{"common":{"save":0,"post_id":"7609","level":1,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5892","post_id":"7609","mon_id":"1159285","chapter_id":"1159380","question":"<p>Cho f là hàm s\u1ed1 liên t\u1ee5c trên [1 ; 2]. Bi\u1ebft F là nguyên hàm c\u1ee7a f trên [1 ; 2] th\u1ecfa F(1) = –2 và F(2) = 4. Khi \u0111ó <span class=\"math-tex\">$\\displaystyle\\int\\limits_1^2 f(x)dx$<\/span> b\u1eb1ng<\/p>","options":["<strong>A.<\/strong> 6","<strong>B.<\/strong> 2","<strong>C.<\/strong> –6","<strong>D.<\/strong> –2"],"correct":"1","level":"1","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>A.<\/strong> 6.<\/span><\/p><p><span class=\"math-tex\">$\\displaystyle\\int\\limits_1^2 f(x)dx=F(x) \\bigg|^2_1=F(2)-F(1)=4-(-2)=6$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-11-19 08:36:58","option_type":"txt","len":1},{"id":"5894","post_id":"7609","mon_id":"1159285","chapter_id":"1159380","question":"<p>N\u1ebfu <span class=\"math-tex\">$\\displaystyle\\int\\limits^{5}_{2}f(x)dx=3$<\/span> và <span class=\"math-tex\">$\\displaystyle\\int\\limits^{5}_{2}g(x)dx=-2$<\/span> thì <span class=\"math-tex\">$\\displaystyle\\int\\limits^{5}_{2}[f(x)+g(x)]dx$<\/span> b\u1eb1ng<\/p>","options":["<strong>A.<\/strong> 5","<strong>B.<\/strong> –5","<strong>C.<\/strong> 1","<strong>D.<\/strong> 3"],"correct":"3","level":"1","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>C.<\/strong> 1.<\/span><\/p><p><span class=\"math-tex\">$\\displaystyle\\int\\limits^{5}_{2}[f(x)+g(x)]dx$<\/span> = <span class=\"math-tex\">$\\displaystyle\\int\\limits^{5}_{2}f(x)dx$<\/span> + <span class=\"math-tex\">$\\displaystyle\\int\\limits^{5}_{2}g(x)dx$<\/span> = 3 – 2 = 1.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-11-19 08:41:13","option_type":"txt","len":1},{"id":"5895","post_id":"7609","mon_id":"1159285","chapter_id":"1159380","question":"<p>N\u1ebfu <span class=\"math-tex\">$\u200b\u200b\\displaystyle\\int\\limits_{2}^{5}f(x)dx=6$<\/span> thì <span class=\"math-tex\">$\\displaystyle\\int\\limits_{2}^{5}3f(x)dx$<\/span> b\u1eb1ng<\/p>","options":["<strong>A.<\/strong> 6","<strong>B.<\/strong> 18","<strong>C.<\/strong> 2","<strong>D.<\/strong> 3"],"correct":"2","level":"1","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>B.<\/strong> 18.<\/span><\/p><p><span class=\"math-tex\">$\\displaystyle\\int\\limits_{2}^{5}3f(x)dx$<\/span> = <span class=\"math-tex\">$3\\displaystyle\\int\\limits_{2}^{5}f(x)dx$<\/span> = 3 . 6 = 18.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-11-19 08:43:42","option_type":"txt","len":0}]}