Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.Bài tập nâng cao
{"common":{"save":0,"post_id":"7535","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5459","post_id":"7535","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{3x-2m}{mx+1}$<\/span>&nbsp;v\u1edbi m&nbsp;l&agrave; tham s\u1ed1. Bi\u1ebft r\u1eb1ng v\u1edbi m\u1ecdi m&nbsp;&ne; 0, \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 lu&ocirc;n c\u1eaft \u0111\u01b0\u1eddng th\u1eb3ng&nbsp;<span class=\"math-tex\">$d:y=3x-3m$<\/span>&nbsp;t\u1ea1i hai \u0111i\u1ec3m&nbsp;ph&acirc;n bi\u1ec7t A, B. T&iacute;ch t\u1ea5t c\u1ea3 c&aacute;c gi&aacute; tr\u1ecb c\u1ee7a m t&igrave;m \u0111\u01b0\u1ee3c \u0111\u1ec3 \u0111\u01b0\u1eddng th\u1eb3ng&nbsp;d c\u1eaft c&aacute;c tr\u1ee5c Ox, Oy l\u1ea7n l\u01b0\u1ee3t t\u1ea1i C, D sao cho di\u1ec7n t&iacute;ch <span class=\"math-tex\">$\\Delta$<\/span>OAB&nbsp;b\u1eb1ng 2&nbsp;l\u1ea7n di\u1ec7n t&iacute;ch&nbsp;<span class=\"math-tex\">$\\Delta$<\/span>OCD b\u1eb1ng<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$-\\dfrac{4}{9}$<\/span>","<strong>B.<\/strong> &ndash;4","<strong>C.<\/strong> &ndash;1","<strong>D.<\/strong> 0"],"correct":"1","level":"3","hint":"<p>Cho hai \u0111\u1ed3 th\u1ecb <span class=\"math-tex\">$y=f(x)$<\/span> v&agrave; <span class=\"math-tex\">$y=g(x)$<\/span>.<\/p><p>Gi\u1ea3i ph\u01b0\u01a1ng tr&igrave;nh <span class=\"math-tex\">$f(x)=g(x)$<\/span>.<\/p><p>\u0110\u1ed3 th\u1ecb h&agrave;m s\u1ed1 <span class=\"math-tex\">$y=f(x)$<\/span> v&agrave; <span class=\"math-tex\">$y=g(x)$<\/span> c\u1eaft nhau t\u1ea1i hai \u0111i\u1ec3m ph&acirc;n bi\u1ec7t th&igrave;&nbsp;ph\u01b0\u01a1ng tr&igrave;nh <span class=\"math-tex\">$f(x)=g(x)$<\/span> c&oacute; hai nghi\u1ec7m ph&acirc;n bi\u1ec7t.<\/p><p>T&igrave;m to\u1ea1 \u0111\u1ed9 giao \u0111i\u1ec3m A, B, C, D. T&iacute;nh di\u1ec7n t&iacute;ch c&aacute;c tam gi&aacute;c OAB v&agrave;&nbsp;OCD.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;<span class=\"math-tex\">$-\\dfrac{4}{9}$<\/span><\/span><\/p><p>V\u1edbi&nbsp;m&nbsp;&ne; 0,&nbsp;x&eacute;t ph\u01b0\u01a1ng tr&igrave;nh&nbsp;<span class=\"math-tex\">$\\dfrac{3x-2m}{mx+1}=3x-3m$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$3x^2-3mx-1=0$<\/span>.<\/p><p>G\u1ecdi t\u1ecda \u0111\u1ed9 c&aacute;c giao \u0111i\u1ec3m c\u1ee7a d&nbsp;v\u1edbi \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 \u0111&atilde; cho l&agrave;:&nbsp;<span class=\"math-tex\">$A(x_1;3x_1-3m)$<\/span>,&nbsp;<span class=\"math-tex\">$B(x_2;3x_2-3m)$<\/span>.<\/p><p>T\u1ecda \u0111\u1ed9 c&aacute;c \u0111i\u1ec3m C, D&nbsp;l&agrave; C(m; 0) v&agrave; D(0;&nbsp;&ndash;3m).<\/p><p>G\u1ecdi h =&nbsp;<span class=\"math-tex\">$d_{(O;d)}$<\/span>&nbsp;th&igrave; h l&agrave;&nbsp;chi\u1ec1u cao c\u1ee7a c&aacute;c tam gi&aacute;c OAB&nbsp;v&agrave; OCD.<\/p><p>Theo gi\u1ea3 thi\u1ebft:&nbsp;<span class=\"math-tex\">$S_{OAB}=2S_{OCD}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\dfrac{1}{2}.AB.h=2.\\dfrac{1}{2}.CD.h$<\/span>&nbsp;&hArr; AB = 2.CD&nbsp;&hArr; AB = 4.CD&sup2;<\/p><p>&hArr;&nbsp;<span class=\"math-tex\">$(x_1-x_2)^2+[3(x_1-x_2)]^2=4[m^2+(-3m)^2]$<\/span><\/p><p>&hArr;&nbsp;<span class=\"math-tex\">$10(x_1-x_2)^2=40m^2$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$(x_1+x_2)^2-4x_1x_2=4m^2$<\/span><\/p><p>&hArr;&nbsp;<span class=\"math-tex\">$m^2+\\dfrac{4}{3}=4m^2$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$m^2=\\dfrac{4}{9}$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$m=\\pm\\dfrac{2}{3}$<\/span><\/p><p>V\u1eady t&iacute;ch c&aacute;c gi&aacute; tr\u1ecb c\u1ee7a m l&agrave;&nbsp;<span class=\"math-tex\">$-\\dfrac{4}{9}$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-07-07 05:17:05","option_type":"math","len":0},{"id":"5461","post_id":"7535","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 b\u1eadc ba <span class=\"math-tex\">$y=f(x)$<\/span>&nbsp;c&oacute; \u0111\u1ed3 th\u1ecb l&agrave; \u0111\u01b0\u1eddng cong trong h&igrave;nh&nbsp;b&ecirc;n.&nbsp;S\u1ed1 nghi\u1ec7m th\u1ef1c ph&acirc;n bi\u1ec7t c\u1ee7a ph\u01b0\u01a1ng tr&igrave;nh&nbsp;<span class=\"math-tex\">$f\\Big(f(x)\\Big)=1$<\/span>&nbsp;l&agrave;:<\/p><p><span class=\"svgedit\"><svg height=\"224\" width=\"181\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"226\" id=\"canvas_background\" width=\"183\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"224\" id=\"svg_1\" stroke=\"null\" width=\"181.00002\" x=\"0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQsAAAFKCAIAAACFM+3MAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAEFXSURBVHhe7Z15XNTV\/v+1tFuZXfvWzb2ytDItb9liee0+zLJuqYDsCgoiiuAGmqi5L7ihIJrAdccd18AdVFxLARU3IBVkURAxUASRwdvv1bxP85tYhs\/MfLaB8\/zDh\/OeYeBzPud5zvt8PudzTr3fORxO9XBDjOPx48cPtfzvf\/9job+CD7D\/VaKsrKy6n+KYDApc0lLlhhiBRqPZuHGjt7f3qFGjIiMjHz16xN74k5iYmODg4JycHPb6r8THxxcXF7MXHDEoKiratWtXXFycdJJwQ4RSXl4+fvz4xo0b+\/v7t2rV6sknnwwNDWXvabl48eILL7xQr169yZMns9BfCQoKys7OZi84YnDq1CkrKytbW1vpmh5uiFAOHjz41ltvHTp0CKp06dIFJnzwwQcPHjxgb\/\/++6xZsxAE+A8L6VFaWurn57djxw72miMG+\/bt66OlsLCQhcSGGyIIJFSwYubMmch6S0pKmjRpAhPefPPNe\/fu0QcQ79GjBxkSFRVFQX3y8\/NdXFymTJkCwViIYzZbtmzp3bu3g4MDEmAWEhtuiCBOnjzZrFkz5FH4\/9q1a6FB\/fr1Bw4cqKvud+\/eff311xFv0KBBeno6BfXBzyIfGDx4cEFBAQtxzGb58uUwRP9EiA43RBBXr17FEPzhw4foQLp37w4TGjZsqJ8yXbp06emnn0b87bff1k+9dKxbtw7n0tra+vr16yzEMZvZs2ejVH18fAxcQjQTbohxoH43atQIJqBL0R92R0REIAg8PDwqny20cD\/88APOJTh27BiLcsxm7NixKNJx48bxa1lqAf0G8iuYgJ6krKyMgjg9bm5uCCLFQr9PQX2Kioo8PT3JEHQmLMoxG3d3dxTp9OnT2WsJ4IYYBxotbVdRLzAwkIV+\/x3j9Q8++ADBZ555BvkYi+px48YNe3t7MmTGjBksyjEbZK0o0oULF7LXEsANMY7PP\/8cJjz11FNJSUks9Pvvv\/76K90Jee211yrfRgSxsbF0LoGrq6t0F17qFAUFBVSky5YtYyEJ4IYYB\/UVL7\/8MroFFvr996ioKEq9vvnmm8qDEORgS5cu7dOnD51OqJKSksLe45hBcnIyFSkGgSwkAdwQ46CbHs2bN8\/IyKAIRuF+fn4IAn9\/fwrqU1paOmrUKDqXAKpERkay9zhmcOzYMSrS7du3s5AEcEOMIzw8HCY8\/fTTVMsxAlm0aNGLL75IhlR5r\/Du3bsODg50LolZs2bpRvkck9m5cyeV5549e1hIArghxlFYWNi3b99GjRo9\/\/zz33777ZtvvtmuXTsM0KFH48aN09LS2Of0SEhIoBOpw8PDo6ioiL3NMZWVK1dSeR49epSFJIAbYjQYi6N\/DwsLCw4O3rhx4+HDhzFwhyEfffRRlfUen6ETqcPOzi4zM5O9zTEJjPeCgoKoPOPj41lUArghQsGA+\/z58+PHj9+1axe9xEnCIGTChAkYpoMpU6bQJyswc+ZMOpE6rKysJD2pdQGNRkM31AGG7CwqAdwQoeTl5XXo0AF9xXPPPXfnzh0KZmVlNW3aFMGWLVtWeScEFg0bNoxOpD7r169nn+CYRGlp6aRJk6gwJe2QuSFCQQfy7LPPQoZWrVrRlN4HDx6MHj0akZdeemn16tX0sQpAIWdnZzqR+owaNarydWGOcEpKSvz8\/KgwJZ0Myg0RSmpqapMmTSBDbGwsXmI04uvr27BhwwYNGmzevLm6eUGnTp3S3SvUp1+\/fnfv3mUf4hgPmicfHx8qTOkm9gJuiFDKysowoujUqZObm5uXl1f37t3btWvn6Oh45swZ9olKQBsM6OksfvHFF23atEGe9u233+KljY0NH4qYQ2FhoYeHB0oS\/7KQNHBDjAC575UrV\/bv379z585Dhw7h\/\/fv32fvVcOlS5dOaMGAvmvXrv\/617+2bNlCkdzcXPYhjvHk5+cPHDgQhkybNo0iEsENkYn\/\/ve\/f3QlvXv\/+uuvLMQxg5ycHGSqKM9Vq1axkDRwQ2SCGyIumZmZNF36wIEDLCQN3BCZ4IaIy7Vr1+gSyOXLl1lIGrghMsENEZezZ8+iMPv27Xvz5k0WkgZuiExwQ8Rlz549KEwnJ6e8vDwWkgZuiExwQ8SFLqMPHDhQupWyCG6ITHBDxGXatGkozMGDB1e5soyIcENkghsiLoMGDUJhDh8+XOonbbghMsENERGNRkNPNY8dO1bqh\/65ITLBDRGR\/Px8KsxJkyZJOikLcENkghsiIunp6VSYAQEBUk+R5obIBDdERM6dO0eFGRQUVN2sarHghsgEN0REjh49SoUZFhbGQpLBDZEJboiI7N27lwpThkc1uSEywQ0Rka1bt1Jh7t+\/n4UkgxsiE9wQEVm1ahUVZkJCAgtJBjdEJrghIhIQEECFWeXqGeLCDZEJboiI0JQTIMOGXtwQmeCGiAitA+Tk5MReSwk3RCa4ISIyZswYlKSfnx97LSXcEJnghoiIl5cXSnL27NnstZRwQ2SCGyIiAwYMQEmuWLGCvZYSbohMcENEpG\/fvn369KlyLwrR4YbIBDdELAoLC1GMVlZWcXFxLCQl3BCZ4IaIRWJiIooR3YiB1S5FhBsiE9wQsdi+fTuK0d7e\/uLFiywkJdwQmeCGiEVgYCCK0dHR8fr16ywkJdwQmeCGiIW3tzeKsX\/\/\/jk5OSwkJdwQmeCGiIJGo6H9WNzc3PLz81lUSrghMsENEYWioiJarnfIkCG0z5HUcENkghsiCnl5eba2tihG5FrFxcUsKiXcEJnghohCZmamjY0NinHUqFHy7EnPDZEJYw15\/PgxPrlu3bpx48b5+flNmzYtMjISEakXLlA5qamptOQ7ikWeouCGyIRRhkAPuPHee+917tzZ3d3d1dX1zTfffPLJJ9u3bx8cHCz1Opxq5ty5c7SWXFBQEAtJDDdEJowyZP369Y0bN54yZYrucs2lS5datmxZr169J554YsmSJRSsgxw\/fpwM2bp1KwtJDDdEJoQbotFounbtChmaNGmya9cuCiLnpiB46623KFgH2b9\/PxVjYmIiC0kMN0QmhBtSUFDw6quvkgwuLi66bPubb76hYP369R89ekTBuoZulRN5boYAbohMCDekuLi4Y8eOZMKIESMoiJFJ9+7dyZBnn31W6qU4Vcvq1atRhn379mWvpcfiDcGwFbnpxo0bZ8+e7evr+8MPP8yvhqVLl7KfqURqair7UDWEhYU9fPiQffqvpKWlBQYGss9VxeLFi4uKioQbgk4D45DmzZt\/+umnGH5QEN\/wz3\/+kwzp2bMnBesgixYtQhlKvYe6PpZqSHl5eUZGxubNm2lT7f\/85z+dO3d++eWXmzZt2qpVqw8++KBHjx69evXS1klG\/\/796Wcrc+LECfahahg0aFB1d3CREFtZWbHPVYWDgwNSAqNG6pVJSkp66aWXoAc6ENkGqSoELSDKcPTo0ey19FikIRi2otPw9PSkyxrfffdd+\/btmzVrhtoDQwD+\/8orr7z77rswR1st\/8ByDbl27drXX3\/9xBNP4NAiIiJKSkrYG3UPmrY4ffp09lp6LM+Q0tLSVatW0Y1VgNqJqv\/RRx+1bdu2ZcuW3bp1gy3EO++889lnn02ZMmWelpCQEPYVlUCWRZ+pjtDQUANZ1oIFC9jnqiIoKOj+\/fsmGKLRaIYOHfrJJ588\/\/zzGJO0adMG+SR7r65Ck7KQuLLX0mNhhqAhX7hwIbXZ+Hfy5MmHDx\/OzMz08fFBBJ1JXl7e2bNnAwIC6M4rPjNs2DCkKOznlcMEQzAcRxoZHByMw0HS+H\/\/939oCFA5fvvtN\/aJOgYaGipDNJEsJD2WZAgKaObMmTo91q5di\/Er4o8ePRo1ahSVHX2yuLgY5tCKGGDw4MEXLlygt5TCzHHIrVu3PvzwQ4xDkGuhY6mbc0+uXLlCZbht2zYWkh6LMQRDc1QyGng4OjrGxMTotueqbAhAHULuNHz4cIpDEqRD7D0lMNMQsHz58j+uZNWr16BBg\/Dw8DooyaFDh6gM9+3bx0LSYxmGIN+Ijo62s7ND6fTr1+\/AgQP68zqrNISAFbQ+H9Ty9fVVUBKjDLl8+XJCQgJGXOy1FiSQZAjo1KmT1PuIq5BNmzZRGco5HrMMQ7KzszEcp9LRTcTQYcAQgHpGF0DA9OnTlbrXJtyQuLi4l156qVGjRl5eXiz0J8yPevVefvnlGzdusGidISQkhMrw3LlzLCQ9FmAIsqlFixZRfjVv3jyMRtgbf2LYEICROrIsvIteaPfu3VLvnlolAg3B3\/bKK6+QBk899VR8fDx7QwvFQdOmTTMyMli0boCmTbfke0pKCotKjwUYglrSt29flMuwYcOqXA2\/RkNQuJAEoxd8AJJgwMfekBGBhiB7ZBLUq\/fkk09iuMXe+GuW1b59e9kmJqkEnOXx48dTGWZlZbGo9KjdEI1GM3XqVBSKlZXVzp07qxye1mgIwGeCg4OpI5o5c6Y8j6fpIzzL+uyzz+DAE088gcHGzZs3WfT330NDQ0kPmDNp0iSl0kWlKC4uHj16NJWhnNe71W4I2n4HBwcUSnUdCBBiCMCP06jdxsZm9erVMudawg05ffr0P\/7xj1atWmFAggaCgjk5Oe+\/\/z70qF+\/\/nfffVc51az13Lt3b+jQoShANHMVrmFIiqoNKSoq8vT0RKEgy6qQkesj0BCgS9icnJySk5NZVBaEG4J+cs2aNa1bt8ZwfNCgQfPnzw8ICPj444\/hBkYm3bt3v3btGvtoXQJZpZubGwrQxcWFhWRB1Ybs3buX8iJ\/f38Dj54iZcIIfoQWFqoGuLRixQokbPhaJCpyXjAVbghABoWPLViwACZ369ata9euPXv29Pb2joyMlGcJHBWSnZ3dr18\/FCCybhaSBfUaUlJSQnknavMvv\/zCotUAf1B1hNQe6EQDPnwtaq1s2bxRhuh4+PAhkkOAtEqXcdVNrl69Svn25s2bWUgWVGoIKu6mTZuoA0FTKu79459\/\/plyLeQwt2\/fZlGJMc0Qjo6LFy\/SWZNhh2h9VGpIbm4uqi+KQ4qLs+hGIiIiKNdatGiRPN0IN8RMTp8+TacMPSoLyYJKDdm4cSN1INOnT5fiohNGIHQPEb9FnttP3BAz2bFjB0oPiVZ1jyFIhBoNKSoqouo7cOBA\/RsCIgLrVq5cqa2xvUNCQmSYBcgNMZPw8HCUnpubm8z3stRoiG7Fl9DQUOnqLjykayNOTk537txhUcnghpjJlClTUHrDhg2T+Vap6gyBElQWGJadPXuWRaUhOjoaqS1+1+TJk6Xuu7khZkJpxZgxY2To8PVRnSHZ2dkuLi4oixEjRkhda2\/fvk0LQdjb2+tWFZEIbog5aDQaemh00qRJdd2QtWvXYvSMpj02NpaFJANlvWXLFvw6EBgYKGnRc0PMIS8vj0pv7ty5ddqQu3fvYlSAgsCATPjYAInp1atXL2hhIcFgyE73JZHUSfqkLjfEHC5fvkylJ\/+axeoy5MCBA1QQwcHBwm8hP3r0yNfXF70wYCFjwGgEfQh+6YQJE6S7TsINMYdTp05R6a1cuZKF5EJFhqArmDNnDkrBxsbGqPumwmcuVgk6KxoFovuSrvpyQ8whKiqKSk\/ONRwIFRmim7zp7e2NSs+iAjDTEHD8+HH0P+hJAgICWEhsuCHmsG7dOio9GUanFVCRITExMVQK69evZyFhmG9IcXGx7hskmhXPDTEZDM2XLVtGpSfpWLFK1GIIBgC0JKuVlZWxE7HMNwQJXkREBH1DWFgYi4oKN8RkYMj8+fOp9LKzs1lULtRiyM2bN+kqFoYExj4CYb4h4NatWzR1dMiQIVJsg8YNMRkYQk9iIw2WeVIWUIshe\/bsodvbK1euNHZagSiGACS7OAf4MyIjI1lIPLghJoP64Ofnh6LDMJWFZEQVhiDFmjx5MorAxsYmNzeXRQUjliFpaWn0jI6rq6voK4lwQ0xGo9F4eXmh6CZMmMBCMqIKQ2AFremNIjDhjqlYhqAHnzRpEr7E2to6Li6ORUWCG2IyOL80OUiiIaJhVGHI3r17qfaY9oClWIaAc+fOQQ98z9y5c41N9gzDDTEZtFzUt0dHR7OQjChvCDqN2bNn4\/hRNS9evMiixiCiIYBWDMKoXdwHdLkhJlNUVITxIThz5gwLyYjyhqCFoFvanp6epi0+Iq4hP\/30E33V8uXLRexGuCEmc\/r0aZQb2izTGlAzUd6QCxcu0KLuixYtMmEQAjCSW79+fZAWFjKDjIwMWr8Uxop42ZcbYjJ0Qx0nRZGFwpQ3ZOXKlehAkWKdP3+ehRQF\/ca8efNwSmxtbX\/++WcWNRtuiMnMmDED5da\/f3+JHsk2jMKGIEHy8PDA8bu5ualn87H09HTdtTUWMhtuiMnQxhgDBw5UZDFvhQ3R7buFdkLmhXQNUFZWBjfoD4MtLGoe3BDTQKJL5TZ06FBjJ1uIgsKG0BIvyLKqW9ddEfCXbN26FX8V\/rbw8HAWNQ9uiGnk5uZSufn6+hYXF7OojChsCM1Ic3BwUNtqzUh56frBiBEjkAqyqBlwQ0zj6tWrVG4TJ06UeR0gQklD0CQMGzYMB48OVJRaKCLoRgIDA\/G3YbwuyiUEbohpoPCp3GbPnq1IlqGkIampqXSvNDQ0lIXUxIULF2i279SpU80fI3FDTOPYsWNUbsuXL2cheVHSEOT6dPBybm0qHIwLaUsXdCPmb6vJDTEN3YykQ4cOsZC8KGbI48ePaZcCGxsbdW5aiX5jxYoV+AvpQgKLmgo3xDQ2b95M5Sbn7p76KGZIfn7+gAEDcOReXl5mXqNAVUYNRm0GLCQSt2\/fptPzww8\/mLl9BzfENHTlpsiFLKCYIRiBoffAkYeEhJiZ5Ys7L6sCM2fOxNc6OjqmpaWxkElwQ0xjwYIFKDRXV1f2WnYUM2TDhg04cmtra\/NndkhqiG59CTNHitwQ05g4cSIKDeeXvZYdZQxBnaZBCNpm83tPSQ3JzMykC27IBouKiljUeLghpuHt7Y1CmzVrFnstO8oYkpubSzsTiDLxSVJDysrKaC16e3t7c5ai4YaYBq3vIdbMBhNQxhBkVlRdjF0aq0okNQRAjD5aUMtNvmnFDTEB3aSsLVu2sJDsKGPIqlWrcNioczVucisEqQ15+PAh3RgZOHCgyU+McENMIDExESWGerJ3714Wkh0FDHn8+DGtbIIO9NatWyxqBlIbgn4jLCyMvv\/YsWMsaiTcEBPYuXMnSgyGHD16lIVkRwFD0CTTMyGo1qJc5JbaEHD69Gla4WHOnDksZCTcEBOgqXEwRMGn6xQw5MaNGzRtdtmyZSxkHjIYcu\/ePdq9evDgwaZd0eKGGAu6blpVA22TgoWmgCG65RXj4+NZyDxkMATQDJS+ffsiOWYhY+CGGEtpaenw4cNRYra2tpmZmSwqO3IbUl5eTs+EODo6mrC8YpXIY0hKSgp1fTNmzDDhihY3xFjQb3t6eqLE7O3tFXxCW25DSkpKKF1B84ABCYuahzyGPHjwgNbGRDdiwgUGboix3Llzh5ZadHJyEquqmIDchqC7xMALh42eRKwHYtAvHTp0aLsWFpKAx48fI9HCHw\/279\/PooLhhhgLqoqzszNKDD2JWFXFBOQ25PDhw1RRdu\/ezUJigBJEDQbstTRcvnyZZluasCMrN8RYrly5QivOBAcHs5ASyG0IVRQk9MZuo6MGYCCNHd3d3Y1dmYYbYizx8fH0jOeBAwdYSAnkNmTcuHE4Zg8PD0VWdjGfbdu24e+3srJCZ8hCwuCGGMvRo0fpHpSyD9jJagisoKemJk+erGBmaQ4pKSnaev7HnEujnqnihhjLrl27UFzoRpStKrIacunSJcosN27cyEKWxv3794cMGYJDcHFxMepqNTfEWEJDQ1FcaFLZa4WQ1RC0Cn2026Apssy9KGAosnz5cpw5JABGrS3ADTEWmryHgR97rRDyGYK+cs6cOThmW1vbrKwsFrVA8MfTFa2AgADhzw9zQ4zF3d0dxSXi0smmIZ8hJSUldIsUw3SlnsoXBXQjNF\/I2dk5JyeHRWuCG2IUDx48oGbI5KmiYiGfIWh6aV8Oo5pedUIP2QPh+4ZxQ4wiMzOTimvp0qUspBDyGXL69GmMQABGIywkEhqNBmODmVpYSGJ0yzEK\/43cEKM4efIkFZcoT6Gag3yGbNq0CQeMimXO095VIs+8LH3u379PKw67ubkhe2RRg3BDjGL79u1UXFFRUSykEDIZgmH61KlTccBOTk6mbVZoAPkNAWvWrMGvg\/CnTp1iIYNwQ4SD2rJs2TIqLpMf6hQLmQxBo0sTY318fFhIPBQxJDU11dbWFr9x3rx5QuaDcUOEg\/KkRyTApUuXWFQhZDIkIyODVp2aO3cuC4mHIoY8ePCAlndANyJkBg03RDjl5eV0MwSI9RCRychkiG75n82bN7OQeChiCNo5VPo+2pn8Qtau54YIp6yszM\/PD2VlZWVVWlrKogohkyFr166l+iHF3XRFDAGJiYl0RWvx4sUsVD3cEOE8fPiQcnL8y0LKIYchGHjNnj0bB4zEXfgtNuEoZQiaN5qjhRNZ4z1QbohwCgsL6elCKXJyY5HDEN0j+fjX5BXZDKCUISA8PBy\/FObXOKDkhgjn5s2b1DkrfqkXyGEIBrJ0Nx1NghR30xU0JCEhgX5vjSvDc0OEk56eTmWl4DJZOuQwBO0rhlwY1Eq0+qqChuTn59Oz1MOGDTPcPXJDhHPkyBEUlI2NjVib2ZuDHIbs2LGDJr2bttJUjShoiEajoSGWnZ3d1atXWbQquCHCody1X79+UoxajUVyQ5BWIbnCATs4ONy+fZtFRQWGTJgwAQUKWEhGjh07Rj3ktm3bWKgquCHCoanT7u7uCi6TpUNyQ5B70DBdyAUf0\/jf\/\/6XlpZ2RQsLyQgOysXFBQc4fvx4AxfvuSECQZNK8959fHzM2dJILCQ3BJk6LVU4adIkVGUWrV0EBATgAO3t7bOzs1moEtwQgaDfoILy9\/dXcCE5HZIbgnadDjgsLIyFah27d++mYzTwuAg3RCDXrl2jgsIAz8z9h0VBckNiY2PpgA8ePMhCtY7MzEzqJ6dNm1bdLEZuiEBOnz5NBbVkyRI1JB2SG7J69Wocra2tbWpqKgvVOpAMjB07Foc5cODA+\/fvs+hf4YYIRLf5cGRkJAspiuSGoFnF0bq5ueXl5bFQbWTdunU4TAwxT5w4wUJ\/hRsiEFqzD4iyg5\/5SGsIUg5avcHPz08NOaV0oN7TRIn58+dXOW+AGyIQWmwJ3Lx5k4UURVpDcnJy6LGQwMBAFqqlPHjwgJ7LdXZ2rvIhSm6IQBYsWIBSQm8sxQQlE5DWkDNnztC17a1bt7JQLQVjyh9\/\/FGrQO+EhAQW1YMbIgQUo7+\/P0pp6NChLKQ0EhqCo8Vgq48WSXNK\/KLc3NxMLSykBDhGag6q3B6fGyIEpOX05KZsy9bUiISGoJdctGgRjtbW1jYtLY1FJaCsrGzatGkeWlhICQoKCmh7LR8fn0ePHrHon3BDhIDBKqXlq1atYiGlkdAQ3YTCfv36SboXgoIzFytA6w\/gHCcnJ7PQn3BDhJCVlYUiQtJhwi5fEiGhIRiw9u\/fHwc8cuTI6u6jiYJ6DImNjaWsctOmTRXudnFDhED3l62srE6ePMlCSiOhIenp6XSnGUPYCtVFXNRjSHZ2Nl3zHT16dIWr29wQISxduhRFZG1tLfqygyYjoSEJCQk0LXzfvn0sJA3qMQR\/Cc3cdnJyqjCLkRtSI0g0kG6giNCwquHZKUJCQ2hhSRyt1O2BegxBV7llyxZKtGJiYlhUCzekRkpKStzc3FBEGLgqvkyWDgkNCQwMxNFiKGLsppjGoh5DwI0bN2ifrYCAAP3RFzekRlBP6EmbQYMGVTe9TX6kMqS8vHzEiBE42qFDh0p9c1RVhsAK3X65d+7cYVFuiAAyMzNpxQ9vb++ysjIWVRqpDEF7QEseTZkyhSLSoSpDAD1mjURLf\/k8bkiNXLlyhS7tqOd2IZDKkNTUVEo2fvzxRxaSDLUZonvCQf8iHjekRn755Re6Emj4iX+ZkcqQ48ePoxHF0WK8zkKSoTZDMMq0srLCH4MxmG53EW5IjRw8eJA2UFd8vXd9pDJEt49ZldP4xEVthpSWltLS5fBEN1WMG1IjVGdsbW3VMwgBkhiC1ILmMKMbkWHJIxTowoULx2hhIaU5cuQI3QvSrXXPDamRoKAglM+QIUPYa3UgiSFoRKlRd3Z2tuhtb00mPz+\/X79+KIHvv\/+eFuzghtTI+PHjUT7+\/v7stTqQxBDUDxpyDR06VA0LusiPRqOZNGkSSsDe3p42j+eG1MiAAQNQPvPmzWOv1YEkhty5c4eelFDJchWKsHPnTq0RvQ8dOoSX3BDD3Lt3j8pHbatGSWLIhQsXcKhIxEXfGNqCuH79Ot3\/whgJL7khhtGtoi\/FLmXmIIkhW7duxaGiG4mPj2ehusejR498fX1RDu7u7iUlJdwQw0AMKp8DBw6wkDqQxBBaytrOzk49888UYdWqVSgHDMnOnDnDDTGA\/sVPtbWq4huCoTlt0+jm5qaGlYkVhOb\/oyjCw8ORXv\/hBzekKjQaDd1Bsra2vnbtGouqA\/ENuXv3Lj2uDU+QabBonaSwsNDJyQlF4eXlFRIS8ocf3JCqQD2hVhX9rRp2RNBHfENu3LhBF7KmT58u6cO36gfJw5w5c1AU9vb2dLEfcEMqU1xcTHumuri4qGSZLB3iG5KYmEhVQbblKuAh8pk4LSykGo4dO4b2Auk1beYGuCGVuXPnDt0MQavKQqpBfEMOHDhAVeHw4cMsJDFqm5elD869q6sr\/rDPP\/+8V69e+A83pDLXr1+nRYBkmOdqLOIbsnbtWhwqhlyG9\/UTETUbgkRrwoQJ+MM6d+781Vdf4T\/ckMokJSXRNDYVFo74htCaUUgopX74VoeaDQERERH4wzp16vTpp5\/iP9yQytD8Azs7O\/2nMlWC+IZQZR05cqRscxZVbsjly5fROr733nsdOnTAX8gNqQy1qgMHDqxyUXBlEdkQjUZD1zflvJClckPQUnh6esKQV1999dtvv+WGVIa20Bg2bJgKZ4KLbMiNGzfoMTE555+p3BC0FD\/++COyrGbNmvXo0YMbUoGSkhL0sTh3\/v7+OJUsqhpENiQuLo6GXFFRUSwkPSo3BJw5cwYj9aZNm8ITbkgF0tPT6dwh16qwUKUaENmQNWvWQA9IkpiYyELSo35DkF5369YNhrz++uspKSksytGiW\/hi1apVKnxWQkxDysvLaf6Zra2tbJd6gfoNKSsrc3Z2hiHNmzevy\/OdqyQ6OprO3d69e1lITYhpSGlp6ffff49DxWBdzlm96jcEjB8\/HoYAFd4UUxbaLRmcP3+ehdSEmIYUFRXRnEU3NzfYwqLSYxGGBAUFtWjRAoZMnjyZhThaaPVaJOfq3C1ZTENu375Nq8iNHTtWzoTSIgwJCwt74403YIi1tbWczYfKefz4Mc05QN6hznmuYhqCsQct4LBs2TIWkgWNRrNu3bqFWlhIffz3v\/\/95z\/\/CUO+\/PLLU6dOsWidB40F7SEMT1hIZYhpSGJiIj0wtGfPHhaSC0iC0TBgr9UHDOnWrVuzZs2++OKLRYsWqW2Ot1Lcu3ePlk1avnw5C6kMMQ3Zt28fDtXGxiYpKYmFOH8CQ7755puWLVvCkCFDhtTxpy913LhxAyMQcOTIERZSGWIaQg+aokmgFaI4+tBz6m+99RYMsbOzk\/NquJpBuoFiwdhMzhtoRiGmIbRXvKq2R1EPZEjXrl179OiBJjM6Opq9UbehRT9kvoFmFKIZgsSaHhUaNWoUC3H0IEO+\/vpr5Fr4z7hx49R56UZOMHqkbdmcnJxkWN\/ZNEQzJC8vjx40nTZtGgtx9CBDqDbQvzwXLSgooGG6p6enCue9E6IZkpycTBsILVmyhIU4eugMmThxIv5FonXw4EH2Xl0lIyODbqCNGTNGtes7i2bI4cOHcdZxtBs3bmQhjh46Q2hBShAYGFjHr\/kmJSXRsjhz5sxR4ZxFQhxDcHhbtmyhE6\/ay3bKojPk0qVLlHwPGzbswYMH7O06CVpVepoIlYeF1Ic4htBDQtoK0DstLY1F5QItcXR09FotLKQ+dIb8+uuvy5cvR3\/bt2\/f69evs7frJJGRkZR3XLlyhYXUhziGaP7cLsPKykr+BykfPXo0evRolDVgIfWhb4huS0uootrsQgYwZEUh2NraqvDBKR3iGFJSUuLj44OjHTx4sPy5tUXMXNQ35N69e7SVNooL\/6cP1DXQNNANNJXfHhDHkIKCAsqtZ82aJX+jaHGGoBGhhZzRk6g5wZAU9Bt0A23+\/PkspErEMSQvL4\/WzFu9ejULyYjFGYKXuh2qduzYQR+oa6DO0DzXNWvWsJAqEccQjDgxBsABx8TEsJCMWKIhubm5dPto5syZ9IG6RlxcHBWIOh++1SGOIRADh4pTrsiDlJZoSFlZGT055OjoqMJFomQgPDycCuT06dMspErEMYQ2W3Jycrp16xYLyYglGgI2b96MjhcRte1LJgOPHz+muQW2trZq21KnAiIYgqE5jTsx8FLkFpiFGpKUlETXfKdOnYpDoGAdobS0dOTIkTh2Z2fnu3fvsqgqEcEQ3YOU3t7eipxpCzWkoKCANs1wcXFR4YrOklJUVOTh4YFjV+T2gFGIYEh+fj5d6vX391fk1o+FGoK+l56OsLa2vnjxIgXrCNnZ2TSrNzAwkIXUigiGZGRk0KXe2bNnK3KH2EINAfHx8TR1r65N90SGSZfyZNuGyWREMOTChQs04ly5ciULyQsMGT16tJUWFlIfVRpy7949WvYcKUedeqDq4MGDqDPoPNW\/n7gIhhw\/fpzOvVLXZJDIHj16NEoLC6mPKg0B6HgRRF2pUzfXly5diqN2dXVV\/wPbIhiyY8cO7anvffnyZRbiVKI6Q7Zv344gGtQNGzYokqMqwogRI3DUw4cPV+2DUzpEMIRuhiCfVttO2KqiOkOuXbuG5BDxyZMnK3IlkEA\/jE5swoQJGFKykGSUlJTQ6GvatGlqntVLiGAIbbHl7u5ex58HMkx1hqBqUoM6YMAARe4MYPxz5MiRQYMGvf322w0bNnz++efZG5KRmppKRRESEqL+0ZcIhowZMwZH6+vry5ejNUB1hoCdO3ciywLnzp1jIVlYsGBB48aNn3322SZNmrRu3bqelueee469LRm6\/cS3bt2q\/sRSBEPotteMGTNUfutHWQwYkp6eTsvEoAzlrDFnzpzBiHn9+vXoQ6Kjo2UzZOXKlThY5JbHjh1jIRVjriHIrLTnXe7VrC0OA4Zg+EHPn8ETpa5+nj17VjZD5s2bh4O1trbOzMxkIRVjriEXL17E0aI94BvHGMaAIeg35syZQ8Wo1LLwshmCgx03bhwO1tHR0SLScnMN2bt3L44W7cHx48dZiFMVBgwByDfoXaXuuspmCJKOIUOG4Eh\/+OEHFlI35hpCt35sbGyUveFVUlKCogfstfowbAhaUxcXF7w7ZswYRQavshly69Yt9B440m3btrGQujHLkLKysilTpuBo7e3tMdxkUdnRaDShoaH4SwALqQ\/DhsCKoKCgPn362NnZ3bx5k0VlRDZD4uPjkUwC\/EYWUjdmGVJcXDx69GicdWXnb1vuzEV9YmNjkaziA4pc85DNEHq0EE2q\/OuqmYZZhhQUFNCqNh4eHgpOH6gdhmRkZNA1Xy8vL\/n335HHkMePH9OjRK6urvn5+SyqbswyJDc3l56Sk3lrzwrUDkNwFN7e3vgABnXyt6\/yGFJYWEgPSowcOVLNg0Z9zDLk+vXrlBiEhISwkBLUDkPApk2b8AGMRuLi4lhILuQxRLcX7IwZM9S86aQ+ZhmSlJSEIRcOeOfOnSykBLXGkJycHNpdZO7cuSwkF\/IYcuLECaowa9euVTDpMAqzDDl58iQaPBywzBOKKlBrDCkvL6cVQNDQyjyLUR5DtmzZQhUmISGBhVSPWYZERUXhaG1tbTHKZCElqDWGgIiICPrY7t275Wxl5TEkODgYh4bM3FIGIcAsQ+isu7q6KrtUR20yJD4+nj42c+ZMHBeLSo8MhmDg8f333+PQhg8fzkKWgFmG0O1CxXcHr02GFBcX01BE5q39ZDAElYTmDSxevJiFLAGzDHF3d8cB+\/r6KjvvvTYZAtasWYNkHUORlJQUFpKG+\/fvY2BAzJs3jwx55plnWGjLFnHn2iUnJ6vhuo6xmG4IUkmMQHDAim9+W8sMwaCOZi6FhoaykDSkpqY2\/pO\/\/\/3vL\/wJRdCZODg4iDgWomvZ4JdffmEhS8B0Q9LT0+lpYwy\/WEghYMjkyZMHamEh9SHckNLSUmTq+GT\/\/v0lffQfbdyBAwdiYmJiY2OPHTt2+k8OHz6MCOJIvdhHzebx48eUk6NvVPlCvRUw3ZCTJ09Sp7lu3ToWUg6k70hzlR0OGUa4IWi26Rkj5FoW8RSeEHCCaMYAWjFLmW9CmG7Irl276Nr2nj17WIhTPcINAWjC6cPh4eEsZOHk5uaiS8QRjRw5Us5rdOZjoiHoNGkRIGBZaaVSGGUIWlyqT0o9LiI6SNho1GpxT2ubaEh5eXlQUJD2jPe+evUqi3KqxyhDAO2+jaz99u3bLGTJIOOgnFzZ6RcmYKIhZWVltD004AvJCcFYQ3Q7SqPRrQXdyKJFi3AsTk5OFnQ3nTDRkIcPH9I6aOg6a0caIDXGGoKug+6v4V9Lb4NQQwYPHoxjGTVqlKVM6dVhoiH379\/XHTMLcQxirCEYztKaIEhOLH1B5Fu3btGxz5s3T5FFFqEohnamNeUmGnLnzh1q4RYuXMhCHIMYawg4fPgw\/Yil7yituzS3ceNGRTIOpDxz585dvXp1amqqsX+AiYZkZWXRpYmtW7eyEMcgJhiChGSg9iHnCRMmqH99WwOEhobiKNAZKrUaGDoQ2vIKeHl5odJeunQpNzcX8RoL1kRDkpOT+2g3UFfqmPVBqwBjr2lhIfVhgiE4rgULFuBHLO4+dAXooo69vb1ST0noG0I4OTn5+PjMmjUrIiLi\/PnzBm7R1EPdMoFNmzZ99dVX3377bUxMDAspx\/Xr1z08PPD3ABZSH0jB6S88duwYCwlg3bp19FOzZ8\/OzMxkUYsCVri6uuIQUEfT09NZVF6QXNGmcNWBIQNyMLT79+7dY2b8ST28ZwKfffZZq1atXnvtNTRvLKQcKPq3334bfw9gIfXRpUsX+gvR8bKQAGxsbOin2rdvj2aPRS0KVM02bdrgED755BMWkh1nZ+d33nnnu+++Y0JUA3o5b2\/vgICAzZs3X7hwgZbvqcfeNJK33nqradOmOGx0IyykHL169erWrdunWlhIfbz33nsoMfDFF1+wkABwaG3btsVPtWjR4ssvv2RRaUAz\/+6773bs2LFr164sJAY4Nc20\/Pvf\/2Yh2UEtbd269ddff81e14Sjo+PEiROjoqKQntUbYTxI4Dp06ICGAaWJ\/7MoxyDdu3dHiQGkHCwkDDSBkAQ\/2LNnz+HDh7OoBKChfeONN\/CLevTowUJmgz8YzRa+s127du7u7iwqOxidd+7cGc0NM6ASGFTb2tp6enpOnz599+7dGPUh3aKrXvUKjQeJHST7z3\/+Az1+++03FuUYZPHixSgxcPbsWRYSxu3bt1G38IP9+\/e\/desWi0rAqVOnUFfwi5YuXcpCZpOfn4\/kEN\/p5uaGasOisqNbRKYCEGPAgAETJkxYsWLF8ePHs7OzKz8LaMq1LJwn+n2TJ0+26KuQooCWhmCvq8GEa1k6Zs2aRT\/7888\/s5AEIPOmeS4irj+PqkIPESm7QJb+tSxYYW1tjdGRv79\/XFwcGiDDf5gphqSkpFBRzp8\/v8aaUVvRaDToiw8fPoxR3fr16zds2LBr1y70D9XNOzLHkOjoaPrZ0NBQ6QpcCkNovSig7AJZMATJ7aBBg3744Yfw8PCYmBioy96rCVMMOX36NI4ZRYnDZqE6Btywt7d\/\/fXXX3jhheeee+6ll17Cv6B58+b\/+te\/zp8\/zz6nhzmGoJ2jibGjR4+WbvNYKQzRrSIpae9XIyg0nBRYgfbL2K7MFEMOHTr0x6nWrunEQnWGzMxM5Dwvvvgi3MDQdu\/evbSREloptBcfffRR\/fr1IcyaNWsq3IQyxxBAm1RhNCndTTfRDUGnMXv2bHwhvtZyJ1+aYsi2bdv+ONW9e6NMWahukJ6e3rVr14YNG8KQHTt23L9\/n72hBRUiOTm5TZs29erVgz8VJlOZaciZM2doms\/06dNZSGxEN6SoqIhWeh8+fLiqsnEMnqOiohYvXrx9+3bdLcKSkhL0eMuXL8ewniKEKYasXr36j1PduzfG\/ixUB7h58+bHH3+M2g9DVq1axaKVCAsLe\/LJJ\/GxTp06FRQUsKjZhty9e9fDwwM\/Dk8qnEKxEN2Q69evi562mUl5eTkGde3bt+\/QoUP37t3RkDVr1gxt2ZUrV7p06fLee+99+OGHyJYjIiJ0SptiCE0WcnBwUHDPEJlBS2NnZ\/eEFm9vbwNbVGZlZTVu3JhE2rdvH4uabQgy6alTp9I3HD16lEVFRXRDtm7dSn+wSva4hB4YpsMNNHBo3JH4oRtp0KDB3\/\/+986dOw8ePBjnDn1Io0aN2rZtq2uGTDGEJqKhA5Vu1Kgq0JyEhIRQz\/DKK68YbsLxYeRg+CRAQbGo2YaAs2fP0gWSpUuXspCoiGsIquP48ePxbdbW1irZbgp9WosWLVasWKHrH2JiYv72t7\/hTLVu3RoDPDjTrl07vGzSpElSUhJ9xhRDaDUnFU7JLisrk0LaO3fuUMEBd3d3Fq0ejNTpwy4uLiwkhiEobVo4z83NTYreW1xDUNvwd+Lb0DYXyri8qgFgbI8ePfSvZeFIkRTgTH333XfQJiUl5R\/\/+Ef9+vU\/+OAD3d9siiGurq448oULF+pcVAP5+flos0W\/AI16ibYApUaV\/tChQ+yNakA+hhaIPoxElEXFMASsX7+eupGffvqJhcRDXEOSk5NpOm1AQIBKWtKRI0digM5eaHs5ROhM0fUPyBMcHOzp6am\/TJnRhuB7rayscJ4wmmEhhcDx0CbRaOOPHDkC79Ee9OvXj70tEshNmzdvTuXYpk2bGhvv8+fPI5Glz+v\/MaIYgkpMm36hMykuLmZRkcCh3bhxIz09XZQrs6iLdA8Hp4aFlAZVV79Nx\/F+\/vnnOE1o\/jB8Z9FKGG0IckocNg5eimbMKLZs2YIqiL\/k\/ffff+6556hSOjs7s7dFYu\/evdSB4F+0LjU2h6tXr8bgj\/4YPz8\/FhXJkKKiIurAceBKPY0kBNRFuoFjb2+vf0FPVeTm5rZq1QqnCSPMzMxMFq2E0YbQw9M2NjaKL5g5bdq0l19+2cnJCa4i46dKKbohukXRUe8xyGPRaoA\/Q4YM0aVka9asYW+IZAjQ3aXGiWAh9YHmmZ4fHjNmDGyhoNrAWPzZZ5\/FacIg00DDZ7QhqCU4cltbW91gXw14eHhQpRTdEGQ19M0ozRofOUbm0759e\/o8ujX91dPEMgS\/giqft7e3FON1Ubh48SKNl5YsWaKewSqy8cjISN38F7RfdKZ8fHwoQiCV3bZtG3thgiF0VR69J3JWFlIB0hnSsWNH+uYXX3yxxsTm8uXLdPUQfPjhh\/pDBbEMAXPnzsX3oAqeOXOGhVSG7mD379\/PQkqDUSsS8saNGyMnp8kQjo6OOE1IDdAt02cAPoZ8RH8AaZwhpaWldMGxf\/\/+SONYVAVIZ4ju0u1rr71W42Z0y5YtoxTriSeeqLBphIiG7N69m74qJCREJZeJKuDv748\/DzVSPYlGQkIC5VQ4j3fv3sWpfOWVV\/ASziQmJrIPaW86NWnSZNeuXey1sYbcu3cPo1UcvLu7u6pGYNIZ0qJFC\/pmpE+6OTxVguaDro0AlH5WVhZ7Q4uIhqBtojlaw4cPV2Gi9eDBA7oTgqpiuMTkhAxp2LAhmng0K2FhYXADY3T8S10xgikpKV9++SXqkn6pGmdIXl4eOiAc\/NChQ1V1bqQzpHPnzvTNNRoSExPzzDPP4JMo98o3i0Q0BNC61xgjqXA5RvQbJHCNFzbk5NGjRzY2NsgIFi9ePGvWrJYtW4aGhvbq1Qu9fbdu3VauXDllypTWrVs7ODiUlJSwn9FinCFoF+mRMRKRRVWAdIaMGDGCvhllamC+SWFhYY8ePeiTaIcqTPsF4hpy7do12slt9OjRatuOA6Nz\/GGoJ2qzF8kVNIC9GEVv374dFRhNXlBQkJ2dHf5a1JyNGzdW0AMYZ8jVq1e1Z\/mPvYxZSB1IZwhSUvrmRo0anTx5kkX\/Snl5+YwZM9CD42OtWrUS\/QmqyiCTgRv4NozXk5OTWVQFaDQa2vkEiZYKnwmBFSg6\/Sso6OphRVFRUXU5kXGG4Nxrz3Jv\/Sv9xoL6BNMuGs\/t6nfSkM4QDOk+\/vhjjL8BfgvKl73xJyjZ9evXP\/XUU+iv27Zti3yXvfFXxDUE6HY4EmuXPFFmnUBX+qumTp1aOya2GmcILYcBYmNjWch40tLS3nnnHVo8SjjNmjXz9vau7vaTdIYAVJ0uXbrgy59++mlfX1\/9pvHKlSsYLiO7bdCgAdrOxMTE6i7\/i25Ifn6+i3ZxcfxJLGQeohiC7AXfgJ4tMjJSPXdCzME4Qw4ePPjHSe7dOz09nYWMB3kzLZRmFO3atQsLC6uu0CU1BKAn6dmzJxItjML\/9re\/oWqOHTv2008\/RWaF0Tn+PP17TFUiuiFg+fLl9J2iJFqiGIL0G9+gtttl5mCcIVu2bMHxY2SDQQ8LqQOpDQHIpuLi4hYvXuzn5zdYy5gxYxYtWrR\/\/34ht4akMARdFtVp\/CWVh5jGYr4hGPgOGTIE3zBixAjVTjYxFuMMQf3A8bu7u1e+VqMsMhhC4MSXlZWhGwT4j\/B6IIUhqJE0A8XBwcH83STNNwTfQJc6a9MiOMYZQvdKR44caeAxVEWQzRCTkcIQsHv3biT9YPPmzSxkKmYaggRYt\/nr2bNnWdTyMc4QarEmTpyotj60zhqCfoxmOeDUmNmxm2lIYWHhoEGD8OM4BWpLws3BCEOQV6CtQhHMnTuXhRQFlaOgoOA3La6urmSIra0tRQA+wD6qAiQyBOjG65GRkSxkEmYakpCQQCkWqkdtWsDACEOysrK0J6L3jz\/+yEKKEhsb++6777Zv3\/6dd95p0aJFYy3NmjXDS\/D2229jYM0+qgKkM0R3k2rcuHHmTAUyxxCkWGFhYWhAraysqrxharkYYQhKkM6EWLeozCQnJydKS3R0NGw5oiUmJgYvEfzpp59UNftYOkPQVQ4dOhTf7OjoaM5VeHMMQYLn5eWFn0WiparpSOZjhCGofH+c4d699ecGcwQinSHg3LlzNFlw2rRpSIZZ1EjMMSQpKYkycJXkFyJihCEbNmz44wz37q2q7MVSkNSQ4uJiX19ffDmSHJMfqzLZEKRYNNcYqGTxOBERagi6zmXLllEp1KZrebIhqSEAWSW14gsWLGAhI0lOTvb09HRzczP2wjF6LVqfd+DAgXl5eSxaWxBqiEajoYc\/gUTnuHYjtSHoRmi2r7Ozs2kDMIzyMzIybty48ZuRc3LRYlKON3\/+\/FpzK12HUENQfLTIJKh97YQMSG0IOHr0KK2mJek2IxWAEjNmzMAvxa+ulcmFUEMePHjg7e2NgkBXbvJYsC4jgyFouejxVwwnZHtoBN0OjV58fHyKiopYtBYh1JCCggJ3d3cUBM4BC3GMQQZDMFaMiIhAEwZkewJWt5mMsvuwSYdQQ9A+0dMIU6ZMYSGOMchgCCgtLaX7Eo6OjjLcDiorK\/Pz88Ovc3JyunbtGovWLoQakp2dTQ9Gq+rxfAtCHkPApk2b0IfgFwUHB0s9br548aK9vT1+1+TJk2vfGJ0QakhaWhqlmzExMSzEMQbZDElPT7fSLimNfLjGBb7MhPZagpC1+BaZUEPQWqAgUPRXrlxhIY4xyGYIBgNLly6lbmTx4sXSTd\/MysqipaFq5W0QHUINoSknDg4OBlbJ5hhANkNAYWEhTYm3sbE5ceIEi4rNqlWr4CGorWN0QqghNMUag3V+M8Q05DQE9VW3h+CECRMEdiPFxcUpKSnJyckG1pTRgfyNJHR1dVXVDFHREWoILWg9aNCgysvhcIQgpyHg\/v37dJUJ3YjAmabIn93d3VHjN27cyELVAwMpkat9UxUrINQQ2tjFx8enls1tNgc01dnZ2QkJCUJyDJkNAampqciK8RshiZCVR4TPXHz48CFdU7a1tTX\/+XiVI8gQ9L90UW\/s2LEsVLdB3pKfn4+a9O67777++utC0hj5DSktLaWNoNDYY+xeo8YCDcH3RP25A9usWbNq\/QQLQYbk5OTQ1DTkWixUJ0EdWrFiBWqbt7d3x44dn3766XranXSE1BL5DQEYLQwePBi\/1M7OrsZZ8QINwaiDlivAd166dImCtRhBhqAn1T2CzEJ1kpCQkKZNm7Zp06Zz585ffvklPRmvZkNAdHQ0DRiGDRtmeNdmIYagA8G7+Ay+c+HChbX1LqE+ggxBqk296pIlS1ioTpKVlXXq1Ck0nLdv3z5y5IhFGPLbb7+NHDkSvxe13\/DCkEIMSU9Pp8lHGJea88SvBSHIENQGaoc2bNjAQnWeuLg4izAEYMhEw0g0c9CARStRoyEY2NCTjKgMq1evZtHajiBD0FP\/cW579z548CAL1XksyJDHjx\/rfruPj091tzsMG4KEavPmzfT8ydChQ4XcM6kdCDJk48aN2uLlz9\/+fyzIEIDmn26PoPmvbhNdw4Yg08bQHO\/iM9Ldp1chNRuCwZnu7Kp5l3uZsSxDQE5ODi0aBObNm4fUi73xJwYMQY9BgxkIhgMRcv+n1iDIkIULF1Lp1MqHyEzD4gxBrvXLL7\/QgATJ0qRJkyrs1VqdIVBr\/PjxNBD19\/dX1Q6vMiDIEJpy0r9\/\/zrVeBjG4gwhYmNjKVlCjZ8yZYr+PNTKhuB037p1S7c+gbu7+\/Xr1+mtukPNhqDtGTNmDApoxIgRLGRp4BB+++23u0aCxtLAFBsLNUSj0Rw4cIBmrUMSLy+vo0eP0lw7pNALFiyYO3fu4cOH8bKsrOzcuXMY2VPvMWjQoJ9\/\/rkONpE1G1JeXk6TcGbNmsVClkZUVFSXLl0+MJJu3bpVt7UnsFBDAGr5oUOHqLsAyLjQS5w5cwZHgXNNXLt2LTAwkFIy4OjoePbs2bqZQdRsCFodukkUFhbGQpZGeHj4q6++2tpI3njjjZ07d7KvqIQ5hqBtnj9\/PobL1RESEsJ+rBJpaWnsQ9WwbNmy6qoy6j19Bh0FRt6ffPJJhw4d2mvp2LHjRx999NVXX40dO9bDw8PGxoa6Dvzr7e2NP5h9Rd2jZkNKS0upvLZv385ClgY9+WAsqMoGllI3x5B9+\/bRHIXqQBbEfqwSCQkJ7EPVgNFCdclhfHw8+5CWr7\/++v3332\/evDntpQpatmzZs2dP9rZ2UnBQUBCcrJu9B1GzITdu3EBhoS82Z\/\/b2oc5hhw8eBB5C3KY6kDSz36sEmjO2YeqASlxdYYkJiayD+nRq1evTp06vfnmm+gz27Zti6bQycnJzc0Ng89Tp07VZTeImg3BSA7n1dbW9vTp0yzEMc+QW7duoVTxDdVhYPxz9+5d9qFqwHiafbQS1f0shub79+9HSrlp0ya0gxiToN9Ax8t+rG5TsyGbN2\/GeUVjc\/HiRRbiWPJInWMUNRuCMSXOK7ICtCssxOGG1BlqMARp6IgRI3BeMXas3Q\/sCwEl4OHhMUALhrlkSMOGDV1cXCho4HIfN8RCqcGQ0tJS1AmcVwzdjF00v\/aRkZHRo0eP7t27f\/HFFxjgYkRLfPXVVwj++9\/\/njFjBvtoJbghFkoNhty7dw9NI86rp6cnn5QF2B21ajBwD54bYqHUYEheXp6zszPOa3VTpjkC4YZYKDUYkpWVRRPdfH190UayKMd4uCEWSg2GXL16le7+GsiwOULghlgoNRiSlJRE55VvimAm3BALpQZDTpw4Qed1\/\/79LMQxCW6IhVKDIQcOHKDzym+omwk3xEKpwZDt27fTea38WDPHKLghFkoNhmD4gZPq5OQkZGIFxwDcEAulBkMCAwNxUj09PWXbn7u2wg2xUGowZNKkSTipo0eP5jdDzIQbYqHUYMjw4cNxUuEJf5LGTLghFkoNhmAEgpM6f\/589ppjKtwQC8WQIQ8fPqSTumzZMhbimAo3xEIxZAg9oQ4iIiJYiGMq3BCL5Pff\/x+8VfSyKcSRfwAAAABJRU5ErkJggg==\" y=\"1\"><\/image> <line fill=\"none\" id=\"svg_2\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"95.96001\" x2=\"157.96001\" y1=\"44\" y2=\"44\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_3\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"156.79999\" x2=\"156.79999\" y1=\"43.65\" y2=\"167.64999\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"&rsquo;Times New Roman&rsquo;, Times, serif\" font-size=\"20\" id=\"svg_4\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"153.79999\" xml:space=\"preserve\" y=\"185.64999\">2<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"&rsquo;Times New Roman&rsquo;, Times, serif\" font-size=\"20\" id=\"svg_5\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"matrix(1.1999149322509766,0,0,1,-15.754146824518102,0) \" x=\"68.79999\" xml:space=\"preserve\" y=\"133.64999\">1<\/text> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> 9","<strong>B.<\/strong> 6","<strong>C.<\/strong> 3","<strong>D.<\/strong> 7"],"correct":"4","level":"3","hint":"<p>S\u1eed d\u1ee5ng s\u1ef1 t\u01b0\u01a1ng giao \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 y = f(x) v&agrave; \u0111\u01b0\u1eddng th\u1eb3ng y = 1.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>D.<\/strong>&nbsp;7<\/span><\/p><p>Ta c&oacute;&nbsp;<span class=\"math-tex\">$f\\Big(f(x)\\Big)=1$<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$f(x)=0$<\/span>&nbsp;ho\u1eb7c&nbsp;<span class=\"math-tex\">$f(x)=a\\space\\space(a<-1)$<\/span>&nbsp;ho\u1eb7c&nbsp;<span class=\"math-tex\">$f(x)=b\\space\\space(1< b <2)$<\/span>.<\/p><p>Ta d\u1ef1a v&agrave;o \u0111\u1ed3 th\u1ecb:<\/p><p>Ph\u01b0\u01a1ng tr&igrave;nh <span class=\"math-tex\">$f(x)=0$<\/span> c&oacute; 3 nghi\u1ec7m.<\/p><p>Ph\u01b0\u01a1ng tr&igrave;nh <span class=\"math-tex\">$f(x)=a$<\/span> c&oacute; 1 nghi\u1ec7m.<\/p><p>Ph\u01b0\u01a1ng tr&igrave;nh <span class=\"math-tex\">$f(x)=b$<\/span> c&oacute; 3 nghi\u1ec7m.<\/p><p>V\u1eady ph\u01b0\u01a1ng tr&igrave;nh <span class=\"math-tex\">$f\\Big(f(x)\\Big)=1$<\/span> c&oacute; 7 nghi\u1ec7m ph&acirc;n bi\u1ec7t.<\/p>","type":"choose","extra_type":"shape1","user_id":"131","test":"0","date":"2024-07-07 05:26:23","option_type":"txt","len":0},{"id":"5462","post_id":"7535","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$f(x)$<\/span>&nbsp;c&oacute; b\u1ea3ng bi\u1ebfn thi&ecirc;n nh\u01b0 sau.&nbsp;S\u1ed1 nghi\u1ec7m thu\u1ed9c \u0111o\u1ea1n&nbsp;<span class=\"math-tex\">$[-\\pi;2\\pi]$<\/span>&nbsp;c\u1ee7a ph\u01b0\u01a1ng tr&igrave;nh&nbsp;<span class=\"math-tex\">$2f(\\sin x)+3=0 $<\/span>&nbsp;l&agrave;:<\/p><p><span class=\"svgedit\"><svg height=\"125\" width=\"300\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"127\" id=\"canvas_background\" width=\"302\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_2\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"140\" id=\"svg_1\" width=\"315.00004\" x=\"-12.50001\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmUAAAEECAIAAADmrdQSAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAADr+SURBVHhe7Z0PdBTlvffn3\/NnLqdRsfRySktbKm3aWNrLLTWaV\/RGaalaVC5wYoMo8XBFqXikxqbiQYuiHNFcG+U0lmtUbBSLcjQW6yuVeoMpkWjQ2CgaDRqMROMbNBCJRuH9MfPsMtlNlmUz2Z2dfD\/ndzj7m9mEzbPPPJ\/nmXnmGe0gAAAAAI4EfAkAAAAcGfgSAAAAODL9fNnaur+2dk9j415EMvHUU\/+vru6jmI0IBAKBCE3U13+8YUNnX98BUuRhX+blbdP1E3T9a6b5M8v6T0TiMM0zdP3rFKb585hdCAQCgQhFzDSMXNKiEKvJkod9aVnzdH0shWHkx\/0MIjacQjxUXKZ5SswuBAKBQIQgTPMXES3mkiUP+5Lz63V9gjNgOt2yLkIkDsP4QWR8eUbMLgQCgUCEIuY47fx40zyLLHnYl0L8t2tU2\/6\/ahMYHM6XR4rrf9UmAAAAIeKpp\/6f284z9l+UwpcpAl8CAEC4gS\/9Ab4EAIBwA1\/6A3wJAADhBr70B\/gSAADCDXzpD\/AlAACEG\/jSH+BLAAAIN\/ClP8CXAIB4Nm\/es2jRGyoBWQ586Q\/wJQAghokT6zVNcl6mcpDlwJf+AF8CAFyEuNWyiqhJtawLNU3j\/DdqB8hy4Et\/gC8BADGMGlULX4aJ7PBle3uvbT8p5Z82b97jbtmwoVPK+237mdbW\/e6WzAJfAgBigC9DRhb4cvLkBs5\/O3ZsnW1v1LTjSEjOlpvz819kbIFpTnMfRZZZ4MtsZ+nS1srKdpUA4AfwZcgIui87Oz\/j\/EaVHDzI2EJnbfhTu7v7pk17SdN0qo40+lS7M0d6fEk9g\/Hjt3J+vRB3JWjc6W1FRc1C3Mb5itLSN9VWMAg9PZ9LuU7TDCnXq01gcKh2uaFyMDjwZcrU139MjZhKAkOgfdnV1UfDx4qKXSo\/5Mv\/ovpHtZBekzBM80yygrsrs6TBl3l52wwjn\/oKzqNJv0N9BdMssO3NancE236MtnN+HQ3HaVDufI\/z1q17X+0GERob91rWhc68jEWmeQ7VK\/gyMVVVuxm7TIjbpXxUynssa5ZtP6P2gYGAL1PGtp+2rLkqCQyB9mV1dQe1+yo5eLC39wtdH6dpx6g8SAy3Lzdu\/NA0T586dbub0pBIiHJNy6Gj0X3SN9HR8akQd5BTY+xIHQ5q5mikrnIQBzkAvkzMhg2duv4tISpUfvDg+vUf6Pq3c3K2YKw5GPBlytj2U5Y1WyWBIdC+JEHSEFMlBw+SBjSNWdYMlQeJ4fYljRELC5Uso1BTRbqkoM4+pVLebxh59I26e73QlyjlwyoBccCXR4SxqzXtuJjpddRp0\/XjV69+V+WgP\/BlysCXQ2XSpAZNMwJyAjaGI\/qS+uA0zks+vNqjjrxpTqPeg8oj0O8U4k5NszTNlnKNYeSuXbtb7YuD86XxvwG4wJeJcbuqjF2p8gjjx2\/VNF3KB1UO+gNfpsxR+XLlynfoELasc03zF5yXjR1bN+CklmXLdgqxmsYejF3KeWle3ja1I2myyZdS3keVjwZVKncIyLmgI\/py6dJWOnCSD10f09Pzufuz1CrZ9t\/c1\/EwtoCKhUjck6DSwynZwYAvEyPlvU753K\/yCGVlb9F20zxH5aA\/8GXKJO\/LxYtbdP14MiUdv4yVOO0n1cnp3uaOhgr0CzXtOKrJ3d2Hzlm2tHxiWUXe6wvJkE2+tKxZVBArVryt8oMHCwoaZ8x4RSUZJZnxZXV1B43\/kozaWnWnKUFdhHHj\/qGSODZu\/NAwvu82Wx0dn6qtcZAvE+wd4cCXiWHscqd8HlV5hFWr2mi7po1WOegPfJkySfqypqbTNAu9M2lXr37XsmZQsRtGLo073Y1C3GKap5SXH546SpA4yZc0klF5EgTalyQJ0zxj0qQGek3dAWd6C48OKKn1N83TSC1umlmG9frltGkvxTdVURoaunX9W86FTBpirnR7T\/EI8XvvxWDgBb5MAPXNLet8Kp\/x47eqTREqK9tpO9HYuFdtAh7gy5RJ0pfU8A7Y5LrKJEfSwMO2awxjyoBnaDdt6qJGO\/kLVYH2pWkW0N8s5Z\/oNec3G0YeZe4uwrYfTzDqSjPD6svm5n2mebpK4uD8Buo3UGkcarc0w7YfUzs8UHPG2CUBOXcdQODLBPT0fG6aZ1L5LFiwQ22KQL1Vp9Zp8+a9pjYBD\/DlEWlq2jtxYn18UINvmqfGbHQjek85jQ04v27AZs254n7o9gHDmEQvaMihdsTB2FUx484EBNqXZALD+OHYsXVSPizEaho46\/oJpE\/644WolPKe4AhgWH1JCHH39OkvqySCc6N9NfUq6uo+olSIP1CPSte\/Qkept2RoIE6ypGJUeYhobd2\/cuU7SUZFxa7oJeEY4MsEOL4spPJJ4MuZMwNxWSRowJdHhPxiWUXxQUNDXR8Xs9ENamzdU2XUskl5r\/t74pk9+5+6fjyVP9VetWkgbPuZ3NznVXIkgn79kv5m2\/6r1\/80pqShOg25VB4MhtuX7e29lnUBdZpcEdK\/pApq5XX9a96Ffuhj0OGpaZYQd1ER0Xs2b97D2ELqeah3hAvqhGral5KP5ct3qp\/sD3yZgGR8Scep2gScEqMGvbPzM9veQIXD2Hw6fmnLYNdKQDzJnI91fBk7B82LECvd+jl6dL9Zol5s+9nkxxLZNN8nyAy3L4nVq99lbDFZk7FLLeuXNKwU4jZ3ZOllypQXnNVqLF0fQ8NxXf+GEHcGZFV636EDZv36D5KMmprOwS5UwJcJcHw5jcpn4sR6tSnCmjXvOc2RVlKC87GHEWK1af7cNH+m6+M1LUfXv2yap5vmdMYuU+8ARyIZX7oTdlQShzPBZZphnEj1k1pCUp3a0R8aSyT\/QG\/40h\/S4EuXZct2TpiwderU7W1tiRRIHf9JkxrInQ0N3WoTGBz4MgF9fQcsq4jKh0ZLalOEyPxYPawdMpApkvEl1UzOr48fMxDUyZPyHtP8KRnOME6iOmoY\/x7\/zs2b9xhGXvI32sGX\/pA2X4LhAL5MDOe\/dcrn0Mw7L9R7O2RL\/RsqB8Ankpwfu3LlO4zNJzuqPALVVV3\/ypo179Hr5uZ9zihTp0E\/DTrdN7hwfh0NP1SSBPClP8CXWQ18mRjbfobKh\/MVKo9QUNBI2xkrUTkAPpGkLwnbfpzzm6urO+g1jTjnzXuNsass61zvMo3UsTPNXxwaZBo\/kPLeUaNqbfsv9Ps5Lz2qi8rwpT\/Al9lIZ+dn1N9sbd1PBxi1+0LcQq9pC25UjYH675p2nGmeqfIIUj7q3ML0rMoB8InkfUnk5GwxjFxd\/5auj9X1CQMu0Ogs8fOYYXxX00ZTZdb1cVI+pPYlDXzpD\/BlNmJZc0zzDNM8Xde\/omnH0L+meRpt4fxa9Q4QgQbfmmbFzIywrLmGMSVok9VBCDgqXxJtbftpiLlu3fuJJ3ZQV3jDhk56W2qVFr70B\/gShBtqhhi73LLOX7WqjbrqjY17pbzfNE+tr\/9YvQMA\/5g6dXsAH60BX\/oDfAlCT0\/P59OmvWRZFxvG992WIXFfHoCU6es7EMDbVeFLf4AvAQAg3MCX\/gBfAgBAuIEv\/QG+BACAcANf+gN8CQAA4Qa+9Af4EgAAwg186Q\/wJQAAhBv40h\/gSwAACDfwpT\/AlwAAEG7gS3+ALwEAINzAl\/4AXwIAQLiBL\/0BvgQAgHADX\/oDfAkAAOEGvvQH+BIAAMINfOkP8CUAAISbZHz5VF\/fAUTi8Pjy2ZhdCAQCgQhBJPDlSsOYZBjfs6y5QqxCJA7T\/A8qK6e4Lo7ZhUAgEIgQBOfXO+18nmUVkSUP+5Kx+bo+lsIwTnKNikgQhvFdt7hM85SYXQgEAoEIQZjmOREtnkiW9PpycWQHfHnkgC8RCAQi3OHxZT5Zst\/1S9P8D2r9OV+ek7MFkTgsay6VFYUQt8TsQiAQCEQIwrZrnHb+\/zBWQpYccL4P5sceGcyPBQCAcIP7SfwBvgQAgHADX\/oDfAkAAOEGvvQH+BIAAMINfOkP8CUAAIQb+NIf4EsAAAg38KU\/wJcAABBuguvLzs7Purr6VBJ44EsAQAxNTXuLiponTNg6eXJDZWW72gqyloD6sqPjU8uaYVkX9PR8rjYFG\/gSAOBl6dJWw\/ixlA9VV3fMmPGKYfxEiHK1D2QnAfXl2rW7NS3HNAsGG2LS9vXrP1DJ0dDe3kt\/s0r8A74Ew0Rz8z4KlWSCvr4Dtv00Y5cKcRu1+JxfK8StjY171W4wEOXlu3R9nJTrVH7wYENDt7P+1+1UnmpT8Nixo4c+p0pAHJn3ZXd3X1PTXvqevNXItjdqmibEHSrvT0vLJ5Y1Nzf3eZUfDfQfmeaZM2e+onKfgC+zEep1jRv3D8uabRi5Tlt2F1VFtS8wCPFHKf+skrTjyPIZXf96Xd1H7pbe3i8Yu4wOora2\/e4WEA81ULr+1Rg1SvmgprGSktdUHjykfEDKe1QC4siwL9ete9+yzqX\/i\/qtUj6kth6qbTM07ZjoIerFOVV7cU7OFpUfPdQ1ZqxkxYq3Ve4H8GXW4fS6LqBhU01NJ6XUkbLtJwzjJ9XVHe4bAoIQdw7WcUwDS5a0aJqUslrlDrW1ezTtS1L+j8pBf5Yv36lpBudLVR6hsHC7Mwy4XeXBg75Tzm9WCYgjk77s7PzMNM9ibDF9CNM8h3pe7nkn0qRT25a7b4tBiFsYu3yI1zVnz\/6nrn\/bbSh9Ab7MOqT8E5kgZhYGYwsN40eZPf8ZQ2Z9KcQqTbPmzYsdElnWeaTMAA7HgwBZh7wYP1BbufId2m6ap6k8eMCXicmkL237Sao95eW76L+gF7o+prv70NVK295MhyJ1bN23edm0qcsw8ki0Kk+Vvr4DVC04v0nlQwa+zC66uvo07RjLmqXyCLb9F2rQ8vK2qTwAZNaXpnkKjYjWrt2t8ghU4emYHTWqVuXAA2NXOL48fPHSZfXqd2k7lafKgwd8mZiM+ZKMZVkXkiMbGrqpO2\/bT1dU7HJ3cX6daRbES9EZj54uxO9VPjToPzWM3GXLdqp8aMCX2YXbV5PyPpVHKCpqpu2MLVJ5AMigL+kg1TSb2vf4MzHUPhxq+MVdKgceqB9GhTNu3D9UHsGZxniIdeveV5sCBnyZmIz5sq1tv2FMMYx\/i581YJo\/ja9qxNlnN1Hff9GiN1Q+NHp7v3AuX5XEXJNPDfgyu2BsMTVbtv24yiM4V5406kipPABk0JeVle1O8y7jZ8MKsZp2cH6tykEEak9M8ywqnOnTX1abIpAmnfLUfJ9v6BfwZWIy5sv6+o91\/eumeU7MlUintk1TSX+EuE3Xv+3jHZlSPkq\/kD6JyofACPcldXoKC7cnGdSOtLR8on4yEzhdpXOp2Ro9OnbWWHn5LqdB091LA0Egg76cPLnBKQ07vjSE+CPtsKyLVA4iOC3Yz6hwEvhy2rSX1KaAAV8mJgO+JOHR4VdRQQ2TydiV9NqrQEpnzBi482UYPxZilUoGYtOmrpKS16qrO6JDRuogL1iwY7B7xeiddMgvXPi6yofACPelbW82zcKk44zBvuL04JzYP42araVLW9WmCJERlTbg5fNhhfoQVCHjg\/MbOf9dzEY3hrvbMX78VqcwEvhyrsrTC\/V4yD0xpZEg0jkvyfHldCqcBL48++wmtSlDtLbujykiN6iB5fw3MRvd2LGjR\/3wCCbdvqyr+0jXv6lpozTtX5yaw53XA8\/u8eJMmtUTnIy17Scs63wpqw1jEvWSaAv9CZwvc7acGD\/Bz4U+jC8XRHE+lprU5CPaockIji8LqPLFX71es+Y9p1pqxcWvqk3pwrLmaZocKCwnYjYeCs5L1Q8PD+PG\/cMpjMD50hn4xpZGgqCWIW1VzvHlLw6Vmv202hShqkpdv8z4LZiMlcQUUSTYYJUtUBf1M0UGxpc0CqR6Q0ca1Zv8\/BfpdTJXv3NyttB32dHxqco9UAWV8n4p17sp1UVyMH27tr2RUiFupxrAeZm7NwbTPMs0f6aSIQBfZhGOL0+h6pfAl0VFzWpTumhu3ldevis+OL+e8+tiNrox3MMmOjydwrDjB7JC\/IF2ZOp8LI0vY4oicQx4J\/fwQY0pFY6UD6o8QmR+rB4\/mTHN0GAxpojc4Pxmxn4ds9ENrOhEZOz6pa6fQMNKlSQBaU\/XvzHg8niVle2c36CSgwcrKnbp+vGGcbKbMjZf18dI+aibxkAepZGuSoYAfJlFOL48ldqt+NMV0fOxg52QSD8ZvH4ZOX8oNm78UG2KQO0D7cB8nwFxblolX65ReYQVK96m7br+HZUHD1y\/TExmfEn\/K1Wbweb1DAj1snX92wP6Usp1ZWVvqeTgwYULX6cjnHpJbkrddhrCUofUTWMQ4hb6JIPtTR74Movo6fncvcIUf8bMvaOc2Lx5j9qUaTJ7\/6WmHUdHU\/wZICFWUikJUaly4MGdJxV\/tnzKlBdoO2NXqDx4wJeJyYwvC9W6UCtVngSMXWUY342\/jkLU1X3k3W7bj9Mvt+0nVJ4Qtyc49NMj8GV2wdglTiXZoPIIS5e20nZNO0blASCzvjTNn1PLH794JGOXUzFNmLBV5cAD9b8N40TDmBTTEZfyz5pmjBnznMqDB3yZmMz4UspH6GA7qjVgOf+trn9nQF\/GYFlF9Mujqx8kxvXlgMPWowK+zC6oXaDvXcp7VR7BXa+ARp8qDwCZ9aVTUGZ+\/osqj2AY\/0b9jWSOx5GJM5RkMQtFWda5pnnq0M9mDR\/wZWIy40vOr6fG6qimVHD+O12fcESxdXR8SoMDw8hT+ZHg\/Cbq8Q197hx8mV04V+aYZc1TeQTbfkLT9OjcsSCQWV86S9KMpqNP5Q4zZrxCshzKMw9CD\/UkpHzANE8ZP34rtVpU3xhbzFhJZu88PiLwZWIy40vLmq1px1VVxS5KmQAhVuv6uCP6sqCgkcYH3uk\/9CPxt6VHYewKXR+rkiEAX2YdjF2laVbMrD\/Grtb1r1UH6RElmfUlsXDh67r+TbIjdUZpbESFY5o\/4\/y3Pq4cElacqYjLTXM6tTOFhdvV1gADXyYmM740jB+S\/I7qqmFu7vOaZg54P4mUD0n5sPvanb8zderhqrl0aWuC5sY0zyB5q2QIwJdZx\/r1H+j6tzi\/UeUHD5aWvkmyzOxaCvEIcXf8yt1pZs2a9+jIsqzzLetczpdSEUGWocS5MQ+PaRuUDPiyvb2X+vWmeZbKk2PHjh5NE14Rutj2X2lAqWl2X98BCucxQ2Z09QNSMufL4mfDu1BnWdOO9eVhvPBlNkIVgzr+nN9AQpLyXsu6OICDgIaGbjzyHqSHpqa9ab5XNbvIgC\/Hjq0jvwnxR5UnDY0FGbtaJRGcB01I236M5CfEraNHbzHNU6jto7S7u4+xyxM8m2nevNfog8Q\/qygF4EsAAAg3GfAl57\/TNGPDhqN+VrOUVbp+fMwpWZKibT9Nu6R8cMqUF0iTmzZ1CbFaynuk\/FPih5kI8XvD+JEv6yLClwAAEG7S7cu+vgOkKMPIV\/nRUFb2lqYxv5b2J9Ga5jTOV6h8aMCXAAAQbtLky+LiVxm7urKyvbZ2j65\/OTVL0diRscs5X6byoVFT06nr32xu3qfyoQFfAgBAuEmTL53lrXVyiXPn1jHxz1FKktbW\/YZxUpJrESSgq6vPss6TslrlQwa+BACAcJM2X55Kftq0qYv+m8GWPk8SKdeb5ulDXMHOtv9qGD8a8O6U1IAvAQAg3KTJlwsXvi5EhRCrbPupId651dv7hZRrhnIH9\/LlOy2ruLbWzwW14UsAAAg36Z7v4wvd3X2c35zaWs9NTXvpT\/V9ARf4EgAAwk1W+pLo6zuQ2tlUGp4ecVG9FIAvAQAg3GSrL4MGfAkAAOEGvvQH+BIAAMINfOkP8CUAAIQb+NIf4EsAAAg38KU\/wJcAABBu4Et\/gC8BACDcwJf+AF8CAEC4gS\/9Ab4EAGQ7O3b0uM8nTyGqqzsqK9tTiyVLWhYs2JFaFBQ0Tp7ckFqMGlVr238\/mthgGCebZgFjl1BxwZcpMky+7Oz8rKPj09SiuXlfU9Pe1GLz5j2bNnWlP+iQW7t2d2pRXr5r1aq21KKs7K3S0jdTCDrO5817LbUoLn51+vSXUwtqI8aOrUt\/UPW27Y2pxmNSVqca9whxV6pxO+crUo2lnJemFoxdTq1q+sOyLnDbIoTvYZrn6PpYCveRlP18aZrTTfM0IW7Lz38xPnJyttj20ymElI\/EHQzpCCHuFKI8teD8Os5\/kyCo+HT92xRUpjG7aOTO2PzUwrIuGkLMs6wLU425GYpfDiGomUg55gwhZqcas7yHIgKBCHh4fJlHljzsS8au0vWvOjtOivkZRHwYxnfdcjTNU2J2IRAIRJYE9ZUvTi2c8fQVqYUztLg21VghxC2pxu+dcVTycYthnGgYk6iTTZb0+nJ+RKTw5ZFj2HwZM5Q5qogZfh1VeMea6Qw66mIH2UnHJYwtSDUuZWxhqrFoCLE41bia8xvTH0KsEuLu1ELK+6R8NLWw7SdHjapNLXJzn5827aXUYuHC15cv35larFv3fm3tnvTHEJ91CBKQYL7PSsP4N8P4nmXNFeLWgeIuKdekFA\/FHAzpCdv+W9zF22QjL29bzOnomGCsxDRPc05fV8TsKil5bfHiltRi6dLWZct2phbl5bsqKlKMtWt3V1d3pD82bvww5air+6i+\/uPUYseOnpaWT1ILap5Si+FY9x8AMHxgfqw\/YH4sAACEG\/jSH+BLAAAIN\/ClP8CXAAAQbuBLf4AvAQAg3MCX\/gBfAgBAuIEv\/QG+BACAcANf+gN8CQAA4Qa+9Af4EgAAwg186Q\/wJQAAhBv40h\/gSwAACDfwpT\/AlwAAkDa6u\/sqKnapJF3Al\/7giy\/7+g6oVwAAAAZnyZIWTfuX9vZelacF+NIfhu7L3t4vGPt1S8snKgcAADAICxe+rmly06YulacF+NIfhu7L7u4+0zxl0aI3VA4AAGAQ4MssBr4EAIC0cbS+bG\/vte3HhLhz\/Pit1NiqrXH09n5h238X4g76N\/5t8KU\/pN+XfX0Hli5tzcvbtnhxS4Kvn6io2JWf\/2Jx8at44CIAIBwclS+F+L2uf9M0zzCMH2uaqevfEqKiqWmv2u1Av4rzm+g9nF8j5Z+EWGlZ82x7s9rtAF\/6Q5p9WVf3kWkWahrXNKFphqYda9vPxliThEo1wDTP0rQc0zzTNP9D18cUFm5XuwEAIGtJ0pfUDDrmK1b5wYPLlu3U9QkatZvGyW1t+92NtbV7DOOHnP+GxpfuFqKz8zPLOm\/KlBdUDl\/6RTp9uWRJi2GcKOU6qjFlZW\/Zdo2uf4O+fcuauWNHj3rTwYNSPmAYeeTR6Mb16z\/g\/LejRtW6KQAAZClJ+pJaSJJlc\/M+lTtUVe02jJNImab5846OT+mXGEa+EH\/s6flcvSMCKZMGnSqBL\/0inb5kbFFJyWsqcWho6DbNAqfHlE8dJeoiSXm\/Yfyovv5j9Y4I7e29lnUBvUflAAAQYMhh5LP4mDy5gXy5dGlrzHaKurqP1A8fPGjbG8iOKvFQU9PpDDM0xhYzdqVlFZEa1b7+CFEZ\/Q3wpT+kzZdUGzi\/WSUeNm\/eo+vjna\/\/kvLyXbr+VfpX7esPDU+9ZxgAACCw2PZmXR87UByvabqufyVuO8VX16\/\/wP1xIW4d7Ca98eO3UoNJGEZua6s6MRvP9OkvS\/mA+xq+9IfkfUljQc6vIavFxXxd\/7JlnR+3neLSDRs63R+X8k+TJjW4r2MoKGikDpdTh06gXpXaGgeZVco1KgEAgABDAwkaRJaVvRUTtv2MpompU7fHbKfwDhU4\/12CNQ2EuIt0SeqdMeMVtSkOGsOQdN3X8KU\/JO\/Lnp7P6TseM+a5mBg1qtYwviflfTHbKXJzn1c\/fOg\/unb58p0qiUPKezXNJGuSO9WmOJqb93F+g0oAACALSfL6pRAVCcaOtv2sptk0xNT1f40OSWOYPLlBymr3NXzpD2k7HyvEqtLSN1USR1\/fAV3\/qvP1j1+1qk1t7Q8NcKPdJQAAyEaS9KVtP0WSU0l\/amo6DSNv4sR6wziZmkzLOnfAO+44v2nNmvfc1\/ClP6TNl9Onv2zbG1XSH\/qyOS+1rJmG8SNSpmmeMeCJiJUr37Htx1QCAABZSJK+XLHibc5vjp\/46syRPJPz63t7v5g37zV3mMHYlTGzfqqqdjP2K5XAl36RNl+6txOppD+2\/TdNO3b9+g8odP2bTo\/pQu\/tRC6MXZVghAoAAMEnSV86Dead0ROqLpWV7YZxohC3RAeUNIrQ9bGaZlAjXF3d4W4sLn5V17\/svbQJX\/pD2nxJSLleyge8PSb6WSkfNIwfL17c4m4pLNyu6992ekwl0cnQzr1EN1MfCgv9AACymiR96SLEXYwtEKKcvEYvTPMs2348phksL99FYwlNy9G0L1Fbahg\/NIyfxEyuhC\/9IZ2+JDi\/jvNrVq9+l7pCU6a8YJo\/Nc1TN278UO12oF2GMYWqlKZxyzqXxpo0+mRsvtoNAABZy1H5kiA7jh69hXSWYL6ky+TJDfQ2Glyq3AN86Q9p9mVv7xdFRc1C\/J7zG4T4w9lnNw14qZKqyOzZ\/xTibs6XUd+qoKAxuv4TAABkL4sXH3r+ZZofgAhf+oNfvhxsUisAwYc6bePHbx1snRQAfISqWYKbJocJ+NIfhu7Lvr4D48b9g\/5VOQBZRW3tHss6T9ePr6lRa2sAEDLgS38Yui8ByEYKC7dbVjFjCxi7Wte\/omnHwZcgrMCX\/gBfAmAY34MvQYiBL\/0BvgQAvgThBr70B\/gSAPgShBv40h\/gSwDgSxBu4Et\/gC8BgC9BuIEv\/QG+BAC+BOEGvvQH+BIA+BKEG\/jSH+BLkKX09R2oqtq9Zs17ScbmzXvUT8YBX4JwA1\/6A3wJspTS0jc1TT+aODb+aYIu8CUIN\/ClP8CXIEuh8SWNGisr25OMBE+EgC9Beujs\/Kys7C2VpBH40h\/gSwDgSzCskCarqnbb9l8Yu\/Tss5vU1jQCX\/oDfAkAfAmGie7uvpycLYxdZVlzLasoP\/\/FjDyaAr70B\/gSAPgS+Etb2\/7Zs\/8p5f2MzXcbWMuaJeUjg11BH27gS3+AL8GIpbf3C4qurj5dH6dpx5SX73K34OF0IDWo5nR2fmbbz1jWHLddjQa5U70pE8CX\/gBfgpFJU9NeyzrXsmYYxg81LYd8aRhT3C0ZucIEshoaUI4b9w8hVlnWxW6L6g3Ob2pu3qfemgngS38IrC87Oj6trd1DnX2VAwBAwGhv762o2CXlI5b1S7chjQ\/Ol2a8HYMv\/SGwvhSinLFLpKzO1Bl\/AAAYDOrQ2\/aTjF2RwJQU1IgF4bo4fOkPwfRlc\/M+y5rlfjDOb0xw5xwAAKSZ+vqPGStxG6gEQe8pL9+lfiajZJ8vm5r2jhnznEqOhqlTt9NfqxK\/Cez4MvrBnJizcOHrmIUBAAgIxcWvWtZsTxsVH3OKiprVuzNNsHy5ZEmLlA8mmCbQ0NDN2ILVq99V+dGwceOH1E9ZseJtlftKYH3Z2LhXyvWWVeR+PMu6UMo\/d3R8qnYDAEBGkXJNpHUaIMaOrVPvCwBB8WV3dx\/9j6Z55pQpL9B\/KkR5\/DCIPqth5NEwUeVHD\/nYNM9IsGB0ygTWlwSVpHOr7yXuJ3SK9w6cmwUAZJy2tv1SPqLr3zKMXGdatWqjnJgj5QOBmqsYFF8uWLBD03hBQSMVkKYJKr6Wlk\/Uvgiclwpx9xBPJ9r2Xy1rnkr8I8i+dFm7djdjC90PScHYZRUVgbgkAAAYmdTUdDK22LJmm+ZPdX2caZ4WbaAohKgM2sT+oPjSss7TtJyens+lfNAwTqSSUjsi5Oe\/aBg\/pmGoylOlsXGvYXzPtp9RuU8E35dEayt15e6LzgCiamrbT+JWEwBAmqGWfMyY5zwnvWZa1vmm+YtISrK8talpr3p3YAiEL6kd1zTNNM9SeRydnZ8Zxsmcr1D50JDyIerOqMQnssKXLpMmNVjWhe6npQhmvQShhDpnuHYOmpv3CVEebYIsa44Qt7e17ef8ZncLY0syuy7BYATCl4WF28mXCXRYUbFL0760alWbyodGe3uvrn992bKdKveDLPJlX98BKknOl7ofmIKxK0tKXlO7ARgenLNHVYxdbdtP46zGyIQan6lTtzP2q2jjY1kXFRQ0uvVh5cp3LGsWNUcbNgR0CeJA+FLKdeTLBKYR4g7DmKISP3Dmi\/p5FTOLfOlSX\/8x9ek882bn5uVtQ98fDB9Ll7ZGKtssal7Wrt2tdoCRQUNDt5QPeq4HUTVYFXNyi9rPRYveUEnwyLAvW1v3t7R8wvlvSZfTpr1Erzs7P1P7POj6N6lkVTIQS5a00Ae27Y00dnS3TJxYTw4b7MYdISo07Vj6\/lQ+ZLLOlwT16caP3+p+bCeo+t6Bjj8YJuhgd57HFK1vF86c+YraB8LO+vUfMLbI8+1fMGHC1vj5KDQAHeKMzmElk76k\/5uxxYwtdB5rIGlgTq\/piNqxo0e9w6GqajeNPkeP3qLy\/rS17RdipZQPl5S8JsTdpllQWdnO+fW2vXn69JcNI5fzm9RbPdj2X+l\/XLy4ReVDJht96bJw4euM\/dr98BSMXU3jALUPAF9xZpyt86x8ViTlA7i1KdyQFG37cee5laqRodbSr4traSYQ52MN40RdH0\/mU3l\/Jk1q0DQ2e\/Y\/Vd4fIW4pLn7VfU0dE8P4rmHkzZhxqN\/K2K+caURnxndYaPSpaVZu7vMqHzLZ60uCxvTOAwEOz5udMuUFDDRHOFQB6uo+KixM\/XbnwViwYAdjC6L1jXrJq1e\/i\/oWSqqrO6gLHmlYKH4p5UPZu5Z15n1JMtM0YVnnqTwO296gaTkDTs9xLsL9t0qcX6XrJ9CYsrHx0DlxGu9bVvGAp2RLS990rpj69qdltS8J6qzk5W2j4nL\/Csu6QIjbfDxfDbKLhQtfpyOLTDZMN+nW1u4R4u5IZTtU36S8D5fPwwR1gGz7GfJK9Ftm7IqysreCfLr1iGTelzSUIXUJcZfK45DyQU07dsB17MaOrYsOLgnnvhRuWXNUPjgrV77j+LJG5UMm233pQoN47xUmzq9dtaotq+s3OCqoozl16nbOb3QGf3Pd8zTDBNWr8eO39l9DY8kwLVcJ0syGDZ1C\/MFzyqqYukchuG8t876kRpnUNW\/eoPczkEo17bgBz3dTF8bbmtv20\/SrpHxE5YMT8eUGlQ+ZcPiSaG7ex\/ky929xYm5+\/otqHwgvXV19tv2k85Betfi1lH9OQ1fJme63wlPfLqBeLLpoWY1zvv3w6psUJSWvheN8e+Z9aRgnadoxCY6QBOPLGEzzHE0zk5k+EPHlEyofMqHxJdHZ+ZmzauDhhwZI+QDOlYWVZct2Snmf97wZhRC\/J4Oqdwwz7e29tv0sY\/Mj\/\/ssIVauWfOe2g2yB+eOkfsta46nIt1FjlG7s58M+5JG6Jo22jDyVT4QUj462PVLLzt29JACY37VgHenELh+eUQqK9u987+pfqT2WBgQTMhSy5fv7D+2i37Xl6R\/zqqzvvFizxm8eVOnbk+bs8EQoeHjqlVt\/e8YuXjixHq1Oyxk2Jd0xGraKOpaqnwgxo6t0zSe4ISty9lnN5ECGVuicucrpG6ySvqTl7dN0yz6V+VDJny+JKjRFOI29++ioK9p\/PitOFeW7bS27rftZzj\/jWe1isNB3\/K6de+rt6aXlpZPpHzEo8w5QpQHc100EIPz0MDobMH\/pH5YdXVH+NqKDPsyP\/9FctxgVnNxFsPTJ0zYqvIIkWdzn+9+K1JWkS+l\/LO7l6ARkpRrVNIf235S04SPC0mE0peEc272Mcu6yP3rnBvmHq6r+0jtBtkDdR\/piKDDmbFLI99mfMwa7EbntFFU1MzYldGPxNhVM2e+MvQHLYBhorx8F+fXRb8vy5pn2xsGuzkw28mwL517RY58XlTXvyLEHSqJ4NxDqWvasW7qXLwkX653U+pEG0Zube3Aj7oU4k5Ny3FvO\/GFsPrSpazsLe81CWrOqHjVPpAN0IHgnHpN\/CD7\/5SyOghjgp6ez6kP7flgs6S8X+0DgYGqim0\/ZVkXRL8pxhZSn0ztDiMZ9iV1HklyR1xnh2xkmqepJAKN93X9BM5LR42q5fy31C217cdN82e2\/TfSMOfLEiwh4bT+c1XiB+H2JeHcMHe7+zc6cVH8iB8EloKCxgHPvnqD8xtiltbKIDSgzM9\/0TsU5rxsyRLfFuQCQ6SqarezyEm0B3YBdbZCf8d2hn1pGCfp+pgjdmnJfDQKHfCyyuTJDTTQjM7epPfk5GyZPv1lNx0QerOuj6Uxk8r9IPS+JHp7v5DyUc9iZjQcuSf+sd4gmDiXBtUXFx80MgjgaXbn7qabvcNi264J67m+bKGrq48aWM81mllUeaZNe0ntDjWZ9GVn52eaZglRofLBaW\/vNYwp9JFUPjSkfNA0z1CJT4wEXxKkzNLSNz33mM+i8T0eNJEV0EFEX5Zh5FvWjMjXdzi8634ECvrYU6a84Fl9dDZjS8J90i\/INDbudR5defhchZRrRs6EhnT7koqbsUtIVzSmHDPmOU0bvXnzwJcYYxg7ts4wTh76woNNTXt1\/QTb\/ovKfWKE+NKlpqZTiFuivX76QvPytmFGRsDJzX2evjJd\/4Zh5LpfXCSKbHtjEC5bJqCs7C3Or\/VMnZ03evQW3G2STqivPHPmKzH3mFGlCnjN8Zd0+3L27H9qmtS0HHrtLCZyIX0N7q4jwtivvNNfU8O2\/2aav1CJf4woXxJ0kEj5sPsnu0GjdrUPBAzqykQXazXNn+r6t6PfGkWCpSgDhfO46fu9n5zzGzDvLG04j670Fv6NI7C\/km5fbtz4oa5\/hw5RGuFZ1lz679WOJKiu7jCM7w\/2oJJkKC190zRPH46Hd480XxKkTGe92cPrwnC+DMuyBI2qqt2c3xT9juj7EuKOaMp5aXbN0XDuNvEOcS7LydmSvc+7yAqKi1917taNDu4vHjPmufbIk4ZHFOn2JUEFTV0V2348hSXWamv3WFbxUVk2CrULlnXBMD28ewT60sWZkXGj+7c7UTRt2kvJnzMAwwd9C1TbPR2aWZyX1dR0dnZ+xvlS2sLYJdnYv3HuNrkr5hJaff3HajfwD2qibftZz3yrQ\/MVRvLF4wz4cohQf5l6Nyo5GqgdH75vesT6kmhr2+8s1R29QfOX1H5hvdmM4ywCfHjJFSnvj569pK+M3EljtSy9+NTV1Tdz5iuWNS\/61zF2RWnpm2o38APqS3F+jUeWc2z7qRE+Hz77fBlMRrIvCWp2Cwu3M\/YrtxAohLgF681mirq6j5wLluoEGo0jaZQQc7UpBAMy6v5612ukv1fKR3BFc+hQVcnJ2ULVJlq2bu9K7R7BwJf+MMJ96eJMfr7Kc51jLnX5R9T0uSCwbt373tv8GZufYOGOEDBpUkP\/JWYuIY+i1qUMjSCFuDVanjS+JBcM9uCKkQZ86Q\/wpUv7oWczbXCLwoki6vLjcmZ6IElMnFjvHRZQwzfYkpBhYsWKt71zmizrIqqEuNvkaKHj1HmC9+XRkqS6NH36yzh+o8CX\/gBfeqFjzPvcfM5vGI45ycBLa+t+KaujZe48ePmxkdPS0QDIeURGdFkDqnW\/w7IGyVNf\/3H\/23VmkQKCsz5iQIAv\/QG+jGHz5j2kSbdMKBgryc9\/Ue0DfkPdEcaWeC5YLigre2ukDQtoeL1o0RuWdWG01lnWxXQ84tzsEXEW7fI+unLuhAlbMUCPB770B\/gyHudxhn\/2TNH8pZSPoMfqLyTFs89u8sy0msX5jSN5XEUVTMr7vLdACFGB0xuD0d3d5zywLzq5nYprZXn5LrUb9Ae+9Af4cjCcef+Hl2jn\/Dos0e4XPT2f2\/ZGjxtmC7EaUzOIadNe8iwITjFv2bKduA4Xw9q1u\/s\/DPXQyohY\/CEB8KU\/wJcJcG7kWuaWDwVVNZKo2gdSpa1tP42coqVKjV1e3jace4xCY0rqPXjK5wIpq3CO0cUZVj7pPG9flQ\/nv8ENrEcEvvQH+DIxznSMKu+aLLb9BEZCKbN8+U7vPEZq7KqrO9Q+EMEZfz\/lnTBMhVZW9tYI71XQsNK5bzV631exlPdggZFkgC\/9Ab48ItR4FRe\/6pmOMZuxq0fC3Q7+Qm39mDHPeWe1CHErrgongAaa3tMbjh7Wjdhzs\/n5LzoPuoiWRtHixS04U50k8KU\/wJdJsmpVG+e\/88zkvGLGjFdwuCZJXd1HzqT\/6DD9Qtv+C0YGR6S11V2yMbp+3izOb4qZ1VJVtXvixPoQDz2prY8+psYNIf44ch5d6QvwpT\/Al8nT3d0n5RrPlLzZtv0Uzs0eERpEcn5dpNAoLlqypEXtA0mwYsXbzvSW6HnIX0af20qadFq84rKyt9w3hwnqjzon8L3npecXFm5Xu0HSwJf+AF8eFXQAU1\/eM2+W+vs3Z9eDpdLM1Knb6RCNFNehm\/Hp0FX7QNI0Ne2Vcp1HmbOFWFVf\/3FOzhZ3mjEVckVFqO6moGPNOSdxeOV9Ie6oru7A1LAUgC\/9Ab5MAWcZs2vccnPiopkzX8FhHENXVx8dg54mvkjKP43Mpw\/6hfPc1qs8FY9ccl40Zezqxsa96q1ZzrJlNKz8tedPm2\/bj2OScMrAl\/4AX6ZGR8enzt3l\/WTgniKLQh3kEXtPGDXczrMqo3dYzi0peQ2Xe4cOdTgizzaZqesnGMakSAkfCs5L29qy+zknztzgx723PlM\/AOs2DBH40h\/gy5ShA9tZ5Tl6cWWWELevW\/e+u9e52Pk\/JNEROO4sLX2TGu5IsVAjfi2NyNU+MGRomDVqVK1pnqbrXzfNadFydkOIu7K3yjlPOrvD283Ck858Ab70B\/hyiKxc+U7\/p1AtKC\/fRSqdPv1lZ2bQrMLC7SNHmdRLcOb9Rx9TNZv6EJgS5TtUx7zPAosJKR+IOdURfOgDz5v3mud2o1mMlSxc+LraDYYGfOkP8OXQqa\/\/WIhKtxidKHb6yNF7AIqoIVBvDTXU5DnlEL1ppGjMmOcgS9\/ZtKnL+xSdgWKObT+r3p0NOI+urPDMPCfl34NbnH0EvvQH+NIXenu\/oPoWuZ\/6PF0\/wTSnuwVLwdgV1Mapt4aUqqrd\/dcOvIIGB5gDNRxI+VC0nAePWVOmvKB+IMDQgUO9Se8zRhi7NDf3edQcf4Ev\/QG+9As6wmtqOqk6Gsb3dH2saf7cLVg3OC8N8WUYZ236wwv3cL6UxtxqH\/AbZxGD\/\/XelThIzIteTQ8sUj7gHVZSc9TcvE\/tA\/4BX\/oDfOkvVOtM8xTTPNMtVU\/MkvJ\/wjdBtLPzM9uu8V6wtO3HsHBPGqBCXrBgh5TrEpybZWz+6tXvqh8IGM6ksN94PmqJbT+T7ZN7Awt86Q\/wpY8sXdrquXo3QNj239RbQ0FT014hyj1\/4MV4tnb6oS7LxIn1nF\/ruWR+ODgvDdpz6Mj0zsWLw0\/65Pwa3DEyrMCX\/gBf+kVj417GrnALc\/CYG5pnDzmLtEWf9kztchnWXskgXV19VP62\/ff44Sbn1wdnXXtnEXlSe1SWc2z7aTxZdriBL\/0BvvQLZ8Wy9d5FSQaJ4srKdvUz2YlzDvZZz8Mi5ghRGZqVZbIdGr0VFm4X4i6vOOkLyvhEZfoAkyY1MLYg8qloWFlaXPyq2g2GE\/jSH+BLf+nt\/YKaAMaudEt1wOD8GvXuLMS5aaScGrvon2Pbm7FwT9CggT6NOAsKGhm7zP2aMrt0hlNtbvdWm2y8STR7gS\/9Ab4cDqipWrToDSnvHfCSEoUQd2bjpJg1a97j\/ProX0FtcUnJiLi1NHuhUd2SJS1SPsrYr+kYT78y6X+cMeMVbw+Sqs306S+jj5VO4Et\/gC+HFeckLTVVi7w9aydm2fbfs+hqH31U56aR6GUnGiXfjMtOWYS75tTGjR+qPC00N++jcW20zlC1F+IOrG+XfuBLf4Av0wBZs7j41f7PgKSYM2lSg3pHsOk+tBbuw54nKxXRwYUnjYDEOM8YoWGl6ikytoC6XBm\/jDoygS\/9Ab5MJ2RNISqjd5ozdmnwp9HTkeasVXa41cvNfR4n00ACnDtGNno6WIee1hn8xRNCDHzpD\/Bl+uk69GDIv0SeWHQRjT7VjuBRW7vHu5o8fVo68NQ+AAaCZNn\/6bCz8\/K2ZdGlh1ACX\/oDfJkpGhq6p07dzvnNQtwZzMdk2vZm73wlKddgrTJwRFaseDtSZ2ZxftPy5TvVDpA54Et\/gC8zDjUoQZtl6izcc7dbMZy40LafxRABJAN1\/py7PxdJ+UgwO4IjEPjSH+BLEMPatbsZW+K5YHl5efkuXLAELhUVuzi\/xjBOMs0zhLhtwIX1SZPNzfvQwQoO8KU\/wJfZCzmsuPhV6sVLeZ9t\/3XZsp1DbKGomSss3O65YDlLiFtrarCwJzgE1Tcp72HssjFjnlu06A3bfsI0T9O0L0m5Rr0DBBX40h\/gyyylvb2XsfmWdT6ZkpRpGCdqmknf5lDWTMnNfd6tDE7Mpl+rdgBw6Nlb91Nr6z3TsHnzHl3\/mqZpUj6qNoFAAl\/6A3yZpTD2q5ycLdHrQ01Nexn7NbVcJNGurhSVKcRdbmVgrGTq1O24+ASiUKUyzcLJkxtiaoWUD1Ct0\/UxaV4JARwV8KU\/wJfZSF7eNsYui1kxoL7+Y13\/uqZZRUXNatNRQj\/I2JWc\/w63yoEY2tr2a9pxmmbY9pNqk8OOHT3kS03jM2a8ojaB4AFf+gN8mY1Y1lxNyzHN07xLi1HH3zR\/Sk2XZV2sNh099AuxAguIh3xJg0iqXULcqTZFIIlqmjlhwlaVg+ABX\/oDfJmNmOYZTqf+mJhHg1nWTNpqGD9QOQA+0dd3gFpUkmXM8hqrV7\/rVEW5YMEOtQkED\/jSH+DLbKSs7C2SohArvRNi6bVpnkNNl2XNUpsAGGY4X0FVTte\/TgNQtQkED\/jSH+DL0NDcvM8wvkdt16hRtWoTAMNJTU2nro\/TtFEpXzIH6QG+9Af4MjTk5W3TNNMwTsaTQ0B6oMZW05iU96gcBBX40h\/gy3DQ1LTXmY6RU1r6ptoEQBxUPcaN+0eSMX36y+rHBsK2n9a0f7HtJ3DfUfCBL\/0BvswU1MosX75z2bJkI\/FjTBi7Wtf\/derU7SoHYCCcR7PNSzKobR3MhYsWvWEYJ0r5MGSZFcCX\/gBfZgrb\/ruuH598CLFK\/WR\/nFXKqnX9azFzZQEYJlatatP1MRMn1qvcqYTedX9A0IAv\/QG+zBR9fQc2bvww+Rhs\/qFtP2kY\/04DUJUDMJw0N++zrJkxd49MmLB18eIWlYDgAV\/6A3yZvZBxx4\/faprneE\/VUnOGxTzBMFFX95FlXVBQ0KjyCJyXlpW9pRIQPOBLf4Avs5eqqt2WNTtm3EkDTcaWqAQAX2Fsvm0\/NmXKC9HIy9tm23\/T9X\/diPVjAwx86Q\/wZZayZEmLaZ41bdpLq1a1RWP58p1S3mvbNepNAPhEb+8XjF3lLOUzALr+Ne\/SGSBowJf+AF9mI87SBD9RbVUs+oYNeGIl8Jm2tv2G8QNdP2HA4LxUvQ8EEvjSH+DLbMSy5ig5xqHrxzc0dKv3AQAAfOkX8CUAAIQb+NIf4EsAAAg38KU\/wJcAABBu4Et\/gC8BACDcwJf+AF8CAEC4gS\/9Ab4EAIBwA1\/6A3wJAADhBr70B\/gSAADCDXzpD\/AlAACEG\/jSH+BLAAAIN\/ClP8CXAAAQbuBLf4AvAQAg3MCX\/gBfAgBAuIEv\/QG+BACAcANf+gN8CQAA4Qa+9Af4EgAAwg186Q\/wJQAAhBv40h\/gSwAACDfwpT\/AlwAAEG7gS3+ALwEAINwk8qVp\/sw0C4W4s6ioGZE4GLuUysoprrtjdiEQCAQiBDFhwlannT+DsQVkycO+5PwaXR9LYRgnuUZFJAjD+K5bXKZ5SswuBAKBQIQgTPOcSDt\/KlnysC9pvOnuMIyTY34GER+G8f1IORbE7EIgEAhEKOJcXf+qo8UfkiUP+7K09E3aZ5pnMnYFjTURiYOxRVRWpjmNsStjdiEQCAQiHGFZ55tmoW0\/SZY87Euio+PT1tb99C8imaCyamtDcSEQCERogxr5lpZP+voOHDx48P8DoNeL6jUthF0AAAAASUVORK5CYII=\" y=\"-8\"><\/image> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> 4","<strong>B.<\/strong> 6","<strong>C.<\/strong> 3","<strong>D.<\/strong> 8"],"correct":"2","level":"3","hint":"<p>S\u1eed d\u1ee5ng s\u1ef1 t\u01b0\u01a1ng giao \u0111\u1ed3 th\u1ecb y = f(x) v&agrave; \u0111\u01b0\u1eddng th\u1eb3ng y =&nbsp;<span class=\"math-tex\">$-\\dfrac{3}{2}$<\/span>.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;6<\/span><\/p><p>\u0110\u1eb7t t = sinx. Do x&nbsp;&isin;&nbsp;<span class=\"math-tex\">$[-\\pi;2\\pi]$<\/span>&nbsp;n&ecirc;n t&nbsp;&isin; [&ndash;1; 1].<\/p><p>Khi \u0111&oacute; ta c&oacute; ph\u01b0\u01a1ng tr&igrave;nh&nbsp;<span class=\"math-tex\">$2f(t)+3=0 $<\/span>&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$f(t)=-\\dfrac{3}{2}$<\/span>.<\/p><p>D\u1ef1a v&agrave;o b\u1ea3ng bi\u1ebfn thi&ecirc;n ta th\u1ea5y ph\u01b0\u01a1ng tr&igrave;nh&nbsp;<span class=\"math-tex\">$f(t)=-\\dfrac{3}{2}$<\/span>&nbsp;c&oacute; 2 nghi\u1ec7m&nbsp;<span class=\"math-tex\">$t=a\\in(-1;0)$<\/span>&nbsp;v&agrave;&nbsp;<span class=\"math-tex\">$t=b\\in(0;1)$<\/span>.<\/p><p>\u25ba&nbsp;Tr\u01b0\u1eddng h\u1ee3p 1:&nbsp;<span class=\"math-tex\">$t=a\\in(-1;0)$<\/span>.<\/p><p>\u1ee8ng v\u1edbi m\u1ed7i gi&aacute; tr\u1ecb t&nbsp;&isin; (&ndash;1; 0)&nbsp;th&igrave; ph\u01b0\u01a1ng tr&igrave;nh c&oacute; 4 nghi\u1ec7m&nbsp;<span class=\"math-tex\">$-\\pi< x_1 < x_2 < 0 < \\pi < x_3 < x_4 < 2\\pi$<\/span>.<\/p><p>\u25ba&nbsp;Tr\u01b0\u1eddng h\u1ee3p 2:&nbsp;<span class=\"math-tex\">$t=b\\in(0;1)$<\/span><\/p><p>\u1ee8ng v\u1edbi m\u1ed7i gi&aacute; tr\u1ecb t&nbsp;&isin; (0; 1)&nbsp;th&igrave; ph\u01b0\u01a1ng tr&igrave;nh c&oacute; 4 nghi\u1ec7m&nbsp;<span class=\"math-tex\">$0< x_5 < x_6 < \\pi$<\/span>.<\/p><p>Hi\u1ec3n nhi&ecirc;n c\u1ea3 6 nghi\u1ec7m trong 2 tr\u01b0\u1eddng h\u1ee3p tr&ecirc;n \u0111\u1ec1u kh&aacute;c nhau.<\/p><p>V\u1eady ph\u01b0\u01a1ng tr&igrave;nh \u0111&atilde; cho c&oacute; 6 nghi\u1ec7m thu\u1ed9c \u0111o\u1ea1n&nbsp;<span class=\"math-tex\">$[-\\pi;2\\pi]$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-07-07 05:38:12","option_type":"txt","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.