Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 1. Tính đơn điệu và cực trị của hàm số.Bài tập trung bình
{"common":{"save":0,"post_id":"7504","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5291","post_id":"7504","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1 <span class=\"math-tex\">$f(x)$<\/span>&nbsp;c&oacute; \u0111\u1ea1o h&agrave;m <span class=\"math-tex\">$f^\\prime(x)=x(1-x)^2(3-x)^3(x-2)^4$<\/span>&nbsp;v\u1edbi m\u1ecdi x&nbsp;&isin; R.&nbsp;\u0110i\u1ec3m c\u1ef1c ti\u1ec3u&nbsp;c\u1ee7a h&agrave;m s\u1ed1 \u0111&atilde; cho l&agrave;<\/p>","options":["<strong>A.<\/strong> x = 2","<strong>B.<\/strong> x = 3","<strong>C.<\/strong> x = 0","<strong>D.<\/strong> x = 1"],"correct":"3","level":"2","hint":"<p>H&agrave;m s\u1ed1 \u0111\u1ea1t c\u1ef1c ti\u1ec3u t\u1ea1i \u0111i\u1ec3m <span class=\"math-tex\">$x_0$<\/span>&nbsp;m&agrave; \u0111\u1ea1o h&agrave;m \u0111\u1ed5i d\u1ea5u t\u1eeb &acirc;m &ldquo;&ndash;&ldquo; sang d\u01b0\u01a1ng &ldquo;+&rdquo;.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>C.<\/strong> x = 0.<\/span><\/p><p><span class=\"math-tex\">$f^\\prime(x)=0$<\/span>&nbsp;&hArr; x = 0 ho\u1eb7c x = 1 ho\u1eb7c x = 2 ho\u1eb7c x = 3.<\/p><p>B\u1ea3ng x&eacute;t d\u1ea5u \u0111\u1ea1o h&agrave;m<\/p><p><span class=\"svgedit\"><svg height=\"130\" width=\"440\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> &lt;title&gt;&lt;\/title&gt; <rect fill=\"#fff\" height=\"132\" id=\"canvas_background\" width=\"442\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_2\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> &lt;title&gt;&lt;\/title&gt; <image height=\"127\" id=\"svg_1\" width=\"457\" x=\"-14.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAckAAAB\/CAYAAACE2zmtAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAC0tSURBVHhe7d13sCZF9TdwSq3SP9TyLaHKKq16MSdQRJGkwKuCiKg\/LMuIoCSLUlEU0UIElpyDLEEFlJxBCZJhCRLVZVlAWJJIkKxIjv0+n2bP\/Q3rXu69y\/M89+7M+VadOzM9c6f7nD59vt09PfMsUhYCHH300WW55ZYrc+bMmZuSSCQSicTgsVCQZCKRSCQSk4EkyUQikUgkRkGSZCKRSCQSo6CvJPn8889Xefrpp8szzzxTnnvuuRdtH3\/88fLoo4+WZ599tjz11FP12kQikUgkpir6RpKIDxEGggCl\/ec\/\/6n7yDLSkyATiUQiMdWxCLJCXjNnzixrrrlmWXHFFetK0onKsssuW2V+6csss8x\/pU8FWWGFFcrHP\/7xkeOVVlqpLL\/88nXbvC4lJSUlpd2yyiqrlPPPP78O4Az6wP4iMQ162WWXla985SvlgAMO6JTstddedbv33nuX\/fbbr+y\/\/\/5l3333\/a\/rUlJSUlLaKxtuuGF93dCg8UUk6dkgkrz88svLVlttVZ8nPvnkk\/Vk24UxHnnkkWqMJ554ooo02\/ldn5KSkpLSTvnd735XDj300EqQeACkL2IhjZ0\/\/elP5ec\/\/3ldUOMZoovaLhDPUtlABwHmd21KSkpKSnvl4IMPrmIfH0AlybvvvrvuXHrppWXrrbceGWZ2AfR++OGHq9DbCDrSE4lEItEdHHLIIeW3v\/3t3KMXBkt4YRGjJzJjxow6kuwSQTzwwAPVEEbPMZo01RojykQikUh0AwjysMMOq\/u4IKZdK0kiiUsuuaQ+kwQnuiCexTLEv\/71rzJ9+vRKmsgyjJOSkpKS0g0xkgySxAEEWdbVraYZ45mk4\/ndoI1CVx2Ef\/\/73+Wb3\/xmufXWW6tRumSDlJSUlJQXk2RwACxiB0lefPHF5ac\/\/WkljTjZdhhFG00yyLrrrltJ0n5OtyYSiUS3gCStbgU8EI8e6ysgSCFGkiBt2FCgKFQT80vrJ+IVkLXXXrvcddddI69\/JBKJRKI7aJJkTLWS+sUdEiRpf9gjSQUymg3CbpbBSE+6awYxwpMXmG79xz\/+UY8jLZFIJBLdgIU73pUEfBMY+XbrZJCkIa2R22OPPVYLJd\/YR5rOR3rsDwpBkpAkmUgkEt3ClCRJBfHhAiNFpIggY186AjWSNIJEkmRQSJJMJBKJ7mJKkiR4Jig\/ZBhf+gmSRJrON6diB4UkyUQikegupixJIj4kqFDyRo4333xzueeeeypxOvf3v\/+93HfffTmSTCQSicRAMGVJUn4KdP\/999fp1QsvvLAsuuiiZdttt60jyb\/+9a\/lAx\/4QDnuuOPqDzYPCkmSiUQi0V1MSZKMlazEdKp8ff3mtNNOqz9dddFFF5Xbbrutflf2jjvuqKPKQSFJMpFIJLqLKbtwJ543BlnK26hyn332Kccff3y5995763VGlTndmkgkEolBYMqSpClWRClPYnTpVzkOOuigSpKeUTpPcuFOIpFIJAaBKUmSiE9h5GlLEKER4+9\/\/\/tyzDHH1DQrXF3j+kFhvCTJNmGjpp3m9z\/z2jGOX+r+bUToa2tG4Jprrik33nhjresu2GQ03aTzddtmo+wCmvUe9pEWx5E277ZNaOpk\/\/bbby+zZs0qc+bMqX4xb\/xoE+j7UnU6b1yI65v\/F\/vziyELYrspSZLyMVIETqFg8vdrHAcccED5yU9+Us87F88sB4XxkqQgr5xW3hJQriBw+\/H\/oVukxQ9cD1qXqYZ49sxGV111VXnta19bllpqqfqcOT4LGNe0jSxC7\/CBptDZowU6+8i+tK5A26F3CN3NKmkb2jubSYstW7UF9OEP9Ixj+vk05mte85qy\/PLL19X94kVb4wR9I2YCPUOALwDfCFtJ83\/2w1\/sR5x1TjpEbJ4IpuzCHYUxvRrPJUEgnTlzZtl9991run1livODwIKOJJsSDV4FKXdUsH0S1wmIQQ5tB711LNS1RVnrrLNO9TWzBHvuuWd1cMGAs7PNgjj3VAbdw5+iUfOz73\/\/++Wss84aaQO20BW\/UNdsceaZZ5aVV165fOQjH6k\/+q7+2YtN4jpoBtS2gJ5in3hw4oknlj\/+8Y\/1Jwt33HHH+h1RNnCNNqIdtQXR1vm8NhF1HfHSwk3toDmoiPgZNvG\/0XZInAfnY38imJIkyViMoWEwiCm473znO+Xyyy8vDz74YA2iO+ywQ52GcM0gyzVeklQxKiQqiA5xvTTHcd7UyRZbbFEuu+yy+p6nwLjeeuvVBhE9pbaDjZCjrVXKu+66a7XNLbfcUnbeeedy00031UChbgVCtmsT6ESio2DkyKff8pa3VIKgd8xOQNv0Hw3836\/unHTSSfWj0vvtt19ZY401yimnnFLbEHs023vYpw0QL4IcxDmxzSMIMUIcPP3002vsC5LQPtqkf8RM9duMn47p6ueq8IL2Io3upqA33XTT2pFgl2222aZssMEG5dhjj622dL37kAW11ZSdbqWwrUBx7bXXlh\/96Ec1gDrW095rr72q4RhikOUaL0kqh0DWbMhROYKhdJVLGNwPWRs1HX744WW55ZYrG220UZ1KvvPOO+fesd1gE3XMLuzxhz\/8odrqoYceqiuY9ZzDwdW569oE\/hEkaZ\/e6n\/JJZesP0\/HT+Kc\/a5AO5o9e3adNaI\/H\/jud79btttuuzpyYo+mtAnNWEHvCPLqX2wRiy1aFPeiXbQJUaf0bcZR+0bVOk3RJoh9AwsDjgMPPLAcffTRZcUVV6z+8utf\/7rG0piBYq\/4v4liSpKkvBSGcRgiRhScxnEQYzSaZsH7jfGSZBAkietsiYpyntDlV7\/6VS27EcNnPvOZSpiC5HnnnVdHl12Axq\/uEOUuu+xSTj755Gof6XrLplaiQbAfu7YNggH9wl\/oueGGG9YPZ0SwBDYapI9PJbCFn6Yzy6CNsINRgTZidAVsxjZt7DzQP0giHr+wgbZhtHTDDTfU+BfXtQkR87UDOoYdbOlvQCF+Rvrdd99didO1Z599do2lRpHsdvXVV5crr7yy2inaF7jPRDFlSVKARBwMQTFG4SxRDoZ0POgAOpFnkipQmZVdAyecXJpejePrr7++fl7P9RYiLbPMMvXjCM7R1ZeEugLObipJT\/Ccc86p776qT6R5xBFHjBCp617K9gsj6BVTanQj\/OfrX\/96nVZrgp\/zqa5AfdMZ2Omoo46qz+MEQ4gY4DrbtiB0Utd0tGUH4vHDTjvtVONEtIewUVugvUcsZwsi9iM9jyOOPPLIOsug3RBTrWKmduMaJGmdimOP4sQUcE\/2gvChiWBKkmT0nKNnEcaSzhgUZdBwqEGWa7wkGRWsPN7lXHrppct73\/vessQSS5QPfehD5T3veU9Zd911a29QhatkXw1af\/31K4nG1KOpti6AruqP3tOmTSunnnpqTWPH6dOnl9\/85jcjwSB8oG3g36GfLd2\/973vlfPPP7+el87vnXsp32sTokOgvulsRKlNmHVhLz5BwPlm0FrYEfqocyLO6URdcMEF5a1vfWt53\/veVzuPzoUt2kSUUeehm9ggFrzjHe8o7373u8viiy9e5YMf\/GBZa621asxwXZCi+Mpm2o2tRzbAXs17TxRTeuEO5eUZStoGgXIOBtKgONKgMJHpVmVTORYa+aYsMVXkOYLtjBkzqj1d6zoLVlZbbbV6TAc6XXHFFXPv2G6wpZG0zoKRI4eXxg5I07MG9ax+pbet10wfPk3s05G\/b7zxxuWMM84YIYqQrkBbiE6D9mTkZBGPHzOQpt0ESULbbENH+vMJ\/k\/++c9\/1ljyta99rS7yM1BwHTs0g\/bCjqh3OtFRLDDzJn7Sn+6mVz2asS7Fc2uxmZ+Yhv7c5z5X2412xDZ\/\/vOf633Dlu5NJoopSZIggFKespSMxmPf1rFzDKnhDArjJUnlUg7lYkhlsx\/lDjF69NyRbhYfqVirdl1nYZLpgi6AfTgzkvRKj9WL\/IsdkWQs91a\/7Ob6NoE+0WjVvS1C+Pa3v12nifhStDfnuwI6h00EPO3l3HPPHekssVu0L8fNoLWwgz70pxufp5tjtrDvmdwmm2xS3yN2bVzTFtAl4qT6pneznk23ejyjbTg2etShFCcOPvjg8oUvfKHOOvhf75MiUXAf9wybTRRTliRNs0A4CMOEAcN49qPRDArjJUnBHJRFmSDK2Gz4yNFKLL0hr334YDuy9BzK14Q8e+gCIujZWshEd7Zy7BUQPUUdJfZEnC9l+4UR9Amdwj\/4hhfHTRPRmz2k079LoLv2JPjpLHmeH34A7BXxYJgxadBQ1xHTYj\/aBH2vu+66GiuQg\/ODjn2TgYiZQDd601U9W71q3YJ24hyO8IaA2KFz6Zkt+yBO8cPiHXDPsKntRDFlSXKqYLwkORqicfvfaNgW6vh6xuabb14rGmmad99tt92qA3QBgmA4rZGTKRW20gPccsst6\/thbBHXNJ2zDaBPBAM6EqTgowr8o9kp7FK7o6vOpC1S2Hfffes+O+g02Wc7Eh3TNiHq25ZPxCCBb5hSNJrULlwjrQtgB\/aw1oPu9rWP8BE\/mehdSWs7PMN829veVl8ZMuqEpj3tTxRJkmPg5ZIkaNyIksNr2LZWZalE6XqKnrmYbusKScZIkvOy72abbVb3TT1b7WoqNkiS37XN9+gTvWSwb0GX92W9AqLzFESq8XcF4Rd0Ng3vmA1My\/MH6dpM2K+t8Ewu9A5C0HmytkGnkR3Eiy6A7uLmCSecUF8PAm2DXdhIx5o9HPMXMw9GnOJsINrZgsSRJMkx8HJJks0EfMYlKtuWo2vsYXQVGiTaBdCbvrYIwfSzJdzszecEh7ANm2gMbUK0J6MBusa+kaT3u\/hGBEf+0xWoa\/rusccedXU4nyDeH\/XMXrthE4TJRm0Dn6efNsEWHkX44tDqq69evz6EJFwT8cO2C6Cz+td5ADaSJi6wQdikeS7itWtif0HslSQ5Bvox3RpkYKuSopGrPCI4Nq\/pAtgyVunRmY19mk5QMPKOXrJAIFi0LRjQh+70U\/9sYTrJK0Pf+ta36orO8Bf6Nxtnm8EeYo7Xpl73uteVV7ziFeWVr3xlWXXVVeuCFW1HmzFiaFt7oVt0jOin7r364hm9FeBGknEuOo5d8QtthW34h\/2Io\/S3zxbNNNeAff8TdnLNRJEkOQb6QZKgElWyexCB0TnpAqSK7JrT6y2HzuHo7IIgHUtnszjXJqjvaE9sYarVM2nL\/InVenSmv23b9B8N7GI165e\/\/OW6sO2rX\/1q3fepQh1L5IAYCbu5vi3gD1HfEfC1B\/vS6SyNHUhX4rF6jhgR9R62iHNsJi1iRZyz3yTJBbFZkuQYeLkkGcHNloGjQmMbULldcnwQ8Eh0EOjPDtFpEBiATdpml2jAQDf+EGmOIyCwg\/Rm42wz1Hk8d4wRtJETm7BNTMNH4FuQNjmVQZ8YJYYvELMrfMI5x13yCaBrxAW6hw3CRrbOBYkSCDu5ZkGRJDkGXi5JztuYIwg0CSAQFd4FsIeXpCE6CAIAOOfBe6CNdqFjTBkC\/djBMTuwRzMAGGl2AfRlA6KNmFWgP1vxF+eJdG2rbaBrtAM24BNGk\/yFvmIHIiBmYiKudAHaBH1JtBtbvhA2Yy92sg24ns8sqK2SJMfAyyVJ\/0M4tUbPyBqCSiTOSVexXbIxfdmELQQB23gvktNHJyKmZNsWEGNEQDf60lv9BznGMb0RZLPRtxl8gu5GjPb5RgS9sIF0aewXwbEtoHv4frQRHQQrOKUbTUW7YY8uxAvtoNkm2EM7oXt0NNlCO7LoS3qI64lr4v8niiTJMfBySRKiglVkVBRbSo8tgWYltBlhE4FA49fwBbxIc56dIi3s0xZE0A99o0GzAwHpgkAEhS4gbEJf+ocvSIvzzeO22YUP0K\/pG\/xBZwFBag9BkuEzXUDoHPqHHzTtRMIfIsY6Zz9kQTBhkowtKOSCZjyVwRB0AyRpVd3L0TXuBU3Hth+2DMx73FawATtzcjrbQuhv65qQtoFOoXscB8IWESChKyTJHlH3YZ+mD0hrHod92obwAbEjfARRRmwKO3UFdKZ7c+YgCCviCESsDR8J\/xkvXD+vj02YJBVCz9++ArexojS8GMF84xvfqC+n6s0nEolEop0Q78V+HVL7QZSHHHLIxEgSQZr7RRrB7sG4bQLdTG9Yjh9fw0kkEolEO+F5ptkbPBdkaN\/P9k2IJLFskxxtHTvXFjHcjgfCvoDixz2l0X1+16ekpKSkLNwi3gefxUyi7YRHksjChTEsxbxGl863RehJP3p6Jtn86v6816akpKSkLPwi5ov9+AxRSsNxE34miSiwa3Pr5m0DnYhfu\/Yx8nwmmUgkEu3FvGttEKJB4ISnWxFHvNwaN4npVmltkXg\/y++UIcn4mZ75XZuSkpKSsnALbjPoC06Lx2u+Jz0hkrR1Ixe7ia9gGGXJQFobhJ7xNQs\/gusVEPrpaczv+pSUlJSUhVvAYs3gOR\/xsJ3wM0ksixRtkQZx7HxboBdB6IUk\/TwN\/dqkYyKRSCRejPgcppWuBoO2+++\/\/8RIMggk9v\/85z+XNddcs3z+859vjdDni1\/8YvnsZz9bFl988fLpT396vtelpKSkpLRHxPq11lqr\/oanx2yI0k\/YTXi6NUZUtjfffHPZdtttq0ybNm3CstVWW5Wtt976v9K32Wab8otf\/GJkn9h3fVyz5ZZbjuxv25OtnetdZ39e2bKnQ5y3jfT4\/3llhx12qDotvfTS9Vfz53dNSkpKSkp7RMzffvvt69bH5GFSv90qQ0xtRAruL01etqZyY985Eg9W4xlhpPcuLM8+\/Ux5\/tkX9stzpEfqvePne9snH3+8PPPU0+U5I+He\/9bz40A\/vt2aSCQSiYUTk0qSiM59Y\/o2iDGmdIMEm8RJ\/EIAlpfmHpVkERgO622f712DDJHm008+VcW553rHCLKe8z\/jQJJkIpFIdBeTSpLuaVTok29euYBYGBSjSCNH+UoH6UhSGkGS\/veZ3nWVJHsjRCT5v\/vPlccffaweG0k+hYQRa29\/PEiSTCQSie5i0kkS6SFCmSNC2yDGeA1DmuP4eEFMz\/pfJCntid653sWVII0g68jxmWfnEuOT5dGH\/zNyjDTrtOw4kCSZSCQS3cWkkiTSQ3iIzr2RXbxe0iRFEvvK4XrHN954Yy30870RIyJEkgiyPnPs7T\/SI8b77rm3nnvogQfryNK5xx55tJLoeJAkmUgkEt3FpJJkfPsV6dkPknRMwBaROh9lcM2VV15ZbrjhhpHnlp4zvkCSvVFpTxAiYrzh+uvLvx96qDzqVzx6HIckn3r8iSTJRCKRSIyJSSVJGcaU6j333FOJ0Iv7N910U31OiRwRp5+qiqlYpOlLCN5dcc7\/29bVqr37vPA80n6pI8ZrZl5d5vzthhemV3vX\/O8K2LmFGANJkolEItFdTCpJIsFYkBOLdzbZZJOywgorjHwvFXl+6UtfqvumWJHkOeecUz+HZxQZ07P1VY+5RFgJcK7cdced5ewzz6zk6JlkEGiSZCKRSCTGwqQv3EF8yE7m06dPr19c95EAX\/JBiEjy61\/\/et3GVOthhx1WidH\/2tZy4T4k2ROLc7wX+fzchTqH9pR8qEeydUVr77oXXgkZH+ElSSYSiUR3MakkCQgS0d155531Z6ksxrnmmmvqsTy9Dyl\/39CT\/\/XXX19OPvnkSqCkFrrHXXWxTm8U6dkksVgnRpYXX3hh+d0hh7wwkuwdx3uT40GS5OCgw6NOzSiEb8XiLMdttjfd+D3\/rY8LeqBzU7rob3TWriHswkbs0XbQvdkWwD79pYddIPyjiz4ybEw6Sap8I8L99tuvbLTRRrVhyEcaeE557LHHjpDi6aefXv74xz+OjCCVqzqRUWLvGAEixyctzukRov3bbrmlfHfjjV+4Zu5IM0ly8qGO1SEfIOo+6j8CYwSCttmePuHD\/DqCYOht21bdXwr0jsV4QZLhE22Heg5doz2EL4R\/xFa667tgl8nGpJKk+1l4M2PGjLLMMsuUTTfdtI4YFcQoAzjE3\/72t5E0hT311FNHGpB0RPqnSy4p114zu74D+eh\/Hikzzj+\/3HF7j9x6RHnXHXeUb37jG3WFK9J8YSVs\/fcxkSQ5GKi38KkIDs0VzLaxH9e2CREAQ0+EGaTZTKd7G\/UfDUiA0Dm2YkAXoI6j\/uMxlP0gRuelORf2cT4xWEwqSar48847r7zzne8sr3\/968u73vWuMnv27JpXjCQVSr6RduCBB5azzjqrpkeaFbH\/5w1vKF\/8n7XKg\/c\/UK6bfW156\/9dvOy+626VDKWtsfpn6juTPk1nNJkkObmIn6LR6CEaPRs37azu2xgIfDUKKdIZghCautufN60LoK86t5CPf0SHuAugt5gWOtOfr1ioGL4CbKNTmRg8JpUkOYLRIaJccskl6y+K+NFL6eEkCiVfDsF5dtxxx3LGGWfU88pEpM+eNavst+++5egjjyrXX3tdufXmW8otN91cp1+NLFdYbvly+223jUy5JklOLtQpe1rVrP74gbpu1mvUfRsRuvJrZEn\/IEoI\/bvmc+rbK15sMe\/oqe2ge+hsn9CdLYjjaB+xH\/6SGBwmlSQ5gB7RxRdfXBftaAjSOErkpVCOgyT9VFaMJF0z4jA9Mjz5xJPKPnvtVR647\/66SMd3Wm09n1x6qQ+Vm+fMeWGBTyXJ8QWfJMnBQJ2pQw09ggD7qmtwLgIE9Nv3Jhv0I6F7iDR2YJeYfoW26T8a6K7eYxujbdJ2hM+DdhAkKI1EW4lHUeEjicFi0keSSHLf3gjQwp1wjGgQTadwDkn67clzzz13pDwKXQNLj\/gumnFh2XP3PcpjvXs+YjXs3FdAkCWSvMln7OYu8PHzWeNBkuRgoM40cDa1Vb\/qM0jSvsAQvtC2IEkfQk8dQPv8PRqh4yZJtk3\/0aDOww9ItP0utL3wefo242DYgoS\/2A+fSQwWk\/5MEkl+5zvfqfmodCIvooFwAuQYx34M8+yzz67\/L63+z9PPlKd6AeWKSy8ru+2ya3326FN0RpdeBXniscfLch\/9aJ1+jddA6nYcSJIcDPiSerWNKVeNX32Hn6nb5n6bQJ8IfBav2bIB\/cP\/oy3E9V2AeEBXvqDukUa0\/y5AxyhGinyiDgDm6s43iPRmBzIxWEwqSXogfccdd5T111+\/PpjWQGL6QGEiaISjCKZI8ve\/\/\/2LGo39f951dznrjDPLNlttVZ9JGj3W10B6l\/nQ+f9beZVy+21\/rwQpLX9PcvKhsWvoMVqYOXNm\/WiE47B1bPvte5MNejXJwEImq7jjeVxc01b9R0PYBQmICd6Xjo5DFxAjSbA+Q8zz9TG2EA91qCJQO04MHpNKku7n+eL3v\/\/9GhwcR+8ppppsHRMBxbTsKaecUhtSs0HNvuaaMqsXZH978CHlphvnlLN7932452S+5fpwz7E+8+nVy509Qu79U096PfNewxsPkiQHA\/Wp3qLOL7\/88vKmN72pfOpTn6odpyAKAdI1pE2gH735N7865JBDymKLLVa\/OqXzCHQOP2+b\/qOBrjpJc+bMKR\/+8IfrincfEOlK21Pf6lr7sO\/jKh\/\/+MfLm9\/85nL11VdXYnSOPQwqEoPHwEmy2dAFhJgyAI3BhwIQnx6SayNoRF62jokCnnTSSfWZpH1B5rbbbis\/\/vGPy\/nnn18efODBctyxx5XNf7J5uerKq+o0rGePd\/V6o6usvHJ5vJffc73\/e\/qpp8uTflprHGg7STbtG\/WCvCIt9qMO+wX1Fx0hHaSf\/exn9UtKv\/rVr8qvf\/3rct9999XrBkUS7tksAz112IK4m34Ydukn6EXko1PAz+i\/+eab12BoBCHv0Du2\/QLd6acN2YY96GpfcEZOzTIMA\/L2la0999yzdhyOO+64ss0229RRlXIoL4Rf9Ltu3E8ebIGEvMPtmF+APPvdFgLNe9MVIR5wwAH1tbejjz66\/OhHP6rfsA7fHFQ55oewe+QnbwJsxl7hUzCscg0DQyHJZiDieDKSJhDsv\/\/+9YPlHEJaNNLR4HUR4loimFLilltuqffw81knnnhiDbzyc40gtN5669V7h0QFj4W2kiT9I0CCOomGwD7qy7moj2YD6Afk757q7C9\/+UvZYYcdal36BZhf\/vKX9ZdfQJmiPP0G\/4h72xeQ+Ke00JuErfqJyIN\/HnnkkWX33XevU65I4dBDD612ibbTb9sDndxTGezLi0ReV1xxRbnkkkvqsfNBEoOGvLXhXXbZpU61Egv7TMWHPSDqx7afoK+6pi+yPuqoo0Z8ENhCGeRNHPcLoQ897d96661l5513rvbgl7\/4xS+qHZTH+UH4xWgIH2GXyFtZlSvORdnB+bZgKCSpwTMuYxoxevbCAY0CNQBb5zmfa0YzsDL4rutpp502ssKLxINu\/y+\/+H\/p8p41a1b9KHo4+0QqsM0kGQGHXeyzC\/tEgI76bu73C1EH\/EEv2RS6Zy\/y1nH661\/\/Ws8rG9\/od\/4QzwOVhf6mOjX6sIv6bgaHfsJ96aajqANnetFoiQ28DuWcfNlDnfTb99wz8oh9eoe+SPLSSy+ttiHRxgYNepoVMnpSHp1dX9jS8VUu5Yt6sZXWb9BXffPNI444YqQ9SGcrIn9iv59wP\/kAO+yzzz7VR6Qff\/zx5fDDD6911bTBMBA68wN5hi107BxHedgp9tuCgZMkQ4bDuQej6jW7r2+wCo6uESDCuKMZWAH9v94dx3Fsy4mj8P5X41JW4lhP\/fbbb6\/78pCf7XjQVpKkS9iM7SMIsqcRXbMe2Iv0G8rAL\/SWL7jggjqVJB\/Ta3\/4wx9GyigtytJPxKiRv\/AhgRlxRl7ydmwbtuon5I0UP\/axj9UysL383v72t1db0F9ZXNfv\/AXamMKUh7x1XKMt+RUeI3z7yrEgbX9BIB9ksPfee4+Qtl8GMg1vP3wipN9wz4gd\/ANJqgt5R1xRBnYi9vsJ+YRe4haSlAe\/8BEVv5AURDWsOgG24DPKJm\/70S4dx5YMol4mEwMnyUAYz6IEzyDf+MY31uktjqexOhcjBtfOD86pnBNOOKH+j4qRZmpOA4f4X04F7qmBSQ8dpPnf8aCtJMnuCArYJAIAoacAIHACWzruJ+ShLt172rRp9VmzvB3vtddedeSgTP3OtwkEFUGJT5jVEAzsg3OOlTVs1S\/Q1f1Nqa2yyiojqzjlZ6GG2RW6j9dPJwr3lR9oO+oi2gfESDIIWnsbBpRLXNBm+Z+8dYrVDX9QRtcop3P9Rvi6epC\/GaimD4bdlCPK0i+E\/aMOELQBRfiBZ+bbb799PaZ789pBI3SN9mFffVh12\/Sd2A6ibiYLAydJxmREBrXPwQQADdDoTq9IuhHiWBWvDK7Rs9PbtO\/eUWlRcRDEa\/HBddddV9Pc1\/XN68ZCW0nSFLRpPj9wvdJKK9XRzPLLL19WXHHFOqUjWLChUSU7steC1P9oUAfup9F5HmnRCvsKADpROkJ8Rb6DsHt8D\/MHP\/hBWXnllctyyy1X3v\/+91dbsAHi5ptEGZW3nwjy8bxc\/gibPbSDNdZYo06\/0t01g9DfPeUnj2hDRiqrrbZalaWWWqosvfTSZdVVVy2rr756jQPDgPJ4Jn3MMceMtFWvfJlt4BvKHTax7Tf4xA9\/+MOq97LLLluWWGKJ6hvaiWfFyqdMYT\/tpF9wP\/cO\/Tyf1mFkB8fqZ9ddd6124D+utR0GYiaQ\/joP9pvtk\/8ov7KzibS2YCjPJN1YhYYTMCyRrsLtMzIJBxkNcT9BvhlIYoownEa6QHjZZZfVnrJ0\/yvddrzO1VaSFJRN5+ih67nbCk7xPFBdaAzh8GzbT\/3VgfsFSZ555pk1DSltt912tRcddU3s9xPy0fBN65pmpb+6tqqSPaygFpz4Z\/hmP0Ef4uP8SDlGTXwWQVms4ZiNIkj2E+5HtIMIujqUpjYPOuig2uatOOYPRnU6tsOAcqgPgck+vxOgdtpppxFfZLcoP+kndMA9Ajr44IPrKG7DDTesU56eV5t+Fj90ZKJObPsF9wtft6+jYNpZGn\/lqxbvaDPydZ1zw4D81Yf8Il4rA5GmbtSVfeVrE4Yy3RqGdQ8NkjEZVRrjS3ON7Us5nfydj8oQSNzD\/r333jviNLYqFDlaLanSVGqkx3XjQVtJkh3YPmzKPmzCtnGebWEi9poI5KUMVjIGKfELnx70alDUczTOfgMx0U0+tkawkQZhm\/DbfoNOOiuf\/OQnRwIfknzPe95THyE4rwzRdvoJ93Zf9492F\/aWl46Sd1edY38yDMjfFCdSiraNsHTg+IqyKXOzjvqJiBPyVSfNhTtsRPhI2KXfCP1szZYZScqH7kbUnklqI8oxTFx44YUjHSgjavWjA2UKmC1IEGX4VVswFJLkeDFcD0PacjbCCcKwtqNBAcNh3atZIY6Ja9xPnuBcOJXrQ8arS1tJkn3YIeqEfcL+YcewqfTx2mu8cF95ESM3P6YdPmFKyUIeZVQuZWk6Zz8g\/5iSDx\/S6PlO6C4tbNDv\/N1bXmZAvvrVr9ZpV77ti0M+qKBsyhX+2u\/85W1E1PQBaXF85ZVX1lkY9ncsfRigJzIQhIOIjKiQlf2oE\/uDKFfcP3zTowcEJZ\/oyMR5NrPfT7ifMgACMpKUjzQjScfKEOUYFsz2eBThkcwnPvGJ8tGPfrQK0o4YLsazkzp03BYMbbpVpQLjReMHDsAJbcH1L5VPVIL7uRdxfdzPfjiPffd2vX1BIcihqexLoa0kGYi6YB+2sWVbW4jG6Lif+kcd2mr8nkHK34yAkeS1115b83Revv2ewpE3vd2bD\/ETI8nwwzgHg2jw7k+Uw8cwvP\/m+KKLLqrPipu62++3\/u7tvmwO8mn6AoI0koz2NSzIH0H7kIA6EXj32GOP+hpI2ELZldux6\/sJ9R86ixdIMuoJpLOTvPudf9yPfmAthanuiFtGcZ5TOq8Mw0TTBsoSNoq2ER0JacNa5DUsDGUkGQ7V3I9j9wwZD0a7T2znRfO+9pv\/Mx60nSSb9ph3C4PSORoZp\/MhiE022aSmWdDl59CMsBzLX+OMxtgvuC\/ikX\/kYSQZwWfQNpCPvNnAV1023njjGnz02D0rlmc0SAFovO1jvAid5tUzCOCqq66qX\/7xjG6YMCpR96bgrfyVv287W+SnXCEL0pbHA4E+7skWpnrDJoHR9l8u3CvyZwMdBCNHj5Wkr7POOvXZsPP0jw7OMCDP0HXefYj6gCaRtAFDIcmFGW0nyclC+JIAZPRoSo2tv\/3tb9dFPNKRAwSh9hPuFyRsn\/jCTL\/zGQ1BzgKhF+YtTDHtusUWW9Tn6MoRPXfTjsOCvJTLKylWegrEYZ9hgM6I0lTjBhtsUP3BQhodGuWan\/QT7qdu6G3rfVFl6nc+oyFGaerBCJIdLB5ae+2166swfCX8tm1kNFWRJDkGkiQHAz1jEAxMz3gm59uUu+22W+1F87UgySCUfqLp7IKg\/IxahuXjQfx0ZwMrJzfddNP6gY0I0EGSsR0GolzKFITpeFh2kY9613Hyiz+eecWzLmWZn\/QbbG\/a1RZhN0eXgwb7x3SlMljA5fWXzTbbrHZalEcHMka3w6qXLiNJcgwkSQ4G0cgFxGj0glH02jljECm\/67ftw59t5Y2Y7EeegwYCEhBJLKChO72Vy5aELYYJ5VAedlG+ftv+pUDX8AH5s4WyOB5N+om4pzJEOYZlA3nQ1wpnOstX+7DPLuEvfFW6rXOJwSJJcgwkSQ4GEfyCJPWQwShSejT+QfpdBBl5GEVqAMoyDERegp6pRHYwciCCc+hsO2y\/i2e17GMUN0yErvKnO9GJCDvMT\/oJ+YTv0V\/9DNMndJ5Ae3AsfyPL8A3HYQ9Tr4nBI0lyDCRJDgacTTDmU02R3gx+gkbTMfsF9xeIBB35KksQ5jCACOk2r\/7ytwXlEaCHVSaQd3Qe2Ma+\/IM4Bg2kLN+Y6qV\/2GU06SfkFfXi3vSO+hgGmp0kW7bg\/46dUx\/RuRpEu0j8N5Ikx0CS5GDAlho8ohIMBABpeskBx4JBbPsNwUYZ5M\/5bYeFCHrKYBQZI2plCD9TpmiUwypb2EJZgiBsm8FhkJC\/OpFfbKMs7DI\/6Sfcj6\/JE2yVod\/5jIbI2+iR7eUtzbF9Ip1tlKmLMXnYSJIcA0mSg0EE3phC0nsnjiMQsHfY3Ll+I4JNBBzBaVg+jgzkF7orQxBlU\/dB6j8\/BBnJT9nANsoxaMiLbdjANo6jDPOTfiJ8T5722SFsMmjIg54k2kH4SXSonJNuO0x\/7TKSJMdAkuRgoPGDABSkYMpT4w8CDXs7LyD0G80gJI\/IexhAivIkymEbxOQ49I92Nwj9R0ME4HnLMgwEIUa+ytEsw\/ykn5C3e8qPL6inyHvQkEfoqxzyd8wm9nWilCd8wX5i8EiSHANJkoNB+JItu4YIBMAZIzgJEIOwvSAT945tsxEMEqF30w5BEKA80kikDQs6KwE2CvsMA\/KK4B8dqbCT7fykn5BPU1f3lzYsRL3HayChY8wk2A+7JIaDJMkxkCQ5XAzTxlmf80fTLpNho6yX\/7ZB2mTykCQ5BpIkE4lEortIkhwDSZKJRCLRXSRJjoEkyUQikegukiTHQJJkIpFIdBdJkmMgSTKRSCS6iyTJMZAkmUgkEt1FkuQYSJJMJBKJ7iJJcgwkSSYSiUR3kSQ5BpIkE4lEortIkhwDSZKJRCLRXSRJjoEkyUQikegukiTHQJJkIpFIdBdJkmMgSTKRSCS6iyTJMZAkmUgkEt1FkuQYSJJMJBKJ7iJJcgwkSSYSiUR3kSQ5BpIkE4lEortIkhwDSZKJRCLRXYxKkkGKF110Udl6660rQTzzzDNzT3cDdJ4+fXq5\/\/77636SZCKRSHQLSPLQQw+t+zgweGARjPnUU0+V8847r2y\/\/faVQZ988skRskhJSUlJSWm7IMnDDz+87j\/99NMjM6p1uvWJJ56o062bbbZZHU0lEolEItElHHXUUeXYY4+tg0ZEGVOui0jAmGeccUbZYostKoM+\/PDD9WQikUgkEl2A55GHHXZYnWrFiY8\/\/nhNHyHJGTNmlGnTplX2fPTRR+vJRCKRSCS6ACPJY445pjzwwAN1JIkb8WF9JvnII4\/UhTtBksGkKSkpKSkpXZAjjzyyTrfGI0dEiQsX8UfiOeecUzbaaKNy1VVXlZkzZ5YrrrgiJSUlJSWlE+LtDgt3YpA4QpKePzpw0aKLLlpe9apXlcUWW6y8+tWvTklJSUlJ6YS84Q1vKMcff3zlQ294xKzqCEkaTRpBkksvvbTMmjUrJSUlJSWlEzJ79uzy0EMP1WeSMZpElov4Y0WrxHhQ6Rkl4kxJSUlJSemK4ECrWvGgVyNtF8GWCBIkuDCOE4lEIpHoCgwYm4QJI99uTSQSiUQi8WIkSSYSiUQiMV+U8v8BQrOTBNmDQHEAAAAASUVORK5CYII=\" y=\"-3.5\"><\/image> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_3\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"167.99999\" xml:space=\"preserve\" y=\"86.24652\">+<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_4\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"234.99999\" xml:space=\"preserve\" y=\"86.24652\">+<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_5\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"299.99999\" xml:space=\"preserve\" y=\"86.24652\">+<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_6\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"103.99999\" xml:space=\"preserve\" y=\"73.24652\">_<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_7\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"373.99999\" xml:space=\"preserve\" y=\"75.24652\">_<\/text> <\/g> <\/svg><\/span><\/p><p>Suy ra h&agrave;m s\u1ed1 \u0111\u1ea1t&nbsp;c\u1ef1c ti\u1ec3u t\u1ea1i x = 0.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 03:34:24","option_type":"txt","len":0},{"id":"5293","post_id":"7504","mon_id":"1159285","chapter_id":"1159288","question":"<p>H&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=\\dfrac{2x+3}{x+1}$<\/span>&nbsp;c&oacute; bao nhi&ecirc;u \u0111i\u1ec3m c\u1ef1c tr\u1ecb?<\/p>","options":["<strong>A.<\/strong> 0","<strong>B.<\/strong> 1","<strong>C.<\/strong> 3","<strong>D.<\/strong> 2"],"correct":"1","level":"2","hint":"<p>H&agrave;m s\u1ed1 \u0111\u1ea1t c\u1ef1c \u0111\u1ea1i t\u1ea1i \u0111i\u1ec3m <span class=\"math-tex\">$x_0$<\/span>&nbsp;m&agrave; \u0111\u1ea1o h&agrave;m \u0111\u1ed5i d\u1ea5u t\u1eeb d\u01b0\u01a1ng &ldquo;+&rdquo; sang &acirc;m &ldquo;&ndash;&ldquo;.<\/p><p>H&agrave;m s\u1ed1 \u0111\u1ea1t c\u1ef1c ti\u1ec3u t\u1ea1i \u0111i\u1ec3m <span class=\"math-tex\">$x_0$<\/span>&nbsp;m&agrave; \u0111\u1ea1o h&agrave;m \u0111\u1ed5i d\u1ea5u t\u1eeb &acirc;m &ldquo;&ndash;&ldquo; sang d\u01b0\u01a1ng &ldquo;+&rdquo;.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong> 0.<\/span><\/p><p><span class=\"math-tex\">$y^\\prime=\\dfrac{-1}{(x+1)^2}$<\/span>&nbsp;&lt; 0,&nbsp;<span class=\"math-tex\">$\\forall$<\/span>&nbsp;x&nbsp;<span class=\"math-tex\">$\\ne$<\/span>&nbsp;&ndash;1 n&ecirc;n h&agrave;m s\u1ed1 kh&ocirc;ng c&oacute; c\u1ef1c tr\u1ecb.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 03:37:44","option_type":"txt","len":0},{"id":"5294","post_id":"7504","mon_id":"1159285","chapter_id":"1159288","question":"<p>\u0110i\u1ec3m c\u1ef1c \u0111\u1ea1i c\u1ee7a \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1 <span class=\"math-tex\">$y=x^3-6x^2+9x$<\/span> c&oacute; t\u1ed5ng ho&agrave;nh \u0111\u1ed9 v&agrave; tung \u0111\u1ed9 b\u1eb1ng<\/p>","options":["<strong>A.<\/strong> 5","<strong>B.<\/strong> 1","<strong>C.<\/strong> 3","D. &ndash;1"],"correct":"1","level":"2","hint":"<p>H&agrave;m s\u1ed1 \u0111\u1ea1t c\u1ef1c \u0111\u1ea1i t\u1ea1i \u0111i\u1ec3m <span class=\"math-tex\">$x_0$<\/span>&nbsp;m&agrave; \u0111\u1ea1o h&agrave;m \u0111\u1ed5i d\u1ea5u t\u1eeb d\u01b0\u01a1ng &ldquo;+&rdquo; sang &acirc;m &ldquo;&ndash;&ldquo;.<\/p><p>H&agrave;m s\u1ed1 \u0111\u1ea1t c\u1ef1c ti\u1ec3u t\u1ea1i \u0111i\u1ec3m <span class=\"math-tex\">$x_0$<\/span>&nbsp;m&agrave; \u0111\u1ea1o h&agrave;m \u0111\u1ed5i d\u1ea5u t\u1eeb &acirc;m &ldquo;&ndash;&ldquo; sang d\u01b0\u01a1ng &ldquo;+&rdquo;.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong> 5.<\/span><\/p><p><span class=\"math-tex\">$y^\\prime=3x^2-12x+9$<\/span><\/p><p><span class=\"math-tex\">$y^\\prime=0$<\/span>&nbsp;&hArr; x = 1 ho\u1eb7c x = 3.<\/p><p>B\u1ea3ng bi\u1ebfn thi&ecirc;n<\/p><p><span class=\"svgedit\"><svg height=\"160\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> &lt;title&gt;&lt;\/title&gt; <rect fill=\"#fff\" height=\"162\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> &lt;title&gt;&lt;\/title&gt; <image height=\"153\" id=\"svg_1\" stroke=\"null\" width=\"393.00002\" x=\"5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXIAAACECAYAAACNmKC5AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABqLSURBVHhe7Z1nkBTV14f\/VX4wwCcoC0UFZdUqyoSlYgDFiCKgghEUSgRLAQHJSUAJEsQABhAFDCgYCIIgSjARJZlAFBCzgiBJJAjc930O01vLuuz29ITt7vk9VdeZ7p0Z1tnbvz73hHv+9+abbzrQox71qEc9RvPxf\/ZfIYQQkUVCLoQQEUdCLoQQEUdCLoQQEUdCLoQQESe0Qv7LL7+4v\/\/+O3EkhBDicIRWyKdNm+Z++OGHxJGIC\/\/++69777333Pjx492ff\/6ZOCuCsmfPHvf111+75557zsaoUaPcb7\/95vbt25d4hcgFQivkw4cPd1999VXiSESd\/fv3u40bN5qAV69e3Z122mlu2bJliZ+KoHz77bdu0KBBrmHDhq5+\/fquWrVqbsCAAW7Lli2JV4hs8fvvv7tvvvkmcZRdQivkjz\/+uPviiy8SRyLqYDki3BdddJE7\/vjj3SmnnCIhTxFWN9OnT3ePPfaYHW\/bts09++yz7sgjj3QrV660m6fIHu+++67r27dv4ii7hFbIn3nmGVnkMWT37t2uXbt27qyzzpKQp8jWrVvdX3\/9lThybu\/evWb8VKhQwc2fP9++a5E9JORFgJXx+eefJ44yz4EDB+xC2LFjhw2sHc5xMRB05dzOnTvtNSI4EvLM8c8\/\/7iPPvrIderUSfGHUiAZIWe1xLWArqAv3uqJv6GnQTxHh\/wQWiFniUgQJ1ts2rTJjRw50pUpU8bG1KlT7QtGdHAFcO788893o0ePTrxDBEFCnhn4XpcsWeJuvfVWc7FghIjskoyQf\/\/9965Hjx6mK8SLVqxYYWJep04dV758eTtfu3ZtSwzwQ2iFfOjQoVmzyLnzLVq0yD3yyCNu7dq1Nlq3bu06d+7sLr\/8cjds2DA7N2\/ePMsMeOGFFxLvFMkiIU8\/iEKvXr3cCSecYAJQpUoV9+OPPyZ+KjJF\/\/79LXCfl5dnA4OvXLly+cenn366a9q0qduwYUPiHQfBJYbo4z5GVz777DN35513uoceesgde+yx7q233rLzH3zwgXvqqacsg68kUhbynj17uiuvvNKyEbCiL7nkEte9e\/fET4Pz9NNPJ+0jJ1L\/5JNP2u9Q3HjttdcO8S3+8ccf7v333zeLxgPRvvTSS123bt3cd999Z+d27dplX\/rYsWPtWCSPhDz9YIisW7fOAp9krhxxxBGWLECWkMgc69evNz0gHsHAHdyiRYv84wULFljQmUB\/QdasWeNmzZrlVq1aZcf8\/RDrypUruyFDhuQLPx4BLHL+riWRkpCTIoh12q9fP3fXXXeZVYCwN2\/ePF\/8gvLEE08knbXCF8Z7Jk2aVOzgd0NQPCg+4gv76aefEmecmzJlimVYsE1kwdeS7jVu3LjEkUgWT8iPO+44WwWJ9MH85zu98MIL7VpkXovs4de1ghtl5syZZkDC9u3bzWVbqVIl06+CfnEMSozMkggk5PhycHtgNSOK3E3atGnjJkyY4FavXm1iieClAu6ML7\/8MnGUWbDO58yZY6sKj5tvvtldd911ttzxVga8DsHHvSKCgZB37drV0g+xZkR6YdV4zz332LK98JJeZBa\/Qk6hI4aiJ9DccC+++GJXt25dN3jwYCvoAh5ff\/1109OSCCTkVI0tXLjQRJuJQ5AQlwbBSS5UBI+7TCrgG8qWkJOJwhIIH\/nDDz9so1atWm7EiBH2e3jnGByzbBLBYH506dLFnX322XKtpBnmMddgvXr13Mcff2xZViJ7+BVyXCloyMCBA01TiMXh8p08ebJ5IvgMT2+o1PXjYg4k5ETEyfJA0FnOERjESsVHzd1m6dKliVcGJ9vph0T6Z8yY4Vq2bGljzJgxlsKFuwXfP+eIMvvxV4mi4TvGHUdMpWLFihZLYZnJxBbJg8FEuqFXns88xaLr3bu327x5c+JVIltgePrVB7Rl4sSJpivt27e3ACcuFaxzgqicx7BcvHhx4h3FE0jI+QffeecdC7CwPCbA8vLLL5sVjpslHVkdQXzkItxQwkwpecHBEpMovkgejAwE3Psu77jjDivXV61D7hFIyImmVq1a1ZbILAtuueUWs7QQdy+YmCpBslaEECIXCSTk3PFxPZx33nm2jOvQoYOrWbOmu+mmm3zlPPoh264VIYSIKoGEPBtIyIUQwh+hFfJsl+gLIURUCa2QZ7NEXwghooxcK0IIEXFCK+TqECSEEP4IrZBTKao8ciGEKJl8ISf3m8pGtk7kkXJTNnZhbxGec469AXjOYPcuqpi844KvZXif5R0zeL\/32Qxe730mn8Vn8pz3sccJRUYFP1NDQ8PfKHgdM7iOuEa944LXmze4FgtfwwWveYY+9+DIxufyebzeT\/VzvpDjxnjjjTesoIfNr9hAirJRBs\/5GSWlPGcUfF3h1zL4Ga\/xjhm8n8\/xjtlZ8O2337bnBV\/PI7u3USHKa7zXa2ho+BtBrk+uxYLXW+FrnqHPPTiy8bneZ7IdLkWYxSEfuRBCRJzQCrm66AshhD9CK+Tqoi+EEP4IrZArj1wIIfwRWiFXib4QQvgj40JOR5j77rvPmggU7IlZEirRF0IIf2RcyGk3df7555uFTVcMv2g\/ciGE8EdWhPzMM890y5cvT6pziToExRPaA9LpvVmzZq5BgwZW9OV1ExepQf9cWr\/ddttt9t2Sg6yWb7lB2oV8zZo1VtW0fv16awlHN3060tPmKxlyNdhJ2zOaWcexXRduNkT87rvvths1bcp4zqPXOVwEg4KRuXPnuqZNm1rGF98prd9effXVpFbCYSKZHpi5TkpCjmjjAqGslEawQPVSq1atrIkoZaWUoFLck2xfxmx20Q8TCBqdlrCu4gaW9+233+4eeOCBfHHhho2Yp6uzVK6CwdSoUSPXqVMna4gObHPByoeO+lGEMnU\/XelFikI+duxYd+edd1p3eUQXqwBL4N5777Wfc0wJKr5ub3L5ZdiwYRLyGLF\/\/363atUqd\/TRR7sPP\/ww\/\/+PzKTGjRu7fv36xfLmlQ34bnGpnHDCCdYMnWPAnVm3bl03YsQIWw1FDQm5fwIJORMFa\/yVV15xo0ePNqscfzYbbyHAWNPAhUk7f29iJUOuulbiKuTESlgmlylTxn3\/\/ffmKwesdIS8devWSbvfxEG2bdtm1+LJJ5\/sNmzY4A4cOGDnf\/31V1e7dm3Xp0+fSLpXJOT+CSTk+G9feuklm0ADBgywXb6wvufMmWPH7N6VKrlSor9x40bb3Wz+\/Pk2pk6d6i677DKzWr1z3NA811VUQWAGDRrkypYte8gGQJ6QN2\/e3K1bty5xViTDDz\/8YOm9eXl5iTMH8YS8c+fOSaX+lhbE1VhRePMeY65Fixb5x2wetXLlyqRX97lAICHnjv\/zzz+bkDNJCGABnfXx0fFlp0qulOhPmTLFXXvttXYRMipXrmxWa5UqVfLP1a9f3wJZUWbTpk32Nz2ckDdp0sR98803ibPZhxUCVuvatWuLHWSBEMQPE8Sj+vfvf1ghb9u2bSRukvw\/VK9ePX\/eH3\/88a5cuXL5x6effroFczEKxKGk5CNnqUwDCAItXAi9e\/e2JXI6kGslXq4VhJz4CUK+Y8eOxFln7hSCdMRVsCxLC34\/jBJ+v+IGYoNwhgkE+9FHHzWxK+jG5PdEyLt162aviRpyrfgnJSFnv\/AOHTqY4M6ePdu1bNnSfOTpQEIeLyHn\/wfX2zHHHGMrNs+qJdbSsGFDsxpxM5UWrDIJCHKTKW6wrPd80GGB34u9rStVqmQ3Q+\/3Y4Vz+eWXmxhG0TUnIfdPSkK+evVqV6NGDXfiiSfaMqhOnTr25aeDXN39MK5CjrjgmjjttNOsUMVzr+CWIx3xxRdfzA+AiuTgu\/3kk09cxYoVLXvF+x5JOyT9kMyxIAkHpY2E3D+BhJyJwiS55ppr3Lhx4ywQ8fDDD1uRR7qWx7m6H3lchRyIqbBio9L3xx9\/tHO44rDGCfiK4BCzIm+ceIo3dygIIghamrGHVJCQ+yeQkLMsnjx5svkLiYZjVZGtwrl0RZRz1bXCRcj3GUfrlP8n5guZCLhTKCPHHUdBWcEAqEgerjty8u+\/\/\/7877ZNmzZu3rx5JfZ7DCvET6J6E8o2gYScZRq5wBRxYFGRp8pyOZ3BqlwtCIo7zB1WWmQ4EfwkpQxLXaQOPv6lS5e6559\/3r7bZcuW6QaZI6TkIyd1jtxgGoamu5gjV0v0hRAiWVIS8kySq64VIYRIltAKubaxFUIIf4RWyNVYQggh\/CHXihBCRBwJuRBCRJzQCrm66AshhD\/yhZxtU6nOJJ2QRzbAyuYgF33w4MH5x2z007NnT3tO4REFR97PNDQ0NOI4Cuovmof20XVty5YtCaUumnwhZ1Mdinwo6uGRbS+zPfi3vefs5kabOJ6zTzHD+5mGhoZGHEdB\/fV0j217S9o6ObSuFfp8KmtFCCFKJrRCzj7nyiMXQoiSCa2Qq0RfCCH8EVoh16ZZQgjhj9AKuUr04w29OmnaHcUWZEKEjdAKuUr04w11Aqeeeqp75513EmeEiDZk\/tHgozQIrZAPHTpUlZ0xhLZkdKuvVq2aq1y5sqWYChEHSrOjUWiFXJWd8WTnzp3WsJtih0suuURCLmKDhLwItNdK\/KDlGG3d6PhOT1YJuYgTEvIiyNUu+nGGAGfTpk3d5s2b3ciRIyXkIlYkI+Q0Hx84cKDLy8tzNWrUMK2jDeIVV1xh5xg0z547d27iHcUTWiHP1S76cYXsFNxlNNNlwtJXUkIuogwp0nXr1rV5zKhatao76aST8o9r1qzp2rZt6zZt2pR4x0G2b9\/uZs6cae+fP3++Pb\/vvvvMeD3zzDPd2LFj7fzEiRPtHNldJRFaIVeJfnxgw59PPvnEjRs3LnHGSchF5KHOZfr06dazmMEmf40aNco\/njx5sps3b57btWtX4h0HYR8VXIwrVqywYxpkjx8\/3p1xxhm2x5TX\/5jrZurUqW7atGl2XByhFXKV6MeHb7\/91vXo0cOsl5YtW9qoVauWO+6441y9evVM4H\/77bfEq4WIJn5dK8T+MGBwNQIJAOxweNRRR7nFixe7vXv32nngRuDH2AmtkKtEPz5gYUyYMMG25\/RG\/fr1bRnapEkTszo2btyYeLUQ0cSvkGORUz\/x0Ucf2THXBwYNrhjcj961wOObb77ppkyZYsfFEVohV4l+vJFrRcQNv0KOBf7xxx+7IUOGuOeee872ID\/33HMtm4v9x9E+zuOVIClgyZIliXcentAKuUr0442EXMQNBBcL2g9Y4S+99JJr0KCBa9y4sRs9erTtOc5+5A8++KCdb9OmTb7VXhKhFXKV6McblotE6vEJCiFSI7RCrhJ9IYTwR2iFXCX6Qgjhj9AKuUr0hRDCH6EVcpXoRwOqNClcYKxcudIaxRbMg00X3NSXLl36nyo5IVIhW\/M304RWyFWiHz7o7v3pp59aSTEFDC+\/\/LK5wEiXYt+IwYMHWwn+nj17Eu9IHxRPUClH+fJnn332n2o5IUqCjvSF5y8GI3M30\/M304RWyFWiHz62bdvmli9fbpWYlBKzHW27du1cly5dXKtWrdzrr79uFg1WTrohNYtN++fMmeNeffVVN2PGjPxSZiH8wB4nBedvp06dbO4yj6k2zuT8zTShFXKV6IeTrVu3ulWrVtmGPt27d3ft27c3MWefie+++y7jy1K6sLBHBdWgb731llu4cKFtjyuEHwrPX+ZuNudvpgitkKtEP5xg1eCvZmk6YsQI17lzZ\/fAAw9YXjgVa9mAi41tQCkmwrrikb1a6D4kRHF48xc33QsvvGAryY4dO2Z1\/maC0Aq5SvTDBeKJa4NdDBFxXBtUnXXr1s3KkhHSffv2JV6dHbgoqaZjHxf2rli2bJmdi+LSWGSWwvOXmz9bxVI9Sak8brpsz990ElohV4l+eEAcyelny07cGV6wkXLiPn36uPfee6\/ULgL+XfyaLJUp+2cPC6z13bt3J14hch1v\/uKOYz8Tb\/4SvO\/atWupzt90EVohV4l+6UOAkR3YsFzIFmEPZRone2DhEJTmQilttwYXIhcoYs7ezqSS7dixQ9Z5DlN4\/iLkv\/zyS+Knzp6TtRKG+ZsqoRVyleiXHkxqAohYLETyR40aZRZN4bQscm\/9buqTLbgosc5ffPFFSzXDWo9iOpkIjt\/5SxYWN\/84EFohV4l+6YAFiyWLCLJvON1JiPRHDdxybAXKRUysBetMwdD4E5f5myyhFXKV6GcfLJa1a9daNJ+sIZaenIuiAHJBcwHjM0fQsdKx1kV8idP8TZa0CzlLFTZD5wtNBQl5dqH0nUg+2UKzZ882EYx6AIgLmKAW1XqkKeIPjctSWhxKHOdvMqQk5BRj0LKfC4Qu6cBm6U2bNk25SEPBzuyA0OGGwJfIpvj018R3GCfIYCE9kv6HGBkstyksUiA0+uTC\/PVDSkLO8qVXr16ud+\/els+7efNm821T8poqSj\/MPIgb+eCvvfaaBS3JQsGXHEcQbVwrGAe4WcaMGeMWLVpkHcxFNMml+VsSgYScJQvLF748\/I+vvPKKRYgRXgSYjIFUkWslc7BaYs+JSZMmWUoWJe9YqLkAFzr573PnzrWcYnLjf\/rpp5wVgCiSy\/P3cAQSciY9d0JKWrHGP\/zwQ1u+smSlQITjVFGJfvrBZ4wVgy+Rwp5Zs2aZiEV1f4lUQAyYXyzHqfTzVpQivBQ1fyn+ysX5W5hAQs4XSnCBbSERckqjAV85jUNZ4qSKSvTTh5eShVuBUnZK2hEuZXEc3NoUowQfKzsrMnclDOFC87dkUvKR42tkO0h2E6Pwgn032BYyHci1kh4QJQLR5NWy\/SvLUf5WuRTRLwkCZmSz4GphqY4BketL9bCg+euPlIScZek999xjG7Sz7ezdd99tOZzpQI0lUsOzYtiaE3GidB0rRpkah4e8Y74rYjxY52ykJN956aD5mxyBXStE+xcsWOBq167t8vLyXIUKFVyDBg3SVrKNm0bph8FAfNhjAisGUVIxjH8oIFm9erUF8KkKJYjPXGfOi+yg+Zs8gYOdLHEqV65sueQcU3DBSFdPRblWkgex4W9BMRZCREaRVjXBoKDEC97zSG6yrMHMovkbnEBCjt+KPFyixkxwlj74x5nw6bJcJOTJg9XClpwUU7FTIWIk8QkG8xjrnOAnbkNchgiMAqGZQ\/M3OIFdK3zpbdu2deecc471u2MZlM4OG3KtJAdl6FQtkn3Bc9Lr0nVTzWUIqrHLI3UTZFLRWYYUOJFeNH9TI6Vg55o1a9zixYstIJHuCjkFO0sGa4XsClZCWIzsu4zIqKlC+mHlSfk3LcFY9pPlQraLCI7mb\/pIScgziVwrxYOIkCaHi4tgEKsXVklaimYO\/LdkslDwRiocOc0EQ0XyaP6ml9AKuQqCigYxIa+WpT6dcCg1p+Sc8yI7YEVSFo6bhdxzysVxBYiS0fzNDKEVcpXo\/xcsFlYpCAiDvFoJSOlA0JPycAL+lIvPnDnTrVu3ThZlMWj+Zg65ViIAokH2RMEO9pSWi9IHcUKQKBvHRaBO\/v9F8zfzhFbItY3tQRCFojqAi\/BAZgtNqbHK1cn\/UDR\/s0NohTzXG0vgMyyuA7gIHwg6QqVO\/pq\/2UaulZBB7ix+w5I6gIvwghWKmyVbnfwRTSqqKVjCT1+aNw\/N39JBQh4iuPi4CLn4c6kDeFzBNZjpTv7MGeo4Onfu7MqWLevKly9vNxAya7JdUKP5W3qEVshpGcedPFfAYsGiysUO4HEFYUPIMtnJH8u3f\/\/+7rbbbjMR\/eOPP1y5cuXc4MGDbSWQLTR\/S5fQCvnQoUNzxiLP9Q7gcQYhI7iXqU7+NDu\/+uqrLdAKZIhQrHTllVdmLVlA87f0kWulFOEC52LDl5jLHcBzgUx08uczye5CyL0KUz6PRi+nnnqq\/RuZzBDR\/A0PoRXy4cOHZzVrhSUv+a0NGza0QcUZ+8ewRPXOtWvXznZlSwdc1Px76gCeOyCyzDPmNW6WVDv5I5ytWrVyN9xwQ75g828g6pUqVbKGL5nyUWv+hovQCjlbh2ZraYgvj4tr4MCB5stk9OjRwzZHuuaaa6wLEudYFo8YMcKq+YJCRF8dwHMbBM9PJ38Evrg4EddHs2bNzMjwKCjkzFfy29OJ5m84iZVrhW102c+YiHlxgwuo4BIQHx++PXa288CaufHGG12LFi3MagImLL5IxDxZ8JVixaiDvfBAFMlmOVwnfwKG5KTzuqIgT\/3ee+89rJCTMJAuIS9q\/qqDfXiIlUVO1J6Lgv3Rixuef9IDQWUnOx498GVecMEFbvTo0YdkGrCcJWjlFy4sfi8sfnUAF0VxuE7+CHLPnj2t7J95VBje1759e1e\/fv189wyvI7B60kkn2YoyVZ+15m80kI\/8\/2E3NiYpe0F4dOrUyV1xxRVmEbF1KWAZ0dqOPF0\/cDGqA7jwAz5uslm8Tv64VLDWu3TpYlXO+LoLp\/IhsMRwrrrqKkv9A+YW841gJzeHVLYJ0PyNDrFyrQSFi2jp0qWuX79+VlLMqFatmlk7DIJSnMOXScYBAZ7i8KwYdQAXyYI7hTlDWTui3qZNG2ujSKPzokQZC\/n666+3RyDeM2TIEGuETvZKEDR\/o0dohTzbeeS4WliK5uXl2UDAcbUQlCIzgHM1a9Y066g4CFipA7gICvOHucjqsG\/fvlaxyfwbMGCAFfsUFlP81gg3eeNY5axiTz75ZIvlBGm9qPkbTUIr5FGr7GTZy5KTi0kdwEUQEGmMB1wYdO\/HGveEHBcLAcaiRBVj46GHHnJlypSxEn2s82RTGjV\/o41cK2mCC0wdwEUqEKQkI4S9WehZ27FjR9e6dWsTccS8e\/fulilSGOYZLhXcIQys6sL+9JLQ\/I02EvI0QW4tF4I6gIugeGJMpglCSloswUWsZOYX2Vb4vQ+XjpgKmr\/RJrRCHrX9yLkAt2zZomYCIq0gqFjYBOQRd\/zembCUNX+jTWiFXB2ChBDCH3KtCCFExAmtkKuLvhBC+CO0Qs7exhJyIYQoGblWhBAi4kjIhRAi4oRWyIUQQvjBuf8DiVmY6MS5H\/MAAAAASUVORK5CYII=\" y=\"6\"><\/image> <\/g> <\/svg><\/span><\/p><p>Khi \u0111&oacute;&nbsp;<span class=\"math-tex\">$x_{C\u0110} = 1$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$y_{C\u0110}= 4$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$x_{C\u0110} $<\/span>&nbsp;+&nbsp;<span class=\"math-tex\">$y_{C\u0110}$<\/span>&nbsp;= 5.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 03:39:29","option_type":"txt","len":1}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.