40\/WJHfwkQ75fO9nhKDgr\/JalrgZ\/xekiUHh7OgBMlM0hl3HyZySyzRBmP8faljg+yJEqSL5PJgsRAr8lsoa6d8vtcz9aAYlmZrEE1YanDIgVtTWtybcxd\/\/vnnekHEEku0wRh\/X+rYMNscD2ODyxdzfJTeGFI+3+spMSj4m9FqoabPUgJKMKVWNNfG+++\/v9gSbTDG35c4NqiwmG0eBve6YrslPz0m5fO9ntYFI2jdDmwzxk4hrW8CTzBowQ6tCyflRq\/tH87XX3+9vpSxlA1BhiicmWiHTemKbKtVokRLUFg6LQsn2SYraVufJJ4XJh48Xo9xszQUzky0w2PhaHVzZyYNrdzP17Jwmm0eDy5psDJ\/aSicmWiHDSyI4aHXre1P2UqJNmhVOLmZ32zzeDDZfuWVV1Y3b97c9iwDhTMT7fAYlpwvfdVcl5ZKtEGrwsnTTz755JPtKzkGUfpe0i5kCmcm2uExv\/zyS1O7hLRUog1aFE4WwOHX7pR1fL755ptF7cCkcGaiHfowK29hE\/jWSrRBi8JJtskzN+U0UK6lbLuExUIKZybaoQ\/XOJe+CTxiiWi2VKINWhPO2KzfbPO0sFBoCfdAK5yZaIcnYZenJW8CT3m21dtvWhNOHsjc0nX7UpBtcosKjy2cMwpnJtohDeLC5s5LgyyTBUFLKCsdQkvCSTmeCWBrK8VLwRqJuVdyFM5MtEOa2ASebbaWQpRol7xl2D5aEk6yzc8\/\/3z7SqaAscW2fHONGwpnJtphNzz9fUmbwLdcog1aEc545qzZ5vRQGmedxByrOgpnJtrhbNgE\/osvvti+mi+tl2iDVoST621mm+VgkvrGG29sX80HhTMT7XA27Lgy99s2LNE+pgXh\/Oqrr9bCabZZDmzPpHtuWxwqnJloh\/189NFHq\/fee2\/7an5Yon1MC8KJaCKeUhY2UmGdxJyeb6twZqId9kN5k+tF3BM3NyzR9lm6cBKkEU6pA2IGi4WoXM0BhTMT7ZAHM\/i5bQLPymBEc46CfyqWLJz4JhM8s826YJEh52V4uafGWKJwZqId8pnb1mXsZPLhhx9uXwksWThZDMTkTuqDSyU8RCLEkkpQjSv2Fc5MtEM+cYPzHJ7+TsmOJfFutdZnqcIZ2aYLwOqE88N9tUxkWTCEbz3zzDPVjc+Uz\/d6FIwN2mEcc9gEPjZvsET7JGP8fU5jg2yTwCz1whNUnn766bVfRattjKZ8vtczp0FxSrTDOJg58iQEHidUK5ZodzPG3+cyNshamCiZbdYLOwlRAcKnuq22Sz8pn+\/1pA5oEe0wnpo3gbdEezZj\/H0uY4Pga7ZZL0xonn322bU\/DVttT1ThMw3p9aQOaBHtcBhXr159YhP40tc+LdHuZ4y\/z2FsRLb5ww8\/bHukNqhSxap8fKrbWDNREymf7\/WkDmgR7XAYsRsPJRh+R0gp4ZbEEu1+xvj7HMYG2SarvWUekH1yvvCtaDUtNkz5fK9nDoNiCrTD4bAgA7F87rnn1nZk5l+KuPE9lrtLmjH+XvvYYMLGzfU\/\/vjjtkfmAhsisKMXK2tr2lko5fO9HgVjg3Y4DDLNS5cure3XbSWIEq0BdD9jzlGp85kLtzWYbc4btuWr6dJKyud7PbUPiqnQDuMgo+Pa5nBZebQSZReC59w2ky4F5yiXMcdODdkmlY65bOUm8yDl872emgfFlGiH8RCsePIBthu2qbM+ysWWaPPhHOUy5tipYaJEqU\/kmKR8vtdT86CYEu1wOJ999tn6GhM2jMYDhHO4ceNG79\/dvn17+04+ZLdkHZZo88HWuYw5dmrYiIMb6kWOScrnez01D4op0Q7ng2sU7CSEHWk5Dw++du3ao+O7bax48qBcS7TjwM65jDlWZAmkfL7X46DYoB2OAzsJ8SQSMoGzePDgwery5cvbV\/3M8+LFi9ve\/ViiPYwx\/u7YkNZI+Xyvx0GxQTscD25G31c2ZdehIQgm52GMcN68edMS7QGM8fdTjA0mSt3zfefOne07q3XFId67cOHC+liRFPfu3VtduXJl7Ss0qlgPHz5cv8fkvFvVYqLO8Tlw\/JBeT+qAFtEO5cGxOQ84u5yWMf5+7LGBECKIMXkiwBH8EM+oPOADvI+IKp6SAoHEN7piib8QR+I9JmD04Uv4GH1x7FmkfL7Xc+xBMVe0Q3k4B7RUNirHZYy\/H3tsRDAbEpnDUCQRVAKeSJeoTAwhfuAvKZFku79bt25tX+0m5fO9nmMPirmiHcrCIEgFTTkNY\/x917FRIchp3evZvE5NjjhmVyDk38gyifOb28J3iBVdvwri\/0tNzjg+J8bw74f0elIHtIh2KAv2t0Q7HWP8\/dhjI5VxklXyd8gIhlmCGaek2JVx4kP0pwTSjPPIaIdyMAtMzRzldIzx92OPDYSQwBaZAz8RRiZOsdo6xJOfuVmCtAdCeP369bWf0PAhfIlFQPR3J2gxARtOzFIonJlohzLg6EPRJHgaKE9LSeGEEE\/+72F2QNCLyRSBUV+QXYRY4kc0rpN3V84inuFLNFfVHhntMD0ExHD4YYtsRE4DNs5lzLEiSyDl870eB8UG7TAt3VliqslpGWNjz4e0Rsrnez0Oig3aQVpC4RTZjcKZiXaQlhjj7zytX6QlFM5MtIO0hGIospss4bTZbDabzfa4DTG1EhERGYHCKSIiMgKFU0REJJvV6v+Mqr\/j4H88+AAAAABJRU5ErkJggg==\" y=\"1.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>\u0110\u1ed3 th\u1ecb&nbsp;<span class=\"math-tex\">$y=\\dfrac{1}{2f(x)-5} $<\/span>&nbsp;c&oacute; bao nhi&ecirc;u \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn \u0111\u1ee9ng?<\/p>","options":["<strong>A.<\/strong> 0","<strong>B.<\/strong> 4","<strong>C.<\/strong> 3","<strong>D.<\/strong> 2"],"correct":"2","level":"3","hint":"<p>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ti\u1ec7m c\u1eadn ngang, ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p><p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{P(x)}{Q(x)}$<\/span>&nbsp;c&oacute; t\u1eadp x&aacute;c \u0111\u1ecbnh D.<\/p><p>\u0110i\u1ec1u ki\u1ec7n c\u1ea7n: Gi\u1ea3i Q(x) = 0&nbsp;&hArr; x =&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;l&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng khi tho\u1ea3 m&atilde;n \u0111i\u1ec1u ki\u1ec7n \u0111\u1ee7.<\/p><p>\u0110i\u1ec1u ki\u1ec7n \u0111\u1ee7:&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;kh&ocirc;ng ph\u1ea3i l&agrave; nghi\u1ec7m c\u1ee7a P(x)&nbsp;&rArr; x =&nbsp;<span class=\"math-tex\">$x_0$<\/span>&nbsp;l&agrave; ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;4.<\/span><\/p><p>Ta c&oacute;&nbsp;<span class=\"math-tex\">$2f(x)-5=0$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$f(x)=\\dfrac{5}{2}$<\/span>.<\/p><p>Ph\u01b0\u01a1ng tr&igrave;nh tr&ecirc;n&nbsp;c&oacute; 4 nghi\u1ec7m ph&acirc;n bi\u1ec7t&nbsp;<span class=\"math-tex\">$x_1, x_2, x_3, x_4$<\/span>&nbsp;<span class=\"math-tex\">$\\ne 1$<\/span>&nbsp;v&agrave; gi\u1edbi h\u1ea1n c\u1ee7a h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{1}{2f(x)-5} $<\/span> t\u1ea1i c&aacute;c \u0111i\u1ec3m&nbsp;<span class=\"math-tex\">$x_1, x_2, x_3, x_4$<\/span>&nbsp;\u0111\u1ec1u b\u1eb1ng&nbsp;<span class=\"math-tex\">$\\pm \\infty$<\/span>.<\/p><p>M\u1eb7t kh&aacute;c&nbsp;<span class=\"math-tex\">$\\displaystyle\\lim_{x\\to1^\\pm}\\dfrac{1}{2f(x)-5}=0$<\/span>&nbsp;n&ecirc;n x = 1 kh&ocirc;ng ph\u1ea3i ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p><p>V\u1eady \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{1}{2f(x)-5} $<\/span>&nbsp;c&oacute; 4 \u0111\u01b0\u1eddng&nbsp;ti\u1ec7m c\u1eadn \u0111\u1ee9ng.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-28 01:25:25","option_type":"txt","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.