Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 1. Tính đơn điệu và cực trị của hàm số.Bài tập trung bình
{"common":{"save":0,"post_id":"7383","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5273","post_id":"7383","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 <span class=\"math-tex\">$y=x^3-2x^2+x+1$<\/span>. M\u1ec7nh \u0111\u1ec1 n&agrave;o d\u01b0\u1edbi \u0111&acirc;y <strong>\u0111&uacute;ng<\/strong>?<\/p>","options":["<strong>A.<\/strong> H&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n kho\u1ea3ng <span class=\"math-tex\">$\\bigg(\\dfrac{1}{3};1\\bigg)$<\/span>","<strong>B.<\/strong> H&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n kho\u1ea3ng <span class=\"math-tex\">$\\bigg(-\\infty;\\dfrac{1}{3}\\bigg)$<\/span>","<strong>C.<\/strong> H&agrave;m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr&ecirc;n kho\u1ea3ng <span class=\"math-tex\">$\\bigg(\\dfrac{1}{3};1\\bigg)$<\/span>","<strong>D.<\/strong> H&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n kho\u1ea3ng <span class=\"math-tex\">$(1;+\\infty)$<\/span>"],"correct":"1","level":"2","hint":"<p>T&igrave;m TX\u0110; t&iacute;nh y&#39; v&agrave; l\u1eadp b\u1ea3ng bi\u1ebfn thi&ecirc;n.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;H&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n kho\u1ea3ng&nbsp;<span class=\"math-tex\">$\\bigg(\\dfrac{1}{3};1\\bigg)$<\/span><\/span><\/p><p>Ta c&oacute;: y&#39; = 3x&sup2;&nbsp;&ndash; 4x + 1&nbsp;&rArr; y&#39; = 0&nbsp;&hArr; x = 1 ho\u1eb7c x =&nbsp;<span class=\"math-tex\">$\\dfrac{1}{3}$<\/span>.<\/p><p>B\u1ea3ng bi\u1ebfn thi&ecirc;n:<\/p><p><span class=\"svgedit\"><svg height=\"140\" width=\"500\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"142\" id=\"canvas_background\" width=\"502\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"139.999997\" id=\"svg_1\" stroke=\"null\" width=\"497.000005\" x=\"1.499994\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAArkAAADECAYAAACbfTmCAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACwMSURBVHhe7d0HlFRF+v5xgTVscqMbdPe3Blw9qyKgKCCKgKKCGAiLJMUAgoKIKEFAcgaRjCgZVuKSkQyScxRJkrPkoCig7\/\/\/lH1nr+M4gel45\/s5p47YPTMwM7ern1v1VtVlBgAAAAQMIRcAAACBQ8gFAABA4AQ+5H733Xf27bffuv8CAAAgawh8yF26dKmVK1fOFixYEHoEAAAAQRf4kPvf\/\/7Xfvazn9l\/\/vOf0CMAAAAIOkIuAAAAAoeQCwAAgMAh5AKIKC36vHDhgn366ac2d+5c1w4cOGAXL14MfQQAAOFHyAUQUQq4p0+ftmbNmlmxYsVcmzp1qp07dy70EQAAhB8hF0DEnD171u1sUqNGDcubN6\/lzJnTihYtSsgFAEQcIRdAxCjkLl682OrUqWMPP\/yw3XPPPYzkAgCigpALIComT55sb731lj300EOEXABAxBFyAUQFIRcAEE2EXABRQcgFAEQTIRdAVBByAQDRRMgFEBWEXABANBFyAUQFIRcAEE2EXABRQcgFAEQTIRdAVBByAQDRRMgFEBWEXABANBFyAUQFIRcAEE2EXABRMWjQIKtatSohFwAQFYRcABHzzTff2O7du23KlCn28ssvW\/78+e2OO+6wJk2a2OzZs+3YsWPuYwAACDdCLoCIOXHihI0cOdJuueUWu\/rqqy179uyu6c9PPfWUrVixwo4fPx76aAAAwoeQCyBizp8\/b3v37rVp06bZ+PHjbcyYMa7pz4sXL3YBl5FcAEAkEHIBAMiEixcv2qFDh2zevHk2d+5cW79+vbvB++6770IfASAWCLkAAGTCV199ZTNmzLCHH37YihUrZo0bN7aTJ0\/ahQsXQh8BIBYIuQAAXAKN1qrkplevXvb444\/bn\/\/8Z7vrrrsIuUCcIOQCAHAJFHK1uLJfv35WsWJFy5MnjxUqVIiQi8BSCY6u623bttmWLVvcLIbKdeIVITeCdDF8++23Sc1fn5X8ueTPAwASh9703333XatcuTIhF4Gla\/rMmTPWu3dvd73v27fPBd2UKNP4s04sMhAhN0IOHDhgEydOtDfffNPKly9vzz33nPv\/HTt2uNapUyerVKmSlSlTxrVGjRrZ8uXL3b6hAIDEQshFVpCRkLty5Urr0aOHlS1b1uWddu3a2eeff+4ykA4Eev75510+8nLQkCFD3PPhDLtRC7n6wZw9e9bmz59vI0aMcO3TTz+1U6dOuef1TX\/yySduT81Vq1bZkSNH3OOZFYuQq+9Tv9w2bdpY9erV7ZlnnnG\/4M6dO7tfoqa2SpUqZXnz5rXSpUu7X642yu\/evbutWbPGfT4AIHEQcpEVpCfkemU8ynk6yl1BtkKFCvbGG2\/YsGHDbMCAAW4A8Oabb7aiRYsmhdymTZu67SXDeUhQ1EKugpuC7BNPPOE2g8+WLZs1a9bMNm7c6Iap+\/fvb4899pgLpK+99potWLAgLGk+FiF3586dNmHCBPdLXL16tTu+9ODBg9ahQwcXbvPly2eFCxdO6gh1wSj86yLQBbB9+\/aIDNsD0ZLSVFRqjesdiY6Qi6wgPSFXAVfZRwN3AwcOdH28Hps+fbqrXS9SpIgVKFAg6Yh3fT21Ll26uNMwNUgYrkOCohZyVZisoLto0SI3fP3ss89azZo1rVWrVi6IKuR+8MEHbqP4tWvXJvRI7rJly2zs2LHujkQXgL53Bd2PP\/7YXn31VfvDH\/5gL774ogvCulvRRaOjT3XXM2rUKLdJPm\/6SGRLly61cuXKJd2hp9V0AxjPixeAtBBykRWkJ+Tu37\/fZaBx48a5PKQ8o9HdzZs3W58+fdwgn0KuQq0GOvU11RYuXOhy0OjRo23Pnj2hr5Y5ManJ1QlIH330kZvGL1mypLVv394Fwk2bNoU93GUm5OpOQr+gSZMmJZVYpNZUc6s3d\/2dCrD65XnlGKIyjJYtW9pf\/\/pXV5O7devWpO\/39OnT7vvX3zVnzhxCLhKa6ss1M6FpqvQ0lfIQcpHICLkIIl3XyiQqJVXOUZYaPHiwG6jTYKVC69ChQ5Ny0OzZs23mzJk2aNAgNyOvvOflGc1oT5482c1oP\/nkk25A7+jRo+45UWDWQKi+vmb+wyEmIdcrXdA3evvtt7ti5M8++yz0bHhlJuRqyPyFF16wG2+8MenM\/dTa9ddf737pXbt2tVmzZrm7Gf8djkKunvOG6DW669GftVhNF5PuZgi5AJA4CLkIIoVY1c3myJHjB3lHJadq\/sfUNErboEEDF3jXrVv3g7IDL+S+8sor9vbbb\/\/oNaKShg0bNrgZbc1uh0NMQq5XuqCaVY32KIgqwUdCZkdyFXRVZuCduZ9aU3DVCJaG6FMaydUvXasJc+XK5f7sf46QCwCJi5CLINIaIW0KoPID5RwFUK0d0qL6qlWruoX0yldeDtLR1hrNTWkkV5lINbePPPKIK1dV6P3666\/dcxKYkKvRTdVbaCVdjRo1XBDVDyISMhNyL5VXk6uwq+\/LC7ANGzZ0G4WrFkXTsyrM9n75qkHWxaHCbI34EnIBIHEQcpEV6JpOT02uspeaSjiVZzRoqLJULTq777773ICfBgaVjTwKwZoF1+P6GuEQs5pcjWQqyatD8JcrhDvcxSLk+ndXUGDVL0u1tg888IDdcMMN7g5Iv+D33nvPXTBaeahhfW21oX+vSjkIuQCQOLTGQgtpCLkIsvSEXF372g5VuytouzB9jmbFVaKgPKaSzZdeesmVd6ou19tlR7W9ykXKTQm3u4JH37y+KW0fpm9GAbdKlSruMYVD7bCgzYDDJRYh98svv3R3JNo6o3bt2m5xXcGCBd2euFp45u2hq600vNXlqlHRDhMaqmefXABILBqoqFOnjuvnCbkIqvSEXG+f3BkzZljbtm3dYRDFihWz4sWLu2CrjQdUkqByBy089nJQ69atbdq0aS7gJtQ+uZquV3DVN6VVcwpzH374oavX0OEIOhThnXfecc9169bNnYccLrEIueLtE9e8efOkFeTaOm3FihVulFa\/\/BYtWrgdJvSc6lT0XLjuXgAAkeVtD6m+W4uKH3zwQfd+pjfs4cOHu8EOBi0QJOkJuR7NSivQejvtaHZbu1Bpdlu1vvoatWrVSspIkTgnICoh9\/Dhw9a3b1+7\/PLL3fZZGrX0tgtS3eoVV1zhVuWpGFlTPvoBhkusQi6A76nD8qajvEY5DoJAAVeLZ3Ripd7bvBXoV111lV1zzTUuBFB+hiDxQq52XdCNXWohNx5EJeRq9ZzSuRZjafsI\/4Irr0BZq\/I0sqsfXjineAi5QOxoFEu7hehuXUdbe9NSkTijHIg2byRXNYR6b\/NWmOt9RyNWGrRhJBdBoj5bGU2ZTte3Am4873Eek4Vn0UTIBaLPe\/PXylrd8WuxpRbklChRwnLnzm3VqlVz01iqX4\/nDhIAkLgIuQDCTgFXW8Nom0BtnedNaXnbLKk0SYsOtNNKPE91AQASFyEXQNh5tYo6HEVTud6UlhZW6jFtH6Om3UT8h6IAABAuhFwAYedtIaN6RP3Zo\/IELcTRCG+jRo1cXS41iwCASCDkAogab2s9bRKufaS10wIAAJFAyAUQFdpKcO7cuW5PbG0dqJW57K4AAIgUQi6AiNK2gDrgRRt960Qonf6nk220tRi7KwAAIoWQCyCitKOCNg3XSVDaKD9btmz2pz\/9ye2usGfPHnZXAABEBCEXQERpJFelCbNmzbKePXu6cHvrrbfa\/fff7\/bK3b17d+gjAQAIH0IugKjR3rnjx4+3xx9\/3AoVKmQdO3a0TZs2hZ4FACB8CLkAosY797x58+ZWsWJF69SpEyEXABARhFwAUeOde64aXS1CGz58uO3atSv0LAAA4UPIBRA13iEROtpXW4ktWbLEjh49GnoWAIDwIeQCiAiN2uqwB3\/Tsb46DELlCh06dHBH+mpkFwCAcCPkAgg7jdauXLnSHd9bpkyZpFa5cmV7\/fXX3Z65GzZscCO7HAgBAIgEQi6AsPOO79WIbfny5ZNatWrVrGXLlrZmzRoXcAEAiBRCLgAAAAKHkAsAAIDAIeQCAAAgcAi5AAAACBxCLgAAAAKHkAsAAIDAIeQCAAAgcAi5AAAACBxCLgAAAAIn1ZCb0tnzidbGjh3rQu7w4cNTfJ5Go9FoNBqNFpzmHRefasjt2rXrD86dT8RWoEABy5Ytm91zzz0pPk+j0Wg0Go1GC07r0KGDXbx4MfWQ261btx+cO5+I7b777nMhV2E3pedpNBqNRqPRaMFpnTt3TjvkBgE1uQAAAFkPIRcAAACBQ8gFAABA4AQi5GoVndeSI+QC8cG\/W8tPvV6BRMS1DcSnQITcAQMGWPPmzV2g3bt3b+jR7xFygdg6ffq0bdq0yb1GvZWv2rll6dKlhAEkNK5tIL4ldMhVB7N582Z74YUX7KmnnrJx48bZvn37Qs9+j5ALxI5eo8uWLbOWLVtatWrVkla+1qxZ07p3724bN260U6dOhT4aSBxc20D8S+iQu2XLFuvYsaM98sgj9sorr7jtIpIj5CK9mGYMP41ytWnTxr0GP\/roo9CjZu3bt7fKlStbu3bt7LPPPgs9CiQOru3Yoa9GeiV0yJ01a5blzp3bGjZsaHPnzk3xoifkIi3nz593N0x9+\/a1tWvX2pkzZ0LPILMGDx7sRraqVKliS5YsCT1qNmfOHPe6zZUrl02dOjX0KJA4uLajj74aGZWwIffIkSM2ZswYd9jD6NGj7eTJk6FnfoiQi7ScO3fOFi9ebC+\/\/LJNnz7djh8\/HnoGmdWgQQMrXbq0ffDBB7Z9+\/bQo2b79++3Hj16WI4cOez9999nWhcJh2s7+uirkVExDbkaeU1tRar3WPLHZdGiRW6KaMSIEbZ79+7Qoz9GyEVa6Dgj55lnnrEHHnjA5s2bZ1988UXo0e95r81mzZq5ad2UXudAvOLajj76amRUTELu119\/bYcOHXI1Sz+1InXnzp3uDrlfv342Y8YMF4T9Ro0aZf3793cB98svvww9+mOEXKSFjjP8vFXnJUuWtGLFitm6det+NNvivTbr1avnFvAQBJAIuLZjh74aGRWzkHv48GHr0KGDWzSWM2dOtyp14MCBSWF2165dbmuwxo0bu\/qb5CFXdU8zZ8780ePJEXKRFjrO8Dt69KgtXLjQHnroIStevLht3br1R\/Vz3muzdu3atmDBAoIAEgLXduzQVyOjYl6Tq+LxWrVqudHcFi1a\/GiHBI3Wqq4prTD7Uwi5SE5vOLqevKaZAJW\/VK9e3aZNm+bexPzP8waVcQSB6NLPLvl1nVbj531puLajJ\/k1TV+NjIp5yFW9ksJtiRIlrG7dukkh15sS+vjjj23+\/PmXfPEScuGnBSI9e\/Z0q6K9Uhntsfzggw\/aDTfcYIUKFbJSpUolPacRg27durkVvUg\/gkB06Q3\/nXfesbJlyyZdu6m1Jk2a2JQpU1wwQMZwbUcHfTXCIeYhVxdyr169XMjVxeyF3D179rhgqqkJHfBAyEU46Hrr3bu3mz3wNm9XMFBt3U033WSFCxe2p59+Ouk57b+sjlZvZEg\/3aTqoJafqlvUtKNek3ptUreYeVq3oMECLYbyrt3UmhZEaXsrQm7GcW1HB301wiHmIVfH8I4cOdJdrDVq1HAhVx3CmjVr3MW9YsWK0EdeGkIu0kKdV+RUqFAhxRXoqsnv06ePe23qSFRWoCPRcG1HH301MirmIVcdghaQPfroo24U4sKFCy7YTpw40ZUqHDhwIPSRl4aQi7TQcUaONsXXXqLaJUUjMx79WXuJXnvttTZkyBA3OgYkEq7t6KOvRkbFPOSeOHHCVq1a5XZZUNuxY4fb+1Z74B48eNBd1JlByEVa6DgjR2\/ymkasVKmS+xl7Jk+ebI0aNXIzOKq5BxIN13b00Vcjo2Iecs+ePeuCrQrI8+XLZ8OGDXN1NePGjQtLvRghF2mh44wc1S62bdvWvQaHDx+etAq6Tp069sQTT7jXZWqHuQDxims7+uirkVFxFXKvv\/56q1atmk2YMMEdjRiOOiZCLtJCxxk5mqrVlj9agKMz\/r2V0M8\/\/7w7ACatw1yAeMW1HX301ciomIdc72CI+vXru+md1q1b28aNG0PPZh4hF2k5f\/6823ZGJ+xppbRuvBA+x44dc29MTZs2TVoJ3b17d1u+fDkLcpDQuLaji74aGRX1kKsXfvKmKR7dEUdiP0FCLgAAQNYT9ZCrnRNUb6um\/QPHjh1r5cqVs\/Hjx9uRI0dCHxU+hFwAAICsJ+ohd\/To0a6GSStSW7Vq5coTtHWYTpCJBEIuAABA1hP1kDtgwAB77LHHXPDMnTu3tWzZMumUs0gg5AIAAGQ9UQ+5O3fudKO2KlPQIRCRPg2GkAsAAJD1RD3kRhshFwAAIOsh5AIAACBwCLkAAAAIHEIuAAAAAoeQCwAAgMAh5AIAACBwUg25OpN7xIgRCd108ESOHDnstddeS\/F5Go1Go9FoNFpwmraq1fa0qYbcihUrWvbs2RO6ZcuWzS677DL335Sep9FoNBqNRqMFp5UuXdouXLiQeshdtmyZjRkzJqFb\/fr13Uju66+\/nuLzNBqNRqPRaLTgNFUipDmSGwTU5AIAAGQ9hFwAAAAEDiEXAAAAgUPIBQAAQOAQcgEAABA4hFwAAAAEDiEXAAAAadK2XNp\/dtu2bbZlyxb76quv7OLFi6Fn4w8hFwAAAGlSwD1z5oz17t3b3n33Xdu3b58LuilRIFb79ttvXdOfPf7HU3o+XAi5AAAASFNGQu7KlSutR48eVrZsWatUqZK1a9fOPv\/8c9uxY4dNnTrVnn\/+eStfvryVKVPGtSFDhrjnwxl2CbkAAABIU3pC7vnz5+3EiRM2YsQIe+utt1yQrVChgr3xxhs2bNgwGzBggL355pt28803W9GiRZNCbtOmTW38+PF27Ngx++abb0JfLXMIuUCA6A44oy0ogvg9AUBK\/P1dels4pCfkKuCuXr3aunfvbgMHDnSlCHps+vTpVrFiRStSpIgVKFDAHnroITeiq6+n1qVLF2vSpIkbAT5+\/Hjoq2UOIRcIAHUy6mxmz57t7p7T29SZHD58OGwdYCzNmjXLnVm+YcMGO3nyZOhRAAiWzZs328yZM23kyJEp9usptfnz59vXX3\/tAmdmpCfk7t+\/38aOHWvjxo2zZcuWufcXje7q392nTx8rXLiwC7kKtRs3bnRfU23hwoXu3zp69Gjbs2dP6KtlDiEXCAB1MuoUOnXq5KaFVAOVWtPd9Msvv2yTJ0+2gwcPBiLkKuC2adPGdbx63XsB\/ty5c6GPAIDEt2TJEuvatauVK1cuxf49eXv99dddBrqUkKtdFObMmZMUqPV1Bg8ebC+++KI9++yzLrQOHTo0KUxroEUBfNCgQbZgwQLbu3dv0vuL3mv0nlOqVCl78sknbfHixXb06FH3nCgwL1q0yH191e2GAyEXCABt4aIwV716dfvd735nl112Wart97\/\/veXPn9+mTJni7rCDYMWKFda+fXu7++67rVChQlajRg03uuuF+CAEeQBQX9ewYUPLkSNHiv178qagqwB6KaO4CrGqm9XflT179qSWLVs21\/yPqWmUtkGDBu7vW7du3Q\/KDryQ+8orr9jbb7\/tZtw0gutRSYNm4kaNGmW7d+8OPZo5hFwgABTgFHQ\/\/PBDe+SRR1xnk1Jnp3bllVfa\/fff714TO3fuzPT0VbxQZ6rpMI0k6OegRQzPPfec1atXz95\/\/31bv349ZQwAEp76uo8++shy5sxpv\/zlL1Ps59Wuvvpqu+2226xfv34\/GFHNiO3bt9snn3ziyg80W6YAqsVjGlCpWrWq+9p6L9FzavPmzXN9cEojuSpNUM2t3qNq1qzpQq9Glz2E3EtAyEVWovon3UVffvnl7i47pY4vV65c7i46eQcTJOqYtUpXox21atVyQVdlDOo8NUWmjjd5HRkAJIqlS5e6HQn+9re\/pdjP6z3g9ttvd+8Ha9euDX1W5qW3JlfZS03\/ToVcBXP1yVp0dt9997ntw7To7MCBA6HP+j4Ea\/ZNj+trhAMhFwgIryPRatZf\/epXKU5lKfgq8HmLAbICfxlDnjx5XM2yRhxUw6yfQVb5OQAIBvVZW7dutffee8\/1acn7eTWVrWnthUJoONclpCfkasZszZo1bncFbRemz9EaCQ2uKI9pV4WXXnrJ1fRq0EGziWqq7dX3tGrVqh+UOWQGIRdIcBqN1QbaGqXUPoTqQP7xj3\/YL37xix90en\/5y1+sZMmSSfsQZhX+MgaVLWh0V52\/6sLUSWukwb\/4AQDi0ZdffulKzFSqoMVkBQsWtP\/7v\/9LsWTBu5nX54Tz2N30hFxvn9wZM2ZY27ZtXU1wsWLFrHjx4i7Y6t+v9yuVO\/gPg2jdurVNmzbN9dnsk5tOhFwEkToadQSffvqpK+Tv2bOn23RbNaiVK1e21157zU1VXXHFFa7D08iuFgSoVlVT+VmVv4yhWrVqbnFaq1atXP9AGQOAeOMFRtWqTpo0yY2OajZO0\/3q659++mm76667ksrTfvOb31ju3LldX+\/NVoVTekKuRzskKNAqcCvM6gCIiRMnulIE9cX6Gion03NqqvXV4+H8NxNygQSjDkCdzPLly6158+ZulwQtLtBdsa53Fez7d1pQ56eTZRSCz549G9a7+kRGGQOAeKY+SIMZOlhBC7Y0UHHdddfZCy+84Lb00nO6Ofd2WlBfrzUXCp+avYoEL+Rq1wVtY5ZayI0HhFwgQfjLEnRHrGkfTblrb1xtnq3Qpjtkb3pKd\/IqT9AorsoYtNJVHRTh7XuUMQCIR\/6yBPVLmu6vXbu26+uVaTTAoVknTemrj\/J2Wrjzzjtd\/6V+7fTp06GvFl56\/9D7iEZcVResgBvPAyeEXCCOaarqiy++cEX8mmbv0aOHG5HVVJU6s169erki\/VOnToU+43\/0eLdu3axEiRJuiiilj8H3\/GUMKmHQG0qHDh3cXo+UMQCINA1iqK\/X3rJeWYIGM1RWpUVauhHXQIaCbfJtH9XX63CGRo0audmooGwLGQ6EXCBOeVNV2ndQI7F33HGHKztQWYI6QZ3mlRoFZIUznRfu36YFqfvss8+sb9++bqHEvffeSxkDgIhSn6L+fO7cuVa\/fv2ksgSdSjlhwoQ0F48dOXLEvU9o9FclafgfQi4QZ9RJab9Abab96quvuoJ83c23a9fO1WHpbl6hNa09bnU3r9HHQ4cOcbRtBmjEWyO7Outdx0tqYZp+\/lrMRxkDgHBRX6PFwyotq1OnjjvqVn2+V5bglaAp4KZ2c633AgVdvXeolAD\/Q8gF4oC\/LEEny3Tu3Nl1dqoR1d18amUJiByNhGsbnJYtW7pVwF4Zw\/Dhw90pQFo9zMgJgPTyyhLUn2uGSIMXKj3TGou0yhKQcYRcIMYyW5aA6PCXMWh7tscee8yNwGgxIGUMANLiL0vQTbN2drn22mvTXZaAjCPkAjHiL0vQVFWlSpUuqSwB0eEvY9ApPk2bNnX7Eut3ppIG7dKg0hAA8EupLEELXLWFYUbKEpBxhFwgivxlCePGjXP7DNatW9ftlqA7e8oSEoO\/jEEhVyub33nnHVfDSxkDAH9ZgkrQOnbs6Or61ddTlhA9hFwgCrzpbH9ZQt68ed3JNDqecc6cOe5UGyQeyhgA+Ok17y9L0C4tN954o9sSbObMmXG\/t2yQEHKBCNOo7Nq1a61fv35u4ZIWGCjYvvfee25vVj2nO36N8iLxJC9jaNasmRvdVZ0dZQxA1uEvS9AMnQ5x0H+1X\/nUqVNt\/fr1LvxSlhA9hFwgAjRVpXpanUyjAwVUe6XdElTDqYA7cOBA1xkypR0sKmOYNWtW0opp1d21bt3ahg4dShkDEEAaldXRtsuWLXMnT3plCSpJ0CjukCFDXF9PqI0NQi4QRt70tO7WdeeuM8ZvvfVW+9e\/\/kVZQhaza9cud9xmmTJlXGkKZQxAcHivYQVcra9QX6\/XuVeWoL6e13jsEXKBMNFU1erVq93iserVq7tDHDSa16VLF3cdUpaQtWg7IJ2StmTJEhd2NZqv66FmzZpJZQxaUc3m7UBi0doKzdKpDEFlSdotQaVoKkHzyhLU1yP2CLlAJiQvS9A0tQKuDnHQVBVlCRC94S1atMjd8Oi68MoYVMOrXRo2b95sJ0+eZJU1EKe8sgSdeKg8odp7lSRUqVLFlaJRlhCfCLnAJfCmqihLQEb5yxh08McDDzzgwq9Gf3TTxJskED+8vt4rS6hcubLbRYWyhMRAyAUyyF+W4B3HqM5OU1WUJSAt\/jIGHQ\/cpk0btxuDbpQaN25sEydOtN27d1PGAMRYSmUJGrV99913KUtIEIRcIB38ZQk6jUwraNXZaWPvt956yz22adMmyhKQIf4yBtXq6npq1KiR226OMgYg+vxlCSpB002oyou0Mw5lCYmHkAukwpuq8pclaIo5X7587oQrdYQEW4QDZQxA7Hh9vb8sIU+ePG7HBNXfLliwgNdgAiLkAj9Bo2zq2DRqq8VkXlmCyhQUeDdu3GjHjh1jWhlhkbyMoW3btq4cRotbKGMAIsdflqDRWi0crl+\/vvXp08edUKa+\/siRI6GPRiIh5AI+GpVVkFi4cKENHjzY3cFrClkraL2yhG3btrmRNSBSdIO1ePFi6969u9tYXvWAmjnQPruUMQCZp5vKnTt3ur5e+UBlCSoZ0k2lAu7YsWNdX8\/obWIj5AL\/nzdVpROpdK2ULl3a7ZZAWQJiTYH3448\/thdffNFNnRYuXJgyBuASeX29Au6gQYNcX6\/dElSaoG39dHIZr6ngIOQiy\/OXJajmtkKFClanTh3r2bMnZQmIOQXZQ4cO2cqVK11\/pl08tE2ddmTwyhh0c8bsApA69fVz5851pUDq68uWLWv16tVzJWgqS9DiYfX1CA5CLrIkf1mCVsu2aNGCsgTEPW1ft2bNGlcrqKDrlTHo\/xV2N2zYYEePHuWGDAjxyhLmz5\/vStDefvttt1OC+nrKEoKPkIssxZuq8pclaCV7wYIFKUtAQvGXMegavvvuu61p06Zu4dqZM2d400aW5vX1XllCqVKl7J\/\/\/CdlCVkMIRdZhr8sQbslVK1a1d3V9+\/fP2kFLWUJSBT+MoYxY8ZY586d3cpw7QLyxhtvuO3Itm7dymwEspyUyhLq1q1rPXr0oCwhiyHkItA0vbt9+\/aksoRWrVq5gKsVtBq5nTx5stu2iWCLROYvY6hVq5a7gdN2d3pTp4wBWYG\/LGHo0KHWvHlz18\/rtUBZQtZFyEUgeVNVOpnmgw8+SCpL0Mp0HcmoN32O3UUQUcaArMTr6\/1lCbfddpsVKVLELR7mdLKsjZCLwNm7d69Nnz7d7XGrBQY6ucYrS5g9e7abwtXIF3uMIoiSlzHopk6L1DSqpUWVlDEgKPxlCdptRP19kyZN3H7S8+bNs88\/\/9z19ci6CLkIBHVk6tDU4enc\/0aNGrlwqx0TKEtAVqXXxbp169wNnsoXtBuDXhsqa9BrgjIGJBINTOia3rJli+vrvQN7dAOnphKFadOmub6e0VsIIRcJzZuq0pRU7969rVixYnbLLbdQlgAkc+LECVevqH1B8+fP73YUoYwBiULXp2YftEBYe0UXLVrU7ZZAWQJSQ8hFwkpellCpUiU3HasaXMoSgB\/SzZ7O39fI7qRJk9wG+FqQo4WYGuXVYh0FCLbQQzzRLIP6es086KZMu4dUrFjRGjZs6Pp6yhKQGkIuEoq\/LEEdnOqvVJKgRTaUJQDpo5Xon332mdtxRDeGCrr6r0bItAp99erVdvjwYfvmm29CnwFEj78sQVt+qQRN16cOcNBuCZQlIL0IuUgI6sjU\/GUJWjleokQJGzBggOsMKUsAMs5fxnDXXXdZ7ty53bHWmg3RXqIKHAQJRIuuNcoSEC6EXMQ9f1mCNvZW0538sGHD3P632jrm9OnTlCUAl8BfxqA9dbt37+42zlcJUO3atd2iNdW2U8aASKIsAZFAyEVc0giSplMVbjVV5ZUl1KhRw20XM2fOHDedCiB8\/GUMOjVNU8PafkyLOCljQLglL0vQ1l\/a7lEDGeyWgHAg5CKuqCNTx7d8+XIXZjV9qt0SvLKEHTt2hD4SQCRRxoBISqksQYc4PPXUU26WTn091xcyi5CLuKGpKP2+tNJbOyV4hzhoVMkrS2DKFIiO5GUMOiJYuzFohE2ju5Qx4FIkL0vwRm115LrC7aJFi2z37t1cVwgLQi5iyl+WoDdRTZH++9\/\/dp0eZQlAfFAZw+bNm91paTpMQodKaLW76nfHjRtHGQNSpWB7\/Phxt2hMR06rBM0rS9C11KlTJzdrQF+PcCPkIiYoSwASkwKvjgxu2bKl3X\/\/\/ZYvXz7KGPCTdC3osBH19aqxvffee91uCZQlIBoIuYg6f1mCVnBrcQtlCUBiuHjxohuV8y8Mbdy4sdtrV2G3b9++tmrVKjt58mToM5AVqd5Wff2oUaNcX6+dEtTfK+iqr6csAdFAyEVU+MsStM9tgwYNXM1tzZo1rWPHjpQlAAlIQWb79u02ZsyYpKCrel29pkeMGGFLly61\/fv3u49D8PnLElRzqxI0XQ9aY6EDeyhLQLQRchFRKZUl5MmTxypUqOB+N1qAACDx+csY8ufP71bKa+ROi9YOHTpEGUPAUZaAeETIRcRoaxj93DVV5S0waNOmjY0cOdKWLVtm+\/bts6+++ir00QASmb+MQYuL+vTp43ZjUNDV\/tYa1VMIpowhWJKXJWiGTguHdbNDWQJijZAbIbqj1QbXmp7Xi18rkLU6WW8Canrha3N1TempzZo1KxCh74svvnBbDmmqqkuXLm6qSp2eTk7q1q2bC7cqXQAQXP4yBpUmqe7+lVdesQ4dOlDGEADJyxJ03K5229CBPSpB0763Wl9BWQJijZAbIVu3bnWnBOXNm9euuuoq++Mf\/+hCnxZkqJUtW9auvvpqy549u2sFCxa08ePHu6CbiLyyhLlz57o3tZtuusluv\/12yhKALC5cZQz6GKa7Y0+\/A39Zgvc71Y3MpEmTCLaIK4TcCNCLXAupdBStztzW9LymbbQYQ9N3mrZ\/+OGHrXz58u5x1Sv16tXL3Qlr5FcdfyJ15ipLGDp0qBup0QIDlSao89OempQlAFlb8jIG7cag\/kGL1F599dV0lzFohmjx4sXuhpn+JPpUbqDZSa8s4dlnn3V9vhaTjR492lasWGEHDhxgdB5xhZAbAZrCUXmCNkpXp6CTg3RE5qBBg9zUfc6cOe3pp592uwxolOPcuXOuA2\/RooULhuvXr4\/7kJu8LKFWrVrue9JUFWUJAFKiALRr1y6bOnWqC7qq1VVJU+fOnV14SqmMQX2hgrL2z9YODho42LZtmxsBRmTpvUt9\/Zo1a1x5XdeuXZPKEhRwNTijmclTp06FPgOIL4TcNKiDVWea3qaP16bourPVi18jGB79vzrpHDlyuI5Cd75emNUohteRzJw5032teOT9PChLAJAZClAa3dVNcbFixSx37twpljEo4Grktlq1avb3v\/\/dHRqjvobT1SJLP3u9f82bN8+dRHnHHXfYzTffTFkCEgohNxVaOKGCeo1OlilTJs2mMgR12Bpx0LScPt+\/olQhVwsv7rzzThs8eLDrJLyQqxFdHYKgcoVPPvkk6fF44i9LUEmCphrZLQHApVCIPX36tBuVVXmXZrq8Mgb1uZohWrBgga1du9YmTJjggvDPf\/5z+\/Wvf+2CltYwxOtgQCLTe5b6ev0+1MerrE43GO3atXN9PWUJSCSE3FQopKqkQFPxeqGn1RT+FIoHDhzopuP0+SrQ92iEtmHDhlagQAFXzuAPwCpZUMehzl6rUuMl5PrLEhTgdUev71X\/VW2dzqz3j1YDQEZptFY3yV4Zg1ev27p1a7dgTTfVN954o1122WWuaf9V9csaCVZQRuYkL0tQ+Yh+\/jqlTIM3lCUgURFyI0BBVeUKWkzhBUCFVnUUJUuWdFP8Gsn116wq5KoWLR5Crv5uteRlCffcc48bYdG\/kakqAJHgL2MoWrSo25lGO9SozMsLuWqaPlcY27RpU+gzcSnU11OWgKAi5EaAt\/BMnbT2xtWiMwVe7TyQK1cue\/LJJ90uC\/oYb7pNp8G8\/\/77rlPRVFEsQq7+LXqD0b9Vo7Ta0Fsdnfa41Qpa\/Sw1cqs7fqaqAESCv4xB+60++uijrg\/Pli3bD0Lub3\/7W3eCoqbVNUAQy4GBROQvS6hTp457f6IsAUFDyI0AhUDVkqn+tn\/\/\/ta3b183GqrOWjsQ6P\/r1avngq52U9Dm6Krj1cerHtdfqxtp+ns0Vag3Ce17qM3b1clpxFb\/Vq181mrmDRs2cFIRgKjw+iX1PcWLF3d7ifsDrpoeu\/zyy91iNdXnKoxRo5s6f1mCBlm0W0LdunXdbgkq\/6AsAUFDyI2QgwcP2pQpU+zBBx9MOvChSpUqbgGFOmIdeampOE3BeYdB6DmFzWjSyTVa9KYVzQq21113nd19992UJQCIGf+OChqxTR5w\/e2aa65xIe3IkSPsuJAK3Tj4yxJ0UJF2tNBAhvp6zTgCQUPIjRDV2CroqkPR6KiaRko1\/aPORovSNGqrIn89p9pXBdxo7k6gUgodRKFFHdq\/V8G2ffv2lCUAiCn1k7rx1o4KGq1NKdx67corr7Q8efK4BWoqFcOPaW9iryxBhzgo2KoURCPg2r1Cfb1GeYGgIeRmYZqW0mlDpUuXpiwBQNzYs2eP67O1LqBIkSJpNvVh2ntcfRolCz+mxXm6CdBOCerrtQOQbgj8O\/wAQUTIzcK0sGPRokVutJmyBADxQjfaGmFU\/6RZrvQ2bUPGiOSP7d692+3ooxk6yhKQlRByszDt4Xv06FHKEgDEFQVVBV2vf0pvU7kXI7k\/pnUXKllQwOUmAFkJIRcAAACBQ8gFAABA4BByAQAAEDiEXAAAAAQOIRcAAACBQ8gFAABA4AQ+5OqUsQoVKtjChQtDjwAAACDoAh9yAQAAkPUQcgEAABA4hFwAAAAEDiEXAAAAAWP2\/wCixEExcHr7NwAAAABJRU5ErkJggg==\" y=\"2\"><\/image> <\/g> <\/svg><\/span><\/p><p>V\u1eady h&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n kho\u1ea3ng&nbsp;<span class=\"math-tex\">$\\bigg(\\dfrac{1}{3};1\\bigg)$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 02:32:50","option_type":"math","len":0},{"id":"5276","post_id":"7383","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{x-2}{x+1}$<\/span>. M\u1ec7nh \u0111\u1ec1 n&agrave;o d\u01b0\u1edbi \u0111&acirc;y <strong>\u0111&uacute;ng<\/strong>?<\/p>","options":["<strong>A.<\/strong> H&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n <span class=\"math-tex\">$(-\\infty;-1)$<\/span>","<strong>B.<\/strong> H&agrave;m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr&ecirc;n <span class=\"math-tex\">$(-\\infty;-1)$<\/span>","<strong>C.<\/strong> H&agrave;m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr&ecirc;n <span class=\"math-tex\">$(-\\infty;+\\infty)$<\/span>","<strong>D.<\/strong> H&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn tr&ecirc;n <span class=\"math-tex\">$(-1;+\\infty)$<\/span>"],"correct":"2","level":"2","hint":"<p>T&igrave;m TX\u0110, t&iacute;nh y&#39; v&agrave; l\u1eadp b\u1ea3ng bi\u1ebfn thi&ecirc;n.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;H&agrave;m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr&ecirc;n&nbsp;<span class=\"math-tex\">$(-\\infty;-1)$<\/span><\/span><\/p><p><span class=\"math-tex\">$y=\\dfrac{x-2}{x+1}$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$y^\\prime=\\dfrac{3}{(x+1)^2} >0,\\forall x\\ne -1$<\/span>.<\/p><p>H&agrave;m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr&ecirc;n c&aacute;c kho\u1ea3ng&nbsp;<span class=\"math-tex\">$(-\\infty;-1)$<\/span>&nbsp;v&agrave;&nbsp;<span class=\"math-tex\">$(-1;+\\infty)$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 02:38:10","option_type":"math","len":0},{"id":"5277","post_id":"7383","mon_id":"1159285","chapter_id":"1159288","question":"<p>H&agrave;m s\u1ed1 n&agrave;o sau \u0111&acirc;y \u0111\u1ed3ng bi\u1ebfn tr&ecirc;n R?<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$y=x^4-x^2$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$y=x^3+x$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$y=\\dfrac{x-1}{x+2}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$y=x^3-x$<\/span>"],"correct":"2","level":"2","hint":"<p>T&igrave;m TX\u0110; t&iacute;nh y&#39; v&agrave; l\u1eadp b\u1ea3ng bi\u1ebfn thi&ecirc;n.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;<span class=\"math-tex\">$y=x^3+x$<\/span><\/span><\/p><p>Ta th\u1ea5y ch\u1ec9 c&oacute; h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=x^3+x$<\/span>&nbsp;c&oacute;&nbsp;<span class=\"math-tex\">$y^\\prime=3x^2+1> 0 ,\\forall x \\in \\mathbb R$<\/span>.<\/p><p>V\u1eady h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=x^3+x$<\/span>&nbsp;\u0111\u1ed3ng bi\u1ebfn tr&ecirc;n R.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 02:41:45","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.