Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 12Toán lớp 12 - Sách Kết nối tri thứcBài 1. Tính đơn điệu và cực trị của hàm số.Bài tập nâng cao
{"common":{"save":0,"post_id":"7505","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"5311","post_id":"7505","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$f(x)$<\/span>. H&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=f^\\prime(x)$<\/span>&nbsp;c&oacute; \u0111\u1ed3 th\u1ecb nh\u01b0 h&igrave;nh d\u01b0\u1edbi. H&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$g(x)=f(1-2x)+x^2-x$<\/span>&nbsp;ngh\u1ecbch bi\u1ebfn tr&ecirc;n kho\u1ea3ng n&agrave;o d\u01b0\u1edbi \u0111&acirc;y?<\/p><p><span class=\"svgedit\"><svg height=\"220\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"222\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_11\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><g id=\"svg_7\"> <image height=\"211.00002\" id=\"svg_1\" width=\"386.99999\" x=\"7\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUoAAACpCAYAAABNjnSdAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABjeSURBVHhe7d0JtE3VHwdwypQxRFEhQ7QyJJWKyhRKaCJFpkyZSioiJZmL0rAatEoDooFFZMyYBkOmkilRkUSiPKX6\/f\/f\/fbjvnvPe3c6555z9vl+1jqrt\/fd6PLe955z9j6\/nUMoUJo2bSo5cuTI9ihQoICkpaXpX0FEDMqAYVASxY9BGTAMSqL4MSgDhkFJFD8GZcDEEpS5c+eWo0eP6l9BRAzKgBk8eLC0adNG+vXrd\/KoXLlypnaLFi1k27Zt+lcQEYPSMKNHj5bSpUvrlkjt2rVl3759umXtjjvu0F8RkRUGpYHy588v06ZNU1\/PnDlT9uzZo77OCoOSKHsMSgM1bNjwZFC2atVK\/Tc7DEqi7DEoDZQRlAcOHJCDBw\/q3qwxKImyx6A0EIISs9sTJkzQPdljUBJlj0FpoJEjR0rjxo11KzoGJVH2GJQGwmX3rl27dCs6BiVR9hiUBjl27JiMGTMmrpAEBiVR9hiUBlm1apX+Kj4MSqLsMSiJQUkUBYOSGJREUTAoiUFJFAWDkhiURFEwKIlBSRQFg5IYlERRMCiJQUkUBYOSGJREUTAoiUFJFAWDkhiUFCiPP\/64\/ip2DEpiUFJgHD58WG6\/\/Xbdih2DkhiUFBjjxo2TYcOG6VbsGJTEoKTAqF69uixcuFC3YsegJAYlBcbZZ58tu3fv1q3YMSiJQUmBce655+qv4sOgJAYlBUKvXr1k3rx5uhUfBiUxKMl4qP6fN29e+f7773VPfBiUxKAk4\/3yyy9y+umn61b8GJTEoCTjLV68WAYNGqRb8WNQUkRQ\/vfff\/LHH3\/Ipk2bdA+Rv7Vr107+\/PNP3Ypf4IMSofDvv\/\/KX3\/9pf4icSxYsCDi+Prrr9VrGIfx+HWmCA\/Kt956Sx05cvBzlPwPP6uFCxeWv\/\/+W\/fEL7A\/CThb6tu3r5QqVUpKlCghBQsWlFq1asnll18uvXv3lh9\/\/PHk8d1336l+HBiH8fh1WGrw+eefy4kTJ\/Tv6k9ZXXozKMkEW7ZskdKlSyd1chOYnwScCS5fvlzq168v559\/vgoBHEWKFFHBGKpLly5qXPiRAZelt956qxQqVOjk73PppZeqMTt27NCjRCZPnhzxe+AI9emnn1qOQQBn2Lt3r+WYUaNG6RHpWrduHTGmcePG+tV0AwYMiBjDoCST9evXT958803dSozxPwm\/\/vqrdO7cWcqXL69C8cwzz1Rfhx7hD8k3a9YsYgyOUPfff7\/lmJ49e8pZZ50lDzzwgAwfPtxyTKhFixZZjlmyZIkeIbJnzx7LMf3799cj0tWpUydiTJUqVfSr6Tp16hQxhkFJJsPPY7KM\/UnAWR8+SfCXNHToUNWHcHv00UfV1046cuSIDBkyRIUyLu+\/+eYb\/Yo3MSjJVKtXr5ZLLrlEtxJn3E9CWlqajB07VoXUpEmTdG+6VAVlKFQqufDCC9UlMM4ejx8\/rl\/xDgYlmeqll16S9u3b61bijPlJwEz0\/PnzJVeuXNKmTRvdm5kbQZkBs+a4j1mpUiX59ttvPTVrzqAkU+E22owZM3QrcUb8JCAksZi0UaNGuseam0GZATNweEKgbdu26uzXC6yCEn+nCEqTlkFR8OTMmVN\/lRzfB+WhQ4fUkp1YyruPGTNGnn\/+ed1yD8Jn\/Pjx6vbA008\/rXvdEx6U+P87cOCA7Ny5U44ePap7ifxl2bJlctlll+lWcnwblPhhvvnmm9VaRiyf8aP9+\/dLx44dpUyZMrJv3z7dm3pZXXoT+dmIESOkR48eupUcXwblP\/\/8I3fffbc8++yzST2W5BVz586VunXrSp8+fXRPajEoyUSYQN21a5duJcd3Qfnzzz9LzZo1E9r3wssOHjyoljPhnsqcOXN0b2owKMk0mDDFxKldfBWUKJVUr149WbFihe6Jjxcmc6LBLQWUq8e9S4RnKjAoyTRPPfWU2kjMLr4JSizirl27tqxcuVL3xM8PQZmhVatW6kY0PhycxqAk0+Cye9WqVbqVPF8EJWa2K1eunOn550T4KShh6dKlctpppyVclTlWDEoyDW5h2bm0zfNBiZAsWbKkLZ8OfgtKQPUizIpjssfOf\/hQDEoyyXPPPSdTpkzRLXt4Oigxo40zyc8++0z3JMePQQnY7wML1HE5gRl\/uzEoySQVKlSQ9evX65Y9PBuUWPCMe3TJXm6H8mtQAsrE4b4lyrvhLNNODEoyBa66ihYtKr\/\/\/rvusYcngxJnTagRGcvTNkGD2bzq1avbtj4MGJRkClx9ocC23TwXlBkhmcxGQKbDPZhixYrJmjVrdE9yGJRkClQKevHFF3XLPp4LSuzVEl6VmyIhJPPnzy\/r1q3TPYljUJIJMgq5oFi33TwVlK+\/\/roUKFDAkQkLeOihh+SJJ57QLf\/DfUtsmvTYY4\/pnsQwKMkEmNewe1lQBs8EJSqSo5oO3qxT\/DyZkxWsDMAz4hdddFHCHzAMSjLB2rVrbSuCEc4zQXnOOefIV199pVvOMDEoAQF57733yrXXXivbt2\/XvbFjUJIJsJPAtm3bdMtergclTpPxaOL777+ve5xjalBmwCJbnFnGu30ug5L8DvtSYXdVp7gelNhHpkaNGurS22mmByV069ZNmjRpEteZJYOS\/G7ChAmOfh+7GpQoXJsnTx7HHs0LF4SghKlTp0rZsmXVLGAsGJTkd9dff73+yhmuBSUuD7F3zOTJk3UP2WnmzJnqnk0sZ+oMSvKzjEedneRaUGLRdNOmTXWL7IazSTwjj+VWv\/32m+61xqCkeNSpU0dtkucV2Ongxhtv1C1nuBKUWP+HJ0tQGYichapLKAS8Z88e3ROJQUmxwlrn3Llzy+bNm3WP+1q2bOnIIvNQrgRlgwYN1BM4qfb222\/Le++9p1vBMWvWLClXrpxs3bpV92TGoKRY4DZOhw4d1AevV4IST6bhFpPTUh6UmFDp37+\/bqVWUCZzrLzzzjtSsWJFtZdIOAYlRYMJ19tuu03d0vFSUGILajxx57SUBiXua1xwwQWOV+zOSpCDEnBGjU\/f8Cd4GJQUzcKFC9UBXgrKW265RRYsWKBbzvj6669TF5T4RCpVqlRSe94kK+hBCdjp8bzzzsu0jziDkrKD2o533nmnWqmCA0G5cePGlC3rywr+\/CJFiuiWM3BSgUerUxaUOIssXry4brmDQZlu8eLFap1lxjc6g5KyM3HiRClUqNDJA4UnsJri008\/1SPc8eqrr0rr1q11yxkpDUosLM+VK5ccPnxY97iDQXlKz5491ZkBwpJBSfHwyqU3tnywcwcEKykNShTh7du3r265Z8eOHbZWBvczXEKh0sqll17KoKS4eCUocVbrtJNBec8994iTR+fOndWputVrPNw\/zjjjDClfvrzlazx4ePW44oorpFKlSpav2Xl06tRJPWadY8iQIeLkgX2pcUZp9RqP1BwDBw6UAQMGWL6GA\/9GCEur13jwyDjuu+8+VUHc6rVUHsiTvHnzqjqsVq\/beQwePFjy5cvn7KX39OnT1eNO5A4sxsXz9M2bN1e7N9asWdNyG09ceqM824gRI3QPUSQ83YWgdFtaWpraBiUVUnKPEtvNZqy9otTCbnR41CwUlmZVrVpVt07JuEdZpkwZhiVlyStB2aVLFxk7dqxuOcvxoHz33XelUaNGukWphrP5Sy65RLdOQfEALDwPFTqZg\/sxqMZCFM4LQYlVGvgePXLkiO5xluNBiTeDU2RyB9aXWW3biQKneBQtVGhQorgAlnKxYAmF80JQ4tYRZrtjrbWaLAQl1n878q5xP+zpp5\/WLXJDdkEZXt4ufHkQnsTAB52TG72R\/+DEx+nHBaPBLqqjRo3SrdRxJCiR+E6XPUrUnDlz0j8h\/v\/J+Mwzz+he82QXlDfccINupQsPSnjttdfUJccPP\/yge4jc9dNPPzn+yGJWbA\/KL774QhXS9CIUsMWzzri\/MWnSJCldurSxZ77YrK1atWq6dQrOJlFJKJRVUAJqWVavXj3bWpZEqfLkk0+qMm9OCn1+PfRrW4MSBXkLFixoWcrLC1BPL\/TeBtZjdezYUbfMgnBDyIVuMrZp0yZVlzJcVkEJ+CCxmiknSjWnlxredNNN6koTt5ywA0Poro62BiWm7UePHq1b3oezS5OXL+H2B2pQYkE5vgHwJIOV7IISMPnTrFkz3aKgcnMyB8vdUvGBfeWVV1rWt7TtXeMvEYtA8Yb8ApXWKXpQAsISz4VTcLkZlEOHDpU2bdrolnPwyDWeZAtn27vGvUk8JucGPGaEgrRWR1auueYaX4W6k2IJyuPHj6tlQ6+88oruoaBxMyix\/jcV27hg7XfdunV16xRb3vXOnTulRIkSuuV9vXv3lr179+oWxRKUgDJ5uIxnWAaTW0GJupdWE5N2mz9\/vqxevVq9R7xX2ydzsAcO7vf5wcMPPyzt27dX\/884cKoddLEGJWDCrnDhwpkmiSgY3ArKVGxGiBO9adOmqa9xJfrGG2+orzPY8q79cjaJyY3u3btnOsL\/QoIonqAETIAhLLGXCAWHW0GJZXyhZ3duSPpdI4UffPBB3SI\/ijco4eOPP5arr75aDh48qHuI7IcHH3BC47akghLFE1D4NVXPXZIzEglKwOQdKkSxiAY5BSstUODFbUkFJSoEYbU8+VuiQQkjR46MKLJBZBfsjuD2ZTckFZQo47VixQrdIr9KJihxNtmkSRO1vzKZDVscp2L2OQOKSc+bN0+33JVwUOKGPquXmyGZoAQ8O9+4cWN1hUHmSuVkTkYVc6\/c1kn4XWOrSJ5NmiHZoAR8Q+OHiNWGzJXKoPzwww+lXr16uuW+hN71xo0b1WkxmcGOoISZM2eqEnsMSzOlKihRvAYbeqHal1ck9K69XCGI4mdXUMLUqVOlUKFCKSvVT6mTqqDE3k5W25i4Ke53jS0CsLOfF2aiyB52BiW0a9dOPTOL58PJHKkKShS\/sCo67aa43zVKEFmVISL\/sjsooUePHuqZejIH1ktjmxAnbd68OVMdSK+IKyhx7wmXVSdOnNA9ZAInghJXHKjtN3v2bN1DFN2UKVMsq\/e4La6gxOJynCmQWZwISti\/f7+6n+2XginkvptvvtmT8x9xBSW2Fvj77791i0zhVFACngXHDCbvV\/ofyuw9\/vjjumW\/xYsXq\/W4XhRzUGKbyho1augWmcTJoITdu3ermgDcK9zfnJ7Mufbaa9WGdl4U87tGpZi5c+fqFpnE6aAEzGLiMpxV5f3LyaBECURs7uVVMb1rnBJfddVVukWmSUVQwgsvvKD+LE4G+pOTQYkHWJYvX65b3hPTu0YlcC71MFeqghIz4djNkdWG\/MnJoMR+814W07vGMo+ff\/5Zt8g0qQpKwFq8tm3bypgxY3QP+YVTQYlL7okTJ+qWN0V919jYB7PdZK5UBiX8+OOPamKQYekveAbbia1TsMD8wIEDuuVNUYPyiiuukPfff1+3yESpDkpAWOJKZe3atbqHgujLL7+UWrVq6ZZ3RQ3KMmXK6K\/IVG4EJWzYsEHy5s3LAhoBhTXZ2KRux44duse7sg3KwYMHq7pwZDa3ghJw3ws\/LNx3x\/sQbOvXr9et5H3xxRdy9tln65a3ZRmUuOlerFgx2blzp+4hU7kZlDB06FAVllw25G12TuZgBQT2w\/HLv3mW7xqzUK1atWI5tQBwOyhh2LBh0rlzZ90iL7IzKJcuXSrlypXTLe\/L8l3nyZNH3XAn83khKKFhw4bStWtX3SKvsTMoK1WqJFu2bNEt77N817t27ZJcuXKxkEFAeCUocQ8MC9InTZqke8hL7ArKGTNmqP3g\/cTyXWM5EDa3p2DwSlDC1q1bpWLFimpLCfIWu4ISy4E++eQT3fIHy3d9ww03OF7JmLzDS0EJ3333nVqEjCsb8g4sCm\/RooVuJWb69Oly3XXX6ZZ\/RAQl1jSdc845ukVB4LWghG3btqm9mby0Ex8lD5fcXi5+kZWIoMRld9WqVXWLgsCLQQmPPfaYFC9enCsvDIF7z7gH7UcRQYl9mXnZHSxeDUro27evVKlSRbfIzypXruzLs0mICEosNKdg8XJQQp06daRly5a6RW7BckFsLpgI1LTFFsZ+ZTmZQ8Hi9aDEMjXURMVB7kl01hvLvvLnz68m6fyKQUmeD0pIS0tT1YYGDRqkeyjVEg3KDh06yNixY3XLnxiU5IugBIQlaqM+8cQTuodSKZGg3Ldvn3p4xe\/zHgxK8k1Qwl9\/\/SVFihRRez\/zfnpqJRKUffr0keeff163\/ItBSb4KSkBY5s6d25Mb5Zss3qD85ptvpGTJkrrlbwxK8l1QAp4SKVu2LAu3eNg999wjI0aM0C1\/Y1CSL4MSFi1aJOedd546cyFv+eijj3xX+CI7DErybVDCypUr5cILL1ShSd6BFQp2VkN3G4OSfB2UgJ1CcRm+e\/du3UNO2Lt3r1SoUEG3stauXTsZOXKkbpmBQUm+D0qYPXu2nHvuudx\/3kGxTOZs2rRJVX46evSo7jEDg5KMCErAfbGCBQvKoUOHdA\/ZKZagvOCCC9SmYaZhUJIxQQm4DMc2Jl7fUN+PogUlak02adLEyGpPDEoyKihhwYIFvtkG1U+yC0rszY4PKFPP5hmUZFxQQrdu3aRp06askm6jrIISjyeihq3ftneIB4OSjAxKwJbLWDrEsHTW\/fffr7aIMLnAMoOSjA1KQFXt8uXLyw8\/\/KB7yE6rVq1SS7NMx6Ako4MS3n33XXXP0k\/7SPvBH3\/8ofbXCsLEGYOSjA9KwJKVfPnyyffff697KF779++X+vXr65bIAw88IPfee69umY1BSYEISsCZDypt4wee4hc6mTNjxgxVGzQoG78xKCkwQQlYlF66dGm13pLiExqUJUqUCNQjowxKw504cUIqVaqkvsFR8HbmzJn6lVOCFJTw1VdfSbly5WTWrFm6h2KREZQ33nijvPHGG7o3GBiUhmvduvXJmo1Dhw5VZcnCBS0oYe3atXL11VfLI488onsomoygxPcLiicHCYPScNizJJTVdqP45g\/dShQFDfLmzav6Q49SpUrpEelq1aoVMQbH1q1b9QiR9u3bW4754IMP9AhRG09ZjQndG2fOnDmWY\/BBkAGXglZjLr74Yj0iHZ5HthoXOnt70003WY5ZunSpHiEycOBAyzEvvPCCHiHy9ttvW44JnQTBGa7VmGuuuUaPSN\/JsHDhwhFjihUrluk+IcI\/fAyOjRs36hEiXbt2tRwzdepUPUJkwoQJlmPKlCmjRwQLgzJAPvvsM+nZs6dundKgQYNMP0j\/\/POPrFixQpYtW5bpwK8PtW7duogxOI4dO6ZHiNquwWpMaCjhTMVqTOgM9cGDBy3HhBbtxba2VmPWrFmjR6TDDHjo67169VIhgOUuGTZv3pxpTMZx+PBhPULU9qtWY3766Sc9In2m2GrMtm3b9Ij0DyarMaH1HBGGuK8aPgbrGEMhdMPH4Ah9b\/izrcaETnLhKiT0NYQ\/qgLt2LFDjwgWBqVPIYysDoRcVnBv6ZdfftGtU4J46R2uU6dO6kyTT\/FEwodG+NVE0DAofWrKlCmWR1abzPfr10\/N+FphUKZbvXq1FChQILBnTVnB5XboFUcQMSgDAJds8+fP1y2JKNHPoDxl4cKFUqVKFXn99dd1T7BhrSSXUjEojYf7ilgehB3xcNx+++3y8ssv61fTMSgz2759uyqm8cwzz+ieYKpRowY\/MDQGpcHS0tJkwIABEUc4BmUkTB7hQ6VixYpqxjlIMHF00UUXyXPPPad7iEFJDMpsDB8+XE4\/\/XSZN2+e7jEbZscxux26xIkYlPR\/DMrs7dy5Uz3Jg7WPWIJkKkzY4Aw6KB8K8WBQEoMyRliEjnJtJl6KYz0qzpxxf5YiMSiJQRkjPDe\/YcMGyZUrl3riyBR4IqdatWry22+\/6R4Kx6AkBmWcsLAfG\/wXLVpULSfysyFDhkjz5s1l7969uoesMCiJQZkgLODHAvWHH3440yOJfoB7rVhI3qNHD7U6grLHoCQGZRJQdGTEiBGq8AaqM4UXIfEaPFc+btw4yZ07t3oOn2LDoCQGpQ1Q5AML+rG4P\/QpKC9BEZM2bdrw3zsBDEriD46NcK+vQoUKkjNnTvn888\/l0KFD+hX3oJoRStZhI7Avv\/xS91I8GJTEoHQAnm7p2LGjKt+GZUVuwL3H2rVrq\/+HYcOG6V5KBIOSGJQOwj3B6dOnS548eaRmzZopKTDx1ltvqWfVUaQZf3ZoLUpKDIOSGJQpgK0TsJSoT58+amE3KsrjWWqUdrMDKqmjpiaeILrrrrtkyZIlcuTIEf0qJYtBSQxKF8ydO1fGjx8v9erVU8t06tatK\/3791eLv6dNm6ZHWUPgYgxqjKIYc8mSJaV79+7q92PhYWcwKIlB6QFYh4kzTDxP3rRpU7nuuuuyPJo1a6bGPfnkkxHbc5AzGJTEoCSKgkFJDEqiKBiUxKAkioJBSQxKoigYlMSgJIqCQUkMSqJsifwPkiVyWJBiHWUAAAAASUVORK5CYII=\" y=\"10.5\"><\/image> <rect fill=\"#fff\" height=\"23\" id=\"svg_2\" stroke=\"#ffffff\" stroke-width=\"1.5\" width=\"17\" x=\"152.99999\" y=\"0\"><\/rect> <rect fill=\"#fff\" fill-opacity=\"null\" height=\"19\" id=\"svg_3\" stroke=\"#ffffff\" stroke-width=\"1.5\" width=\"11\" x=\"390.99999\" y=\"89.99999\"><\/rect> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_4\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-90 159.8420104980469,24.333332061767567) \" x=\"153.99999\" xml:space=\"preserve\" y=\"30.99999\">&gt;<\/text> <rect fill=\"#fff\" fill-opacity=\"null\" height=\"21\" id=\"svg_5\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"1.5\" width=\"17\" x=\"131.99999\" y=\"16\"><\/rect> <rect fill=\"#fff\" fill-opacity=\"null\" height=\"16\" id=\"svg_6\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"1.5\" width=\"12\" x=\"379.99999\" y=\"107.99999\"><\/rect> <\/g> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_8\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"383.99999\" xml:space=\"preserve\" y=\"108.99999\">&gt;<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Times New Roman, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_9\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"143.99999\" xml:space=\"preserve\" y=\"29.99999\">y<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Times New Roman, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_10\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"379.99999\" xml:space=\"preserve\" y=\"117.99999\">x<\/text> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\bigg(1;\\dfrac{3}{2}\\bigg)$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\bigg(0;\\dfrac{1}{2}\\bigg)$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$(-2;-1)$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$(2;3)$<\/span>"],"correct":"1","level":"3","hint":"<p>T&iacute;nh \u0111\u1ea1o h&agrave;m&nbsp;<span class=\"math-tex\">$g^\\prime=u^\\prime_x.f^\\prime_u$<\/span>.<\/p><p>H&agrave;m s\u1ed1 ngh\u1ecbch bi\u1ebfn khi&nbsp;<span class=\"math-tex\">$g^\\prime(x) \\le 0$<\/span>.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;<span class=\"math-tex\">$\\bigg(1;\\dfrac{3}{2}\\bigg)$<\/span>.<\/span><\/p><p>Ta c&oacute;&nbsp;<span class=\"math-tex\">$g(x)=f(1-2x)+x^2-x$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$g^\\prime(x)=-2f^\\prime(1-2x)+2x-1$<\/span>.<\/p><p>\u0110\u1eb7t t = 1&nbsp;&ndash; 2x th&igrave;&nbsp;<span class=\"math-tex\">$g^\\prime(x)=-2f^\\prime(t)-t$<\/span>.<\/p><p><span class=\"math-tex\">$g^\\prime(x)=0$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$f^\\prime(t)=-\\dfrac{t}{2}$<\/span>.<\/p><p>V\u1ebd \u0111\u01b0\u1eddng th\u1eb3ng&nbsp;<span class=\"math-tex\">$y=-\\dfrac{x}{2}$<\/span>&nbsp;v&agrave; \u0111\u1ed3 th\u1ecb h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$f^\\prime(x)$<\/span>&nbsp;tr&ecirc;n c&ugrave;ng m\u1ed9t h\u1ec7 tr\u1ee5c<\/p><p><span class=\"svgedit\"><svg height=\"220\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> &lt;title&gt;&lt;\/title&gt; <rect fill=\"#fff\" height=\"222\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_11\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> &lt;title&gt;&lt;\/title&gt; <g id=\"svg_7\"> <image height=\"211.00002\" id=\"svg_1\" width=\"386.99999\" x=\"7\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUoAAACpCAYAAABNjnSdAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABjeSURBVHhe7d0JtE3VHwdwypQxRFEhQ7QyJJWKyhRKaCJFpkyZSioiJZmL0rAatEoDooFFZMyYBkOmkilRkUSiPKX6\/f\/f\/fbjvnvPe3c6555z9vl+1jqrt\/fd6PLe955z9j6\/nUMoUJo2bSo5cuTI9ihQoICkpaXpX0FEDMqAYVASxY9BGTAMSqL4MSgDhkFJFD8GZcDEEpS5c+eWo0eP6l9BRAzKgBk8eLC0adNG+vXrd\/KoXLlypnaLFi1k27Zt+lcQEYPSMKNHj5bSpUvrlkjt2rVl3759umXtjjvu0F8RkRUGpYHy588v06ZNU1\/PnDlT9uzZo77OCoOSKHsMSgM1bNjwZFC2atVK\/Tc7DEqi7DEoDZQRlAcOHJCDBw\/q3qwxKImyx6A0EIISs9sTJkzQPdljUBJlj0FpoJEjR0rjxo11KzoGJVH2GJQGwmX3rl27dCs6BiVR9hiUBjl27JiMGTMmrpAEBiVR9hiUBlm1apX+Kj4MSqLsMSiJQUkUBYOSGJREUTAoiUFJFAWDkhiURFEwKIlBSRQFg5IYlERRMCiJQUkUBYOSGJREUTAoiUFJFAWDkhiUFCiPP\/64\/ip2DEpiUFJgHD58WG6\/\/Xbdih2DkhiUFBjjxo2TYcOG6VbsGJTEoKTAqF69uixcuFC3YsegJAYlBcbZZ58tu3fv1q3YMSiJQUmBce655+qv4sOgJAYlBUKvXr1k3rx5uhUfBiUxKMl4qP6fN29e+f7773VPfBiUxKAk4\/3yyy9y+umn61b8GJTEoCTjLV68WAYNGqRb8WNQUkRQ\/vfff\/LHH3\/Ipk2bdA+Rv7Vr107+\/PNP3Ypf4IMSofDvv\/\/KX3\/9pf4icSxYsCDi+Prrr9VrGIfx+HWmCA\/Kt956Sx05cvBzlPwPP6uFCxeWv\/\/+W\/fEL7A\/CThb6tu3r5QqVUpKlCghBQsWlFq1asnll18uvXv3lh9\/\/PHk8d1336l+HBiH8fh1WGrw+eefy4kTJ\/Tv6k9ZXXozKMkEW7ZskdKlSyd1chOYnwScCS5fvlzq168v559\/vgoBHEWKFFHBGKpLly5qXPiRAZelt956qxQqVOjk73PppZeqMTt27NCjRCZPnhzxe+AI9emnn1qOQQBn2Lt3r+WYUaNG6RHpWrduHTGmcePG+tV0AwYMiBjDoCST9evXT958803dSozxPwm\/\/vqrdO7cWcqXL69C8cwzz1Rfhx7hD8k3a9YsYgyOUPfff7\/lmJ49e8pZZ50lDzzwgAwfPtxyTKhFixZZjlmyZIkeIbJnzx7LMf3799cj0tWpUydiTJUqVfSr6Tp16hQxhkFJJsPPY7KM\/UnAWR8+SfCXNHToUNWHcHv00UfV1046cuSIDBkyRIUyLu+\/+eYb\/Yo3MSjJVKtXr5ZLLrlEtxJn3E9CWlqajB07VoXUpEmTdG+6VAVlKFQqufDCC9UlMM4ejx8\/rl\/xDgYlmeqll16S9u3b61bijPlJwEz0\/PnzJVeuXNKmTRvdm5kbQZkBs+a4j1mpUiX59ttvPTVrzqAkU+E22owZM3QrcUb8JCAksZi0UaNGuseam0GZATNweEKgbdu26uzXC6yCEn+nCEqTlkFR8OTMmVN\/lRzfB+WhQ4fUkp1YyruPGTNGnn\/+ed1yD8Jn\/Pjx6vbA008\/rXvdEx6U+P87cOCA7Ny5U44ePap7ifxl2bJlctlll+lWcnwblPhhvvnmm9VaRiyf8aP9+\/dLx44dpUyZMrJv3z7dm3pZXXoT+dmIESOkR48eupUcXwblP\/\/8I3fffbc8++yzST2W5BVz586VunXrSp8+fXRPajEoyUSYQN21a5duJcd3Qfnzzz9LzZo1E9r3wssOHjyoljPhnsqcOXN0b2owKMk0mDDFxKldfBWUKJVUr149WbFihe6Jjxcmc6LBLQWUq8e9S4RnKjAoyTRPPfWU2kjMLr4JSizirl27tqxcuVL3xM8PQZmhVatW6kY0PhycxqAk0+Cye9WqVbqVPF8EJWa2K1eunOn550T4KShh6dKlctpppyVclTlWDEoyDW5h2bm0zfNBiZAsWbKkLZ8OfgtKQPUizIpjssfOf\/hQDEoyyXPPPSdTpkzRLXt4Oigxo40zyc8++0z3JMePQQnY7wML1HE5gRl\/uzEoySQVKlSQ9evX65Y9PBuUWPCMe3TJXm6H8mtQAsrE4b4lyrvhLNNODEoyBa66ihYtKr\/\/\/rvusYcngxJnTagRGcvTNkGD2bzq1avbtj4MGJRkClx9ocC23TwXlBkhmcxGQKbDPZhixYrJmjVrdE9yGJRkClQKevHFF3XLPp4LSuzVEl6VmyIhJPPnzy\/r1q3TPYljUJIJMgq5oFi33TwVlK+\/\/roUKFDAkQkLeOihh+SJJ57QLf\/DfUtsmvTYY4\/pnsQwKMkEmNewe1lQBs8EJSqSo5oO3qxT\/DyZkxWsDMAz4hdddFHCHzAMSjLB2rVrbSuCEc4zQXnOOefIV199pVvOMDEoAQF57733yrXXXivbt2\/XvbFjUJIJsJPAtm3bdMtergclTpPxaOL777+ve5xjalBmwCJbnFnGu30ug5L8DvtSYXdVp7gelNhHpkaNGurS22mmByV069ZNmjRpEteZJYOS\/G7ChAmOfh+7GpQoXJsnTx7HHs0LF4SghKlTp0rZsmXVLGAsGJTkd9dff73+yhmuBSUuD7F3zOTJk3UP2WnmzJnqnk0sZ+oMSvKzjEedneRaUGLRdNOmTXWL7IazSTwjj+VWv\/32m+61xqCkeNSpU0dtkucV2Ongxhtv1C1nuBKUWP+HJ0tQGYichapLKAS8Z88e3ROJQUmxwlrn3Llzy+bNm3WP+1q2bOnIIvNQrgRlgwYN1BM4qfb222\/Le++9p1vBMWvWLClXrpxs3bpV92TGoKRY4DZOhw4d1AevV4IST6bhFpPTUh6UmFDp37+\/bqVWUCZzrLzzzjtSsWJFtZdIOAYlRYMJ19tuu03d0vFSUGILajxx57SUBiXua1xwwQWOV+zOSpCDEnBGjU\/f8Cd4GJQUzcKFC9UBXgrKW265RRYsWKBbzvj6669TF5T4RCpVqlRSe94kK+hBCdjp8bzzzsu0jziDkrKD2o533nmnWqmCA0G5cePGlC3rywr+\/CJFiuiWM3BSgUerUxaUOIssXry4brmDQZlu8eLFap1lxjc6g5KyM3HiRClUqNDJA4UnsJri008\/1SPc8eqrr0rr1q11yxkpDUosLM+VK5ccPnxY97iDQXlKz5491ZkBwpJBSfHwyqU3tnywcwcEKykNShTh7du3r265Z8eOHbZWBvczXEKh0sqll17KoKS4eCUocVbrtJNBec8994iTR+fOndWputVrPNw\/zjjjDClfvrzlazx4ePW44oorpFKlSpav2Xl06tRJPWadY8iQIeLkgX2pcUZp9RqP1BwDBw6UAQMGWL6GA\/9GCEur13jwyDjuu+8+VUHc6rVUHsiTvHnzqjqsVq\/beQwePFjy5cvn7KX39OnT1eNO5A4sxsXz9M2bN1e7N9asWdNyG09ceqM824gRI3QPUSQ83YWgdFtaWpraBiUVUnKPEtvNZqy9otTCbnR41CwUlmZVrVpVt07JuEdZpkwZhiVlyStB2aVLFxk7dqxuOcvxoHz33XelUaNGukWphrP5Sy65RLdOQfEALDwPFTqZg\/sxqMZCFM4LQYlVGvgePXLkiO5xluNBiTeDU2RyB9aXWW3biQKneBQtVGhQorgAlnKxYAmF80JQ4tYRZrtjrbWaLAQl1n878q5xP+zpp5\/WLXJDdkEZXt4ufHkQnsTAB52TG72R\/+DEx+nHBaPBLqqjRo3SrdRxJCiR+E6XPUrUnDlz0j8h\/v\/J+Mwzz+he82QXlDfccINupQsPSnjttdfUJccPP\/yge4jc9dNPPzn+yGJWbA\/KL774QhXS9CIUsMWzzri\/MWnSJCldurSxZ77YrK1atWq6dQrOJlFJKJRVUAJqWVavXj3bWpZEqfLkk0+qMm9OCn1+PfRrW4MSBXkLFixoWcrLC1BPL\/TeBtZjdezYUbfMgnBDyIVuMrZp0yZVlzJcVkEJ+CCxmiknSjWnlxredNNN6koTt5ywA0Poro62BiWm7UePHq1b3oezS5OXL+H2B2pQYkE5vgHwJIOV7IISMPnTrFkz3aKgcnMyB8vdUvGBfeWVV1rWt7TtXeMvEYtA8Yb8ApXWKXpQAsISz4VTcLkZlEOHDpU2bdrolnPwyDWeZAtn27vGvUk8JucGPGaEgrRWR1auueYaX4W6k2IJyuPHj6tlQ6+88oruoaBxMyix\/jcV27hg7XfdunV16xRb3vXOnTulRIkSuuV9vXv3lr179+oWxRKUgDJ5uIxnWAaTW0GJupdWE5N2mz9\/vqxevVq9R7xX2ydzsAcO7vf5wcMPPyzt27dX\/884cKoddLEGJWDCrnDhwpkmiSgY3ArKVGxGiBO9adOmqa9xJfrGG2+orzPY8q79cjaJyY3u3btnOsL\/QoIonqAETIAhLLGXCAWHW0GJZXyhZ3duSPpdI4UffPBB3SI\/ijco4eOPP5arr75aDh48qHuI7IcHH3BC47akghLFE1D4NVXPXZIzEglKwOQdKkSxiAY5BSstUODFbUkFJSoEYbU8+VuiQQkjR46MKLJBZBfsjuD2ZTckFZQo47VixQrdIr9KJihxNtmkSRO1vzKZDVscp2L2OQOKSc+bN0+33JVwUOKGPquXmyGZoAQ8O9+4cWN1hUHmSuVkTkYVc6\/c1kn4XWOrSJ5NmiHZoAR8Q+OHiNWGzJXKoPzwww+lXr16uuW+hN71xo0b1WkxmcGOoISZM2eqEnsMSzOlKihRvAYbeqHal1ck9K69XCGI4mdXUMLUqVOlUKFCKSvVT6mTqqDE3k5W25i4Ke53jS0CsLOfF2aiyB52BiW0a9dOPTOL58PJHKkKShS\/sCo67aa43zVKEFmVISL\/sjsooUePHuqZejIH1ktjmxAnbd68OVMdSK+IKyhx7wmXVSdOnNA9ZAInghJXHKjtN3v2bN1DFN2UKVMsq\/e4La6gxOJynCmQWZwISti\/f7+6n+2XginkvptvvtmT8x9xBSW2Fvj77791i0zhVFACngXHDCbvV\/ofyuw9\/vjjumW\/xYsXq\/W4XhRzUGKbyho1augWmcTJoITdu3ermgDcK9zfnJ7Mufbaa9WGdl4U87tGpZi5c+fqFpnE6aAEzGLiMpxV5f3LyaBECURs7uVVMb1rnBJfddVVukWmSUVQwgsvvKD+LE4G+pOTQYkHWJYvX65b3hPTu0YlcC71MFeqghIz4djNkdWG\/MnJoMR+814W07vGMo+ff\/5Zt8g0qQpKwFq8tm3bypgxY3QP+YVTQYlL7okTJ+qWN0V919jYB7PdZK5UBiX8+OOPamKQYekveAbbia1TsMD8wIEDuuVNUYPyiiuukPfff1+3yESpDkpAWOJKZe3atbqHgujLL7+UWrVq6ZZ3RQ3KMmXK6K\/IVG4EJWzYsEHy5s3LAhoBhTXZ2KRux44duse7sg3KwYMHq7pwZDa3ghJw3ws\/LNx3x\/sQbOvXr9et5H3xxRdy9tln65a3ZRmUuOlerFgx2blzp+4hU7kZlDB06FAVllw25G12TuZgBQT2w\/HLv3mW7xqzUK1atWI5tQBwOyhh2LBh0rlzZ90iL7IzKJcuXSrlypXTLe\/L8l3nyZNH3XAn83khKKFhw4bStWtX3SKvsTMoK1WqJFu2bNEt77N817t27ZJcuXKxkEFAeCUocQ8MC9InTZqke8hL7ArKGTNmqP3g\/cTyXWM5EDa3p2DwSlDC1q1bpWLFimpLCfIWu4ISy4E++eQT3fIHy3d9ww03OF7JmLzDS0EJ3333nVqEjCsb8g4sCm\/RooVuJWb69Oly3XXX6ZZ\/RAQl1jSdc845ukVB4LWghG3btqm9mby0Ex8lD5fcXi5+kZWIoMRld9WqVXWLgsCLQQmPPfaYFC9enCsvDIF7z7gH7UcRQYl9mXnZHSxeDUro27evVKlSRbfIzypXruzLs0mICEosNKdg8XJQQp06daRly5a6RW7BckFsLpgI1LTFFsZ+ZTmZQ8Hi9aDEMjXURMVB7kl01hvLvvLnz68m6fyKQUmeD0pIS0tT1YYGDRqkeyjVEg3KDh06yNixY3XLnxiU5IugBIQlaqM+8cQTuodSKZGg3Ldvn3p4xe\/zHgxK8k1Qwl9\/\/SVFihRRez\/zfnpqJRKUffr0keeff163\/ItBSb4KSkBY5s6d25Mb5Zss3qD85ptvpGTJkrrlbwxK8l1QAp4SKVu2LAu3eNg999wjI0aM0C1\/Y1CSL4MSFi1aJOedd546cyFv+eijj3xX+CI7DErybVDCypUr5cILL1ShSd6BFQp2VkN3G4OSfB2UgJ1CcRm+e\/du3UNO2Lt3r1SoUEG3stauXTsZOXKkbpmBQUm+D0qYPXu2nHvuudx\/3kGxTOZs2rRJVX46evSo7jEDg5KMCErAfbGCBQvKoUOHdA\/ZKZagvOCCC9SmYaZhUJIxQQm4DMc2Jl7fUN+PogUlak02adLEyGpPDEoyKihhwYIFvtkG1U+yC0rszY4PKFPP5hmUZFxQQrdu3aRp06askm6jrIISjyeihq3ftneIB4OSjAxKwJbLWDrEsHTW\/fffr7aIMLnAMoOSjA1KQFXt8uXLyw8\/\/KB7yE6rVq1SS7NMx6Ako4MS3n33XXXP0k\/7SPvBH3\/8ofbXCsLEGYOSjA9KwJKVfPnyyffff697KF779++X+vXr65bIAw88IPfee69umY1BSYEISsCZDypt4wee4hc6mTNjxgxVGzQoG78xKCkwQQlYlF66dGm13pLiExqUJUqUCNQjowxKw504cUIqVaqkvsFR8HbmzJn6lVOCFJTw1VdfSbly5WTWrFm6h2KREZQ33nijvPHGG7o3GBiUhmvduvXJmo1Dhw5VZcnCBS0oYe3atXL11VfLI488onsomoygxPcLiicHCYPScNizJJTVdqP45g\/dShQFDfLmzav6Q49SpUrpEelq1aoVMQbH1q1b9QiR9u3bW4754IMP9AhRG09ZjQndG2fOnDmWY\/BBkAGXglZjLr74Yj0iHZ5HthoXOnt70003WY5ZunSpHiEycOBAyzEvvPCCHiHy9ttvW44JnQTBGa7VmGuuuUaPSN\/JsHDhwhFjihUrluk+IcI\/fAyOjRs36hEiXbt2tRwzdepUPUJkwoQJlmPKlCmjRwQLgzJAPvvsM+nZs6dundKgQYNMP0j\/\/POPrFixQpYtW5bpwK8PtW7duogxOI4dO6ZHiNquwWpMaCjhTMVqTOgM9cGDBy3HhBbtxba2VmPWrFmjR6TDDHjo67169VIhgOUuGTZv3pxpTMZx+PBhPULU9qtWY3766Sc9In2m2GrMtm3b9Ij0DyarMaH1HBGGuK8aPgbrGEMhdMPH4Ah9b\/izrcaETnLhKiT0NYQ\/qgLt2LFDjwgWBqVPIYysDoRcVnBv6ZdfftGtU4J46R2uU6dO6kyTT\/FEwodG+NVE0DAofWrKlCmWR1abzPfr10\/N+FphUKZbvXq1FChQILBnTVnB5XboFUcQMSgDAJds8+fP1y2JKNHPoDxl4cKFUqVKFXn99dd1T7BhrSSXUjEojYf7ilgehB3xcNx+++3y8ssv61fTMSgz2759uyqm8cwzz+ieYKpRowY\/MDQGpcHS0tJkwIABEUc4BmUkTB7hQ6VixYpqxjlIMHF00UUXyXPPPad7iEFJDMpsDB8+XE4\/\/XSZN2+e7jEbZscxux26xIkYlPR\/DMrs7dy5Uz3Jg7WPWIJkKkzY4Aw6KB8K8WBQEoMyRliEjnJtJl6KYz0qzpxxf5YiMSiJQRkjPDe\/YcMGyZUrl3riyBR4IqdatWry22+\/6R4Kx6AkBmWcsLAfG\/wXLVpULSfysyFDhkjz5s1l7969uoesMCiJQZkgLODHAvWHH3440yOJfoB7rVhI3qNHD7U6grLHoCQGZRJQdGTEiBGq8AaqM4UXIfEaPFc+btw4yZ07t3oOn2LDoCQGpQ1Q5AML+rG4P\/QpKC9BEZM2bdrw3zsBDEriD46NcK+vQoUKkjNnTvn888\/l0KFD+hX3oJoRStZhI7Avv\/xS91I8GJTEoHQAnm7p2LGjKt+GZUVuwL3H2rVrq\/+HYcOG6V5KBIOSGJQOwj3B6dOnS548eaRmzZopKTDx1ltvqWfVUaQZf3ZoLUpKDIOSGJQpgK0TsJSoT58+amE3KsrjWWqUdrMDKqmjpiaeILrrrrtkyZIlcuTIEf0qJYtBSQxKF8ydO1fGjx8v9erVU8t06tatK\/3791eLv6dNm6ZHWUPgYgxqjKIYc8mSJaV79+7q92PhYWcwKIlB6QFYh4kzTDxP3rRpU7nuuuuyPJo1a6bGPfnkkxHbc5AzGJTEoCSKgkFJDEqiKBiUxKAkioJBSQxKoigYlMSgJIqCQUkMSqJsifwPkiVyWJBiHWUAAAAASUVORK5CYII=\" y=\"10.5\"><\/image> <rect fill=\"#fff\" height=\"23\" id=\"svg_2\" stroke=\"#ffffff\" stroke-width=\"1.5\" width=\"17\" x=\"152.99999\" y=\"0\"><\/rect> <rect fill=\"#fff\" fill-opacity=\"null\" height=\"19\" id=\"svg_3\" stroke=\"#ffffff\" stroke-width=\"1.5\" width=\"11\" x=\"390.99999\" y=\"89.99999\"><\/rect> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_4\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-90 159.8420104980469,24.333332061767567) \" x=\"153.99999\" xml:space=\"preserve\" y=\"30.99999\">&gt;<\/text> <rect fill=\"#fff\" fill-opacity=\"null\" height=\"21\" id=\"svg_5\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"1.5\" width=\"17\" x=\"131.99999\" y=\"16\"><\/rect> <rect fill=\"#fff\" fill-opacity=\"null\" height=\"16\" id=\"svg_6\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"1.5\" width=\"12\" x=\"379.99999\" y=\"107.99999\"><\/rect> <\/g> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_8\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"383.99999\" xml:space=\"preserve\" y=\"108.99999\">&gt;<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Times New Roman, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_9\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"143.99999\" xml:space=\"preserve\" y=\"29.99999\">y<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Times New Roman, Times, serif\" font-size=\"20\" font-style=\"italic\" font-weight=\"bold\" id=\"svg_10\" stroke=\"#ffffff\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"379.99999\" xml:space=\"preserve\" y=\"117.99999\">x<\/text> <line fill=\"none\" id=\"svg_12\" stroke=\"#ff0000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"11\" x2=\"385.99999\" y1=\"27.35069\" y2=\"218.35068\"><\/line> <\/g> <\/svg><\/span><\/p><p>H&agrave;m s\u1ed1 g(x) ngh\u1ecbch bi\u1ebfn&nbsp;&rArr; g&#39;(x)&nbsp;<span class=\"math-tex\">$\\le$<\/span>&nbsp;0&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$f^\\prime(t) \\ge -\\dfrac{t}{2}$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$-2 \\le t \\le 0$<\/span>&nbsp;ho\u1eb7c&nbsp;<span class=\"math-tex\">$t \\ge 4$<\/span>.<\/p><p>Nh\u01b0 v\u1eady&nbsp;<span class=\"math-tex\">$f^\\prime(1-2x) \\ge \\dfrac{1-2x}{-2}$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$-2 \\le 1-2x \\le 0$<\/span>&nbsp;ho\u1eb7c&nbsp;<span class=\"math-tex\">$1-2x \\ge 4$<\/span><\/p><p>&rArr;&nbsp;<span class=\"math-tex\">$\\dfrac{1}{2} \\le x \\le \\dfrac{3}{2}$<\/span>&nbsp;ho\u1eb7c&nbsp;<span class=\"math-tex\">$x \\le -\\dfrac{3}{2}$<\/span>.<\/p><p>V\u1eady h&agrave;m s\u1ed1 g(x) = f(1&nbsp;&ndash; 2x) + x&sup2;&nbsp;&ndash; x ngh\u1ecbch bi\u1ebfn tr&ecirc;n c&aacute;c kho\u1ea3ng&nbsp;<span class=\"math-tex\">$\\bigg(\\dfrac{1}{2};\\dfrac{3}{2}\\bigg)$<\/span>&nbsp;v&agrave;&nbsp;<span class=\"math-tex\">$\\bigg(-\\infty;-\\dfrac{3}{2}\\bigg)$<\/span>.<\/p><p>M&agrave;&nbsp;<span class=\"math-tex\">$\\bigg(1;\\dfrac{3}{2}\\bigg)$<\/span>&nbsp;&sub;&nbsp;<span class=\"math-tex\">$\\bigg(\\dfrac{1}{2};\\dfrac{3}{2}\\bigg)$<\/span>&nbsp;n&ecirc;n h&agrave;m s\u1ed1 g(x) ngh\u1ecbch bi\u1ebfn tr&ecirc;n kho\u1ea3ng&nbsp;<span class=\"math-tex\">$\\bigg(1;\\dfrac{3}{2}\\bigg)$<\/span>.<\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 05:01:23","option_type":"math","len":0},{"id":"5312","post_id":"7505","mon_id":"1159285","chapter_id":"1159288","question":"<p>Cho hai h&agrave;m s\u1ed1 y = f(x) v&agrave; y = g(x). Hai h&agrave;m s\u1ed1&nbsp; y =f&#39;(x) v&agrave; y = g&#39;(x) c&oacute;&nbsp;\u0111\u1ed3 th\u1ecb nh\u01b0 h&igrave;nh v\u1ebd&nbsp;b&ecirc;n,&nbsp;trong \u0111&oacute; \u0111\u01b0\u1eddng cong \u0111\u1eadm h\u01a1n l&agrave; \u0111\u1ed3 th\u1ecb c\u1ee7a h&agrave;m s\u1ed1 y = g&#39;(x). H&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$h(x)=f(x+3)-g\\bigg(2x-\\dfrac{7}{2}\\bigg)$<\/span>&nbsp;\u0111\u1ed3ng bi\u1ebfn tr&ecirc;n kho\u1ea3ng n&agrave;o d\u01b0\u1edbi \u0111&acirc;y?<\/p><p><span class=\"svgedit\"><svg height=\"300\" width=\"300\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"302\" id=\"canvas_background\" width=\"302\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_13\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><g id=\"svg_4\"> <image height=\"285\" id=\"svg_1\" width=\"278\" x=\"5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAARYAAAEdCAYAAADJikiMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEJESURBVHhe7Z0HuBRF1oZRASUHJQhLkhwlZwQFJAdZskhalKCyLD8iIggSVIKIREkKKEZcYQV1RaIkEUQFREREWVEERUHEtNv119dddadn7oSemeo0c97n6Qeq+s69Mz3VX1edOiELIwiCUAwJC0EQyiFhIQhCOSQsBEEoh4RFMRcuXGD\/\/e9\/RYsg0hMSFsWsXbuWbd26VbQIIj0hYVHMnXfeyUaMGCFaBJGekLAoRNM0VqJECVatWjXRQxDpCQmLQvbu3cuyZMmiHz\/88IPoJYj0g4RFIX\/\/+98zhGXq1KmilyDSDxKWCJw8eZJNmDCBHThwQPQwtnLlSrZo0SLRykydOnUyhKV27dqilyDSDxKWMJw5c4bNnz+flSpVijVv3ly3nYCJEyey8uXLs99++01vm8E2c\/bs2TOEJV++fOIMQaQfJCxRwIzl+uuvD\/JLmT17tvhfMHPmzMkQFXls2LBBnCWI9IKEJQrPP\/88y5s3L\/vzzz\/19o4dO4KWRmYaNGigi0nWrFn1A\/9v1qyZOEsQ6QUJSxTg6JYrVy72+++\/s19\/\/TWqfeXaa69lRYoUYQMGDGA9e\/bUBSl\/\/vzkhUukJSQsUfjggw\/YNddcwy5fvswefvjhsLYVgJnMlVdeqW83Y2fo\/\/7v\/\/T\/X3HFFez8+fPipwgifSBhicLnn3\/OsmXLxpYvX86++eYb0ZuZli1bshUrVuj\/l8ICg++0adPY3XffrfcThNtgRb9vn2jYDAlLFCAmmIm88847oiczWOr06NGD\/fHHH3pbCguAbaZq1ar6Uoog3ObLL\/kNz+\/4lStFh42QsETh+PHj7KmnnsrYbg4Hlke\/\/PKLaAULC7h48WLQeYJwi\/ffN4Rl1y7RYSMkLBGAg9wzzzwjWtYJFRaC8Aqvv24IC2YudkPCEkK3bt1Y79692fjx40VPfJCwEF5lxQqNXXWVaNgMCUsI2P1ZsmSJaMUPCQsRL1guSxudFX7++eeEltdTp2rs2mtFw2ZIWBRDwkKEgnCPr7\/+WrSCOX36NLv33nvZ\/\/73P9ETG2wK3HfffezSpUuixxqjRjFWvrxo2AwJi2JSVVgw7j\/7jLHNmxkf0Mg9I04QQcDQj51CKRQw7sN5EnFnobuDSK2B2LN4REWCWUvjxo2jbiyEwlf4rG5d0bAZEhbFpJqwfP89Y61aMZYrFx8sfLTIo0ABxkaM0PgUXvwgoXtnN2zYkO3atYtfs1a6gyUcJBHe8corr4ifCnDHHXewL774QrTiB2lQMduxSps2jLVvLxo2Q8KimFQSlrFjNZYnD8IVGEM0w6efYreMsY8+YmzMGMayZ2esZEnGdu4UL0hzKlWqxPbs2aPPQN5\/\/33dY\/vEiRN6aAf+b+bDDz9kFStWFK3EwFLo6quv5uLP1d8Cdeow1qePaNgMCYtiUkFYEN7UvbvGrrjCWJf\/+KM4EcKhQ4wh7QwyRPzrX6IzTYHRH0uT0Niwj7gKP\/fcc6IVYPr06XwGwacQSQBbC5ZYmLlYoXRpxkaOFA2bIWFRjN+FBQ\/WTp2M5c6yZaIzCj\/9xFjbtsbM5t13RWeacfjwYX3mEM5DGzOWUNsK2lWqVGFTpkwRPYkzcOBAffllJdg1Rw7GHn3UGeMYCYti\/CwsGP+YKsPX4a23RKcFsPPZtKnGChWCQVJ0Ogxu1oULF7KbbrpJj8+SBtEXXnhBX6LI1BcqwRbxPffcwz97U92OgtCOjz\/+WJyNzH\/+8x89uHXdunWiJwDeN2LT8DuHDBmi93377bf6bEi2zSzj6p8zZ04+q4wwrRTA4I6HxerVJCy+xK\/Cgs2FmTMZy5qVsVdfFZ1x8N13hi2mUiWN3xyi0wWGDh2qp6\/Argn49NNP2Y033qgbVs1glgExiHb07dtX\/HRksCszZswYvTKDVfGS0fDvvfee6MkMQkkgGN\/xC4vx9C6fDiKoNZS3335bj6JHwGw0oHf8I8X1wEgGEhbF+FVYNm5kuk1l+PDEn2gw6uJ3REiy5whbtmzRReHUqVN6GzMAFUuOSMBRDcbZGTNmiJ7YrF+\/Xl86HTt2TPRkBr4v2Kbuw6eQkdJ1gIMHD\/IZ5lW6LScaEBQIy5EjosNmSFgU40dh4WOY3xwan34n759y\/\/2GuPDZvitgJoJUF4dgWeZAaD755BP9\/3bw5Zdf6rMPzIysYkVYwOjRo\/Xo+Gh+LlJYMAuKxtKlmi4sFjeQkoaERTF+FJZ27RgrWtQwxCYL7DR582qsbl13lkRYAmEGsXPnTnbu3Dn2+OOPizPBqFoKvcrXjbCXhC61ogFhwfIFW9ORwOfo3r27vhyyMmOJZduZPFnjYiYaDkDCohi\/Ccu8eca28ssviw4F7N5tGIARTes02B0pXLiwnsh86dKlccXgJEKvXr1YixYtos4qQjnC1yMQLohfJObOnavvKEE0YLzF0kjajczgc+J34Wei0b+\/xkqVcsZwC0hYFOMnYcE4LVgQN4foUEiTJowVK2b8DacpWbIk69ixY4adxS7gko\/cxm+88YbosQa8cQvyC\/\/kk0+KHgOUncF7h0cuRAc7XcWLF9e9a1evXh3WOIwZWVE+3YwVlAgXggYNSFh8i5+EpW1bpvuf2JGfA3FF8MxdvFh0OEiNGjV024rdwLsWO1ChfipWwNZ0\/\/79RSvArFmz9N8r2bRpk94XbuaFHSkslwYPHix6IgP7GddaxyBhUYxfhAW2RixX7ExTCOEqVQoxNKLDAbA7EsuQqQp42ya64wQ7S90kIwJhe0FhPGmojsaNNzJ2552i4QAkLIrxg7Dg4Zcrl8YqVNB0Y6tdYAcUfjFz54oOm4BzGNIPQFRee+010WsPyCwIWwdsHl27dhW98YPXw\/clmSoOsKuUKVPG0oyJ\/xh78EHRcAASFsX4QVhkikIsV+ymSxdjUCe7jR0NxNzAyDlv3jzRYx9wxd++fTvr0KGDLjLJsHnzZjZixAjRih9U6oSgWgG2tIULRcMBSFgU43Vhgc8KbB+I77HzZpfs3WuI2MqV9v0xGC5jubSrAtnezp49G3UL2CqwkcB9\/6uvvhI91oEdJtT4Gw0se59\/XjQcgIRFMV4XlgULmO7PAIFxAohX8+ZGFDSRGWxTv86nkPEII9z3t23bJlqxOXPGEPdNm0SHA5CwKMbLwoLsiNgFatfOuW1HgNgjPDEPHxYdhKNs3WoIy8GDosMBSFgU42VhmTiRsZw5GTt3TnQ4BFws4NOCTHSE86xaZQhLhLS7tkDCohivCsvZs0Y+js6dRYfDYAmG2ZKFtCGEYsaNM+KEQpLY2QoJi2K8KizTpzN2zTXOPrXMwD555ZVINCQ6CMfo21dj113n7PKXhEUxXhQWuDkgCVPPnqLDJTp1MgLh7PSdITJTqxa8kUlYfI0XhWXCBGMqnMCuplLg7YuAR+xSEM5RpQpjt91GwuJrvCgsSIkwcKBouAiMuBC42293dpCnO3BQHD5cNByChEUxXhMWJE\/GzXz0qOhwmdGjDVuLW7lx0xHsyD32mGg4BAmLYrwmLCj50KOHaHgAhMZky8ZYmIT2hE3kz8\/YmjWi4RAkLIrxkrCgHCpsGl4qKIZ8SMWLM9aiheggbAe7gW++KRoOQcKiGK8IC1zpy5bVWLVq7mbND8eCBcbyLEZieUIBSFmBa42sfk5CwqIYrwgLdl6QssCrSw7Ugl66VDQI20BWfgiL0+EUJCyK8YKwYLbSpo2m2zJiZCx0jZo1GWvUiHaH7AbVXSEsdmQJjAYJi2K8ICzIq4zB9NRTosOD4L3B\/mNjZQ6CM2WKsex0KppdQsKiGC8IC9zmsQy6eFF0eBB43+bOzVgcdb6IBOjWzRAWJ3LvmCFhUYzbwgIxQbBf+\/beX2a0bInM8aJB2AJc+WHEdxoSFsW4LSzYVsRsBdHMXmfZMsNZzokUmekIZinwYWndmoTF97gtLPAPqVxZNDwOag5hOTR+vPdnV34EZYgwex02THQ4CAmLYtwUFmTFx3razvyyqkGy7SSrYBARQFpeJPZyo0g\/CYti3BSW8eONuBA\/sXy5kbZSRd1oIhi4GiBNRZyFGpVAwqIYt4QFuyx58mhswAB\/LSuwNY5t5+nTaTmkGhjyYW9zMtethIRFMW4JyzPPaPqTP0ZtcE9y880aZfG3AST+h2gfOyY6HISERTFuCcstt+AGFQ2fsWiRYWQk1CLd+Z32ugUkLIpxQ1gQzIcp74oV\/lxOII4FN8DLL4sOQgkvvWRcVzdcD0hYFOOGsAwfruklNC9dEh0+A9HXJUtqtDukGNSrh7BgW99pSFgU44awlCrF2MiRouFTkOEsb15DZAg1dO9uuPPDn8VpSFgU47SwYCsRg2fPHtHhUz7+2DA0njolOoikufFGjRUr5s7ymIRFMU4LCwZPpUr+36rFMg7u\/X7bLvcqcOfHA6d5cxKWlMBpYUF1Q5TQTAUwdcesheoOJY\/MHDdqFAlLSuCksEydaqyh3apuqJp9+4yb4fRp0UEkDKog4FrOmyc6HIaExSKLFy9mRYsWZSdOnNDb27dvZ0888QSbPn06++KLL\/Q+4JSw\/PGHEbnasWPqLB2QwR\/LoVdeER1EwuBhA2HZsUN0OAwJSxx06tRJF5bf+Vy9V69e7M8\/\/9SPm2++mf1XVDt3SlgwcHATOp0k2U6wI1SwoMYaNCA7S7LAtwnC4lbVSRKWOJDCcvbsWXYLXF05\/+N3Q9myZdkl4UTilLD87W\/GwHE65aDdyFSK338vOoiEwC4bQjzcGh8kLHFgVVgGDhzIjhw5oh+Y3UjwOtmP41MUMzaBtvn8H1jvCL777ruM\/vffP8JvvgNs8ODUc\/rAZcQN4aVaSH4E1y97dvecJklY4kAKy+XLl1nr1q11UcFSqH79+hkiAGHJlSuXbo8x22TAzJkzM\/pxlCtXTv8dkgoVKgSdP2Vy6pg2bVpGf968RbmwZGE\/\/OCCS6UDFCpkpIAgEgfpKLBjiN0hNyBhsciv\/Btq164d27t3r95ev349e\/XVV\/kXuFyfRUicWAqhtAeE5Wc3fLUdoGFDjZUurTmeADqVGDfOyM5nmvQ6CgmLRTBL+eGHH9hPIiORxkc9\/n8hZBFrt7AgUhU2iFQWFhk850a4f6rQo4fG8uVzL0SChEUxdgvL008b6QZTWVjwlEWlxNWrRQcRN7VqaaxECfemfCQsirFbWOrXZ6xqVca2bduWscWditSowVjfvqJBxA3sK25k55eQsCjGTmGBKQdLhAULREcKM3iwxq67znsF7f0AJrIYJ\/ffT8KSMtgpLMivgdQCyL6e6mzfbtwcqeQA6BTS63blStHhAiQsirFTWFDVrk0b4\/+zZs0K8nNJRZC8avJk0SAsg3rYEJb33xcdLkDCohi7hAWDBINlzRpjepvKxlsJRBRlWIn4QG4ejBU3o8RJWBRjl7CMGKHpQYeSdBCWRx7R9Lo4RHwg+Re8bt2EhCUBEM1cpUqVDLd+M3YJS9myMGiKBicdhEUaq996S3QQlsA2fYECouESJCwJ0Lt3bz1256uvvmLj4OJowg5hwdQWCZA2bBAdnJo1a7JfUOouhYHnbfHiGhs0yL3dDT8ybZr7FTFJWBJg2LBhbMmSJezf\/\/43++CDD0SvAYSlcOHCelyQ5NChQ7oQyANpFsx07do16PycOXPEGUSpfswKFarJn9w1WfXqNTPNkjp27Bj02nmmzD4ffvhh0LlWrVqJMwZt27YNOr8IBX4EBw8eDDqH2CgzLVu2DDq\/dOlScYaxAwcOBJ279dZbxRkjaLN58+ZB55955hlxlrH9+\/cHncuTpy2rVUucJCwxaBBj5cqJhkuQsCQAXPtr167N+vXrJ3oCQFh69OjBPvvsM9GD0PULbPPmzRnHu+++K84YIP7IfP748ePijPHaggU3878V\/rW7d+8Oeu3nSMQhQMiB+dzOkJDhXbt2BZ03J6yK9Vq0zedPnjwpzqAC349B5\/B3JAiF2LFjR9D5L00VtUJfW7p0FZY79zGWwr6AymnZUuMPIdFwCRKWBJgwYYJ+wyODHA4zqpdCiHmEnSE0jcCZM2f0mzTVQUqKLFkO89mh6CBiUrasxlq0cHdskLDECXxHunTpogvL999\/z\/r06RN0g6sWFrhlFyigZYpSTQfjLYCw5M59iPXtS3YWK8BTOWtWTd9FdBMSlgRAQibkUmnWrJnoCaBSWKBXiFCFx20o6SQsHTocZjfcIDqIqCDzHma4c+aQsKQUKoUFCeYwSA4dEh0m0kVYYI9Zs+ZnPaKbiA3GCsbM+vWiwyVIWBSjUlhQjCx3bi2sB2W6CAs4etS4WbZsER1ERJCVH9fKZMN3BRIWxagSFuSTwgAx7VoHgd2gVE6bYAb2pRw5NNalC9lZYoHSKaje4Ea9ZjMkLIpRJSx4OkNY0r1416pVq3Qjef\/+jOXJ4\/4N43XgimQO\/XALEhbFqBKWpk01PYtaigcwxwTG28OHD7O332YsWzYj1wgRmUmTGCtZUjRchIRFMSqE5dtvjdkKSqhGAln7zaVFUhUpLF99ZVyT\/fvFCSIsqDfltnMcIGFRjAphefNN4+kcjXTaboawoIwF6g317092lmh06MBYGC8IxyFhUYwKYWnXTmPFi4tGBNJFWBBFLsurdO5sVEkkO0tk6tSBkVs0XISERTHJCgtq7cKqHytfaboICzydpWfz5s343Iz95z96kwjDtddqbNgw92d1JCyKSVZY\/vlPY8p\/\/rzoiACCIFM9bUIo0FEsEUPiMAkBciEjvcasWSQsKUeywtKnD2OVK4sGEQSWQNhyvvtusrOEAwXeMKPDw8ltSFgUk4ywwCkO9WBGjqQbR4J4rGOmkoiI2kWSbUqjkJl33jGE5eBB0eEiJCyKSUZYkCgb9hVTHfmIfPPNN2mTNgG7QhI8jXHzuO2y7kWWLTOM2xcvig4XIWFRTDLC0r074oNEIwbptt1sBgm2X39dNIgMJk0y6jV7AaXCgh2N0aONKX26kqiwYGoP+8Ho0dZmIeksLKVKMTZ+vGgQGcA5rkIF0XAZpcKCbcB0n6YmKiwvv2xcu337REcM0kVY9uzZwy5duiRaBo0ba6xqVbJDhdK5M2M33SQaLqNUWPD9w0bw0UeiIw1JVFgwKCpX1vTkTlZIF2EJB\/KFY1s13QM0Q2nUiLGePUXDZZQKy+XLRqGkbdtERxqSqLCgXENIJZGoIJs9Mt6nIz\/8YDzANm4UHYQOlkF33y0aLqNUWBATh0xfTz8tOlIcZJ\/HzCEn\/9DI3A8SEZZNmzADMZL0EMEsW7aMnTt3TrQClCmDpOaiQehgGx7VI72AUmGBA1PevIYBN9VBkiXU5Xn\/\/feTTqbdqRNjRYpovo6BwTIYtjWII441a8If8JpFpRCrnzWc8RagRFLz5qJB6EGaeDitXJmCwoL7C6rZsaM3PpydoBLibbfdxooWLcqfEo9kLEvMwoIbYsuWLRnHJ598oveDX\/lIkP2FC29hXbpsCTJSosiZ+bVHkZ9RcJmvOR9++GH21ltvZZw3vxZFzsyvRfJvCcIAzOdwmEMDQl9rdk7D30DfG29sYWvXbuGfewvr0eMXVrq04T+RJctH\/NhiOj7jhzHgwx3ly2ts+HBj6ziSwT+SsCClBPLVwI2dYHxsGdcUTnJegL8VtcAAWalS6guLBDOXEiVKZEzXzcIyatQofi0qZRxjx47V+wEc3NBXrFglPiAqsRtuqBR0E48cOTLoteNN+6unTp1i2bJl46+5IeO8ucjZPffcE\/Tahx56SJzBbOFk0Dkc5kJlI0aMCDoHAeMaygUF4QbH9fcafHzJDykWQ0WfPIrz4wQ\/5PnoBwLoUKYJ9cuk+SiSsMik0XhfBGPr1hnXw\/T8cRX+VtTSu7fx9EoDp9AMICDnRdRgvEuh227T9KDDeOMJIWYynYAdYMMJmd6R0Fve+NEO7NLAcA8bG2YScNS68sqSLHfuI\/r\/5YHzCCQM9zvMR82aGl9mMla1as2gmZ4ZFD5\/+OE0GmhRQOAhrtuPP4oOl+FvRS2PPWYMDNQ3SWWwvEBReJQifRlOKIJ4hAVpJ3PnRi1o0REHdgkL4kww67Ry899wAwpjGQIEIcKuIJYmMOLD4a9EiZJ8aXVE\/788cB4iCrdz2Fxq1YosXBCrggX\/yzZsCC8ebdsaB4GZpsby5vWOyPKvTy0YZBgUVuJd\/AzsEii6jmVEosZbrJ6wbZpIukUUgz+h6CLDU7pfP40VLRp8Y4cerVpp7KWXDHuIFe\/qkiVLWhK\/CxeMyNzJkw0xCf27uEZ8VZZp1wyrw1gJsdKFNm2QkjKFhQXrYwyGdM1NGo+w4CmDa4Ubyw24LurZxrA8Md\/I8kDJjcGDje3ws2fFi+Jg3rx5YbeKo4HZDP5eu3aZ3w9EByVAZJAd6jmjL9UfYlZo2NAQF6\/Avy71ZM3K9Kzq6YhVYZE5XLt1Ex0Ogic\/lhD4+6E3L\/ratzdCDNx27EUh\/Lx5m\/D3dSzoPcKZcO1aQ5DxfkPq8qclyOGDHTavwL8m9cCX5cUXRSPNsCos2AHG0zbR3Bnffvst+zNOxxf8rb\/+NXCDmo\/rr2fsvvu89\/THrtATTxzSo75D3\/PAgYZx2UtParfAkhD2Ta\/Avx71FCnC2OzZopHiwM4BvxKJVWFBofdrrjFmLokQj\/EWYjFgQOYbE0e5cozNmGEYXFVz4MCBoGuTCHK7GYZuJMAKNSpjxkIF443I+NWrRcMD8K9GPfiivRKzYCcX+WK\/CFdR7A5JrAgLdkfy59dY7dqJG9usCAtsEVOnGsZP882ImRJmKFhO2IlV4200Qv1YYMPjXZk+z65d4gfSEExccR1QNsYr8Lejnho1jFINqc7cuXNZy5YtMwkL4oeuwXTERIsWLfT+wNE+42aAs5z5XA7kpzTRqFGjoPNdu3bNEJbTp08HncNrsUkFD0zj6V4n6Pw11\/Rkr75q\/N6vv\/466BxinsxUr1496Hy\/fv3EGaTI+E\/QuVxwXjFRsWLFoPODYQUWwMHPfC439txNlClTJuj80KFDxRmmX2vzuSxZcvPjD37Al0P8UJqxd68hLPD78Qq2CEuTJhqrVi21hQXTfGw1hxMW3AgQCzOoPwwRwDF+\/GlWoEDA0Qfeu\/IcjtDXYmfFfB4Bj1JYQl+7f\/83\/MY0+4ac5cdpljXrabZsGV4bSP8f6++ePXs26Lx0AgSxXouQh+J84b9161b9\/I8mz61Yrz1z5kzQefgKScyvXbgQojqOH3eIz8rYxIniB9OIVauMz24ahq7D3456Bg\/W9K3KVAU3yfr16\/X4oHDCEmspVK6cxurXT+76wEHvt5BAGUQM4OEfEBXjwLIUbvlOo2IpFItx46bzpVC\/oM87fHjqz5bN3Hef8SBJ0pylFP521PPoo8YHTdUUlXjCrl69mj8pVrGqVauyJ554IqOOcixhkTEuzz4rOhSA7WPU65U3ljxat9Zc9SfCjCfenatQFi1apP+eSEyfPp0VKRKYschj4ECNz27ED6U4bdtqenS8l+BfgXqwhseXa4qpS0kSmbE8\/rixHa9q0D\/4oBGjY76pEJPzzDOBQD4\/EykIUQJhqV\/fEJaiRYPDA4YOTY+ZC4zZzZqlgbDIEO7t20VHGhFLWJo0UZNHZMqUR1n58meCbiTpcJeIl6xXiSUsAI58+Ozww6lZM3A9cMRYlaYE8GEZMkQ0PAK\/9OqBzwG2AE2xeWlDNGGBjRKDPZkSmLi2hrGuBD+OZNxA8B3ymlMiEmElG89kRVhAy5ZGEB52xEKXhdhyT2WuvZaxmTNFwyPwy24PmI4vWCAaaUQ0YZk710iRkGhsEJ7MgRgaQ1gg4NiF80KRqlBUGG\/r1asXlOQqEitWGA8zXAeIL\/\/TGcKCI5XTpWKnf8MG0fAItgkLcpKmY+2XaMLSsiVjTZuKRpzAXpUvn9mGYAgLBpRXc9+oEJZY1R4fe+wxNnDgQH2rFdfl66+NfuyCwQlRXi8IuleSIKkGDpBecxDkl9weatfGtrNopBGRhAVPUfjMTZsmOuIAyYxQ\/S8gKohI7sz27w9kfvMiTmw3w3h7xx136LNAXJeVK8UJDoQka9aAuOD6h7jM+B6ksMBni5ALyzX4W7KHW27xVhi3U0QSlhUrjAEe732Gaxjqkn\/\/\/fbE9qhm8eLFumOgnUhhwcQGW64oZmYGqRXM1w5VFEVBhZTghReMz3XaYzWW+FuyB9QhTsdqdZGEBUJbo4b164E0tAgQNN8U113H0q5mMcIZzMnAQ5HCAlCXCdcpNN3DwoXB1xHJ3v1cEcEMAjPxmeJNbWo3\/C3Zw5gxKFBNwiKBKPB7wBLYTQtd+tx0kxaU0gAu7X9gfZXixNoV2rx5M39q88c2ByV+YcANtaVARAYMMNunUH9HnPQ5detqui3Ja\/BLbA+LFxtfpFvZ0dwinLAg6RWuBYLFooHlDdIzmm8AHIMGaZmWPnblvFXJXv6BzaVFEsHqdjPAcgg7JOEqJEKDq1YNXFMYc\/2e4R+f95prNNaiRRoJC3Yr8AVaHBMpQzhhuflmjRUqFN3FHNP3v\/41+KkKj1rxMM6EH4TFjrQJsUDe3r\/9TTRCgDij7pW8vn\/5i7\/DThAqBvubFwsE8strD9L7Fsm104lwwgIHJrjeRwLBY6i7Kwc8Drwm2qBPF2FBpclosx4UfjOf79RJY4ULRy6uD29wszEcS0y\/gtUAPosXfXT4pbUHfLH44p580r9fXCKECsupU8a6\/733REcIsAugPo4c6DiQbjFWZrl0EZZYmI23AN7HuIbRUgjce29gZojvBlUV\/QjylOP9f\/SR6PAQ\/NLaBwyWY8emt7B0724M4nAh7Zs3G74VcpDjQFSulXSVcJWXEdVexQ1hwSWB4TuaJyqMuYjXktccebX8WAcLzoB4\/17KwyLhb8s+ELNx++2ikSaYhQUCgYoF4QqSLV6c2T8F2eZTISJZAh8WJGZKBmTpQ9KoSIQKC4CvysMPi0YEkOLSnLumbFl\/+AaZ2bbNeO9u5NqJBX9b9nHrrcgJIhppgllYMHgxVUX9HgmEY\/z4YCMtnrDpZouySizjbThhadYMthPRiAJSS5i\/h2nT\/DW7njfPeN9e3Hnlb8s+kBkerv3phFlYpMOW\/OIxg0GYg3kwI1gzkv0lGlOmTNFLgKQ68e4KAYRAYEct1k43RL5r12CR96K9IhL9+xvv3YvuTPxt2QdurBIlRCNNkMKCaXW2bFpGAh6Iy623Bg9iZMpPdBrrB+PtrXzK6lTaBDMQB1xfFDyLBYznKJ0hv5NKlazZuLxAlSrGDpgX4ZfSPpAmICRZfcojhQXb7VgG7duHHLnIWh8YvDjKlxcvSJB02RVq0qRJVJf+SGC73mptK1Q0MH83S5aIEx5G7roiPMGL8LdmH+vWGU\/oNJixZyCFZe5cwziImQtSUZoHbr164oeTgLabDcLZWABsLIhXswJu0lq1gmeTXo+CxsMK79OroQn8rdkH6pzgw6PId7oghaV0aY0\/NbVMBddvvz2ze34idOnSRS8\/4mXcFBZk6o+nQiI8n81b\/716iRMeBRsDeJ9eTf\/K35p9IPcqPvzChd6crtkBhKVDh\/\/TPze2muVAxfHAA940tNnFihUr9BpIdhJJWJDQHUtROChaBbly5HeFWCIv79ShDjc+n5dKfpjhl9Be4HwET8d0AcJSpMjMIEHBga3BdClHoZKGDRtaTptgBnoGcUDKynioUCGwJKpUSXR6EARQwk3BDr8nVMj8KMntMX757AU5WdIp4dOQIW\/yQfm\/jMGJI97BbQWUOKW0CVgKbGdrIxShrlxZY6aqsJZ4993gmWYiGf+cYNEiw1XBDmFBWRvUzKpRo4b+oNy4cWPcUer80tlLhw5qjJV+YPXqo\/wp2YUPyL\/w4y6WLduvtlUq8IPxdseOHezSpUuilRiJbDdL7rwTRlnRiAOUUJHCgrAUL24\/Dx\/OWOHChuHZLlAvCwX5UCMbNcF79erFXnnllaA6WpGwXVjuvdeI3E11nnsOa97qbBj\/Eg7wowU\/GjfuKM6qJ112hZIRlqVLDR+VeJeg2MU0G92RzsJrwD+qdGnRsJmePXvyB+ZVusDIoxJfJy5btowdO3aMhYtZCyssKOZt\/iXJHf\/gx7chfal23MmPn1lO\/n\/+H\/34NOMcHe4ddfiBr6OZqc\/qMZUf8uv8gx95+BHu59w6fuTHhpA+d45s2bKx++67L6jwP79smUGOi8uXLys5Vq36Xc9yFe5cKhwPPXSZX1xp8MvLdhv\/YSv5UbRoUX1tGu51dDhx\/MpnHhq7667fw5yLfly8+JteAE18naxIkd\/5dxn+Z50+vv0WY46xCRP+DHte9fHll1\/yz1+E\/83MotK0aVO2detWfdZiLtXC3569wHrN\/z47f150pBChaSSvvHIpu5r\/53p+5M+Xjx0\/flz8JOEWHflqNBE7C1izJvj7\/eADccJlZBI1J4qULeXryZx8XSiFJHfu3Owf\/\/gH++yzz9iFKNGP\/O3Zy6FDxkVAiHcqESoqBQpoesBllixb9AJadvtvENbANj\/KzyYCNt0QjyO\/4zJlNE\/4ISGPD96PnWk1sePYo0cP3bZSt25dtnDhQn4vH2K\/IR+mBfjbsxfpJIdcI6lCqKhcf72RQR\/5VrNmnZMR3RwJKP3KlSvZyJEj9QNJp7HFR6gH28fwZ0l0xixn3PLwgtPc888b4SJ2AT+WGTNm6FvOVnaAwsEvlb3gfoGrNFzZU4HMomKkCOTLTL3dqNHYiMICewscurBt94koXYdkSM2aNdNnOVZ9BbDuXbRoEZ+qr\/GsIJ08eZI9+eST7N+oGBYHeFI+z+8cfEaAJ+TTTz\/Np\/2Z5\/1IIjVr1izWokUL0WO8HmI9duxYvY0dHnwvifoSYUepZs3ArAU7MeKtuQaSWCERuJfhl8p+EOCVCsXLQkWlZEnGpJtGly5GbNA99wTysZiBPwfSCAwdOlT0BMATIm\/evGz+\/PmiJzIwkG3atEkXlPbt2ycU+esE1apV44J7js2cOZPtslhYGJ9t9uzZLH\/+\/Hymy6e6HOSdwRQctYO2hVlP4280R55JE1j\/Y5dCUr68xurVS3z84RLDfV5+7089JU64BOKY+OX1NPwy2c8dd2iseHHR8CmTJgUGVqiogBIl4M4fCEI0AxHA4G\/QoIH+RA1HrVq1WMuWLYMs69GAFX7YsGGeTfYEr02klMSSD0u9eLjxxht1YTnP1y\/dRYgy2nDWCp2hWREWxGhxrUo4pAJfiTn6GTYbN53matfW9Jy9XoZfJvt57DEjP4ZfCZ2pFCsWLCoIsUc\/orjDCctT\/BF3BX\/kbYlSIQs3U7ly5SwZx+AvAOs8xOjn0HqiHuHo0aO6t+aePXtEj3WksJw6dYr1Ez75P\/30EytVqpS+\/DFjRViQEwcZ5ZIRA7zW7Oo\/e7Z7M\/AcOTR25532\/P0\/\/\/xTX5KbH3BYllo12kr4JbIfLI9Roc6PYKZingajnOWZM+KkAJn1cQ5iE05YChQowKpXrx7WQ1FSpkwZXSiszljwcy+\/\/LJurfciEAQY\/rCjAJGJB9XCgghnfD8QmGSoXz8wa3FrBi4z8z\/1lHphgc0uX758XECz6nYtgOU5HOAaN26st63C36L9IKcrMtL7jdDlD7aUQ11TMDPHbKxvX6MdKixwHsJs5Tn4\/EcAeVXgK3B7nCUNsAx6FfkBPAaecH3FBdnH7+Yn4twSlMICEenWrZsuyGaRMQNhCR30EJYRI0aIllExEN\/f0KHJ3YynTyPdaGA8PPKIPbOGaMBchb+dSJ5kK+Cajx49Wv8OYL\/7+OOP+YP0jO66Hw\/8LdoP3hMuBn+PviGcqIS7tliJYDtzxw6jbRYWzCq6du3KX59Fr+gXiQkTJug\/8\/rrr4ueyGDpA1sNdpaWL18e9xTVKcaPH6+LwqhRo\/SBaZXFixfrxlvs7GCQv8fvIAgu7EnwCA8FhmwYds1LrnXr1ul9n3\/+uegxKiRi1hwy4YkbVJ6QYwJ2NqdZuVLTH9J22ngOHjyoz1oWLFhgeQYdCr889oNxhS8Cod5+ALlS5eDBAcOfaYwGIUt5yIJXZmHBjVGxYkV+Pou+8xMOPI2vv\/56PbdrtKUSkRyvvWZ8l3yCkxSIqTTPWqzm1VXFQw8l7vBnFfhZYQYdr6uAGX5p7AcbIfgS\/ODLImu1yANh85gChwM6gEz8t9wS+FyhMxY8tSEsp8P8EpyfOnUqy549u55XhLAPOELjSa8iIPy22wLjA8XRnAQldRINUbAKfJAqV67MWrVqlbCfFL80zlC2LMK8vS0szz4bXJ0QohKtPIfMO7p7t+jghNpY4MMBt2jkJgll586dumEM03bCXuDUhoxrSHKeLAcOBBv0N24UJxwAScLbtxcNG4C\/FZw4X+NTPPhWoe3ZXSHQq5exZEDdXC8Cz1mzqCA7V6xc1Rik2IK8eFF0cEKFBbRu3ZpVqVJF97IFWPJg67lw4cK6cZNwBsT6oOC+Csw1oq67TkvadmMV+EshgZVq4IiIsfsQX2vBloUZNh6IcEqE3SuS\/1Uk+GVxhiefNL4E803oFRC1ahYViIW5LGok8uTRWMWKwQM1nLCAzZs362kUsCzCLsa7CGIhHEUmy1YRvBcaQ+SEA7Q0KcyZo37mD4N3sWLFMhwusQRq164dX3oN0H1b4oW\/TWeQ22ReK2CNaS12deQAyZpVs7SVJ0PX33hDdAgiCQvhPhAULGH27xcdSQDTA2Y\/ctxgqZ\/gBopl8ADE33rzTdHhYfjbdAbppJRgsKQtYIBh3S0HB4633xYnYwC\/NKQ9DIWExdsUKIDcxKKRJHiomMeO3e4UsAHi73jpHooEf5vOgG2+eG5cu8EMKrRCYejsIxp4WlWrlvkRRcLibZB\/2WqFxFggGB1bv3L8IKmUnYwZo9maLkEl\/HI4A74EXHzE3bgNlj\/mAYHjlVfESQvAQx2vWb5cdJggYfE28L7FzanK2PrPfwaPIzttLZ07G8GQfoBfCmfAmhS2jDZt3L0wcMlHnIccCDDULl8e33vCbhCWQeFsWiQs3ga7\/vjekdlQBbDbmB3mHnxQnLCB+vWRMV80PA6\/FM7RoIGmB\/HZbeSKxNmzhhu2WVTmzYv\/zcCXoEkT0QiBhMX74KEgYuyU8PDDASMujP925XdGcqfx40XD4zgqLA8+aHwBbmw5w7\/HPFPB9jIGRLzAgRavj7TlR8LifapXZ2zYMNFQAJb5SMsgx5YKJ7xQ5Iz\/mWdEh8fhl8E5ZBJgeKw6CZYshQoFvngc99+f2LRp5kxN\/4IjpSckYfE+vXtreo1mlSCsQ46tEiXU\/m4AFwj8br+4P\/G36hyIrYEfASrlOwUEAKkJ5ZeOY9SoxI13SK96882iEQYSFu+zcqUxDiPEhSYEZuFm14WXXhInFLFggTGGVb5nO+Fv1Vly5IhvWzcZICo33RQsKnCHTjSIGIY6JAafMSPyE4mExfvIgERku1dJ3bqBsXbLLaJTEQiJKVjQSJPpB\/glcBZcHKSqtBuIR48ewaIC\/wWLifDDMmeOMSCjOSiRsPiDKlUYu+su0VAEfLTkWMPGQKRUG4lQs6ax3PIL\/BI4C4KoOna09wLB0PW3vwW+ZBzYyTHnqU0EJCpr2lQ0IkDC4g9690apFtFQCBzw5JjD31BFmTKwC4qGD+Af31maN9dYkSL2Csvf\/x48U0GphGQTrWGmg2XcggWiIwIkLP5g4UKN5cyZ\/LgIBdvBctxhwyDRZXcoiLZHyVe\/wD++s0yZYtz0dlUgnTAhWFTKlRMnkmTmTMPgFyuVAgmLP5Clf1FZQSUw4kKw5PhTsfWM34nf5aeAeP52nQWJ0nCR7NgZQs5m+YXiQJkOVU8MTHFhCI4FCYt\/QIG5e+9VP3u+447AGESlzGSRYQNOu2kkA3+7zoJtXhhAkYNUJS+\/HJxTBZnzVaZowFailURvJCz+ARUFGzQQDYXIsAEcmOXC4zsZhgwxZuFeTZIWDv52nQdrTyR+UoUs\/C2\/TEQtHz4sTipg7lzji421DAIkLP4BpVLtKKSHLWFUK5TjsXHj5GZFqBeNcBg\/wT+282CrD0mBVYDqneYgMMws4qzoGRXMsAoXNr5YKz4EJCz+QSYfs5ItMF6WLg2MScxafvxRnIgTjD\/kkDHVX\/MF\/GM7DzxXUcE\/WZD+ACHw8gvErEW1MQ5OcfBJ+Ne\/REcMSFj8g4zxscPOgpgy8yz6xRfFiTiBjRC7kevXiw6f4Iqw\/OMfmv6FxpmfNwgUD8M0Vn5xOOwoCihz9VqtuUXC4i\/atkXIh2goBoUb5dgsVkxLaLyjIB5sh34q9gf4R3YeaeVO1A6CIuzm9Ad4MixbJk4qBAMBFRArV7b+RCNh8RdYsthhZwEofinHaKLjXQbu+iVGSMLfsvNgvYl156uvxj8FxfS1YsXAlwU1TyT9gRU++8z4G\/H4D5Cw+AtZI+jCBdGhECxj8uYNGHHHjBEn4gDOnnh\/dpZUtQP+cd0BBtFEBMEsKjhGjbJHVADKRcTrnUnC4i9Q6gnjCN+1HcBTW45VCASWNvGA8jJVq9o3xu2Cf1x3QJxGPGn2EP9j3sLDMWyYfdno8PeQ7Q4Rq\/FAwuI\/atTQWNGi9owl+FKZx+zateKEBfBAw2sSmem4DX\/b7gDDFjJ5WQFTypYtg0Wlf39NmVdtOLBljb+DdXI8kLD4D7jdw2Uhmcj3SECsIFxy3MaTTkGKkh9r2\/G37Q7z5xs7Q7HEAd6GAwYEi0rXrvYMAjMTJjD+FBONOCBh8R\/YYcQyBZsCdgCjLX4\/xi5sglYz+cPGh58XlXl9hWvCAqMZLjRihyKB5cgDDwQEBQfSH9hhaDODKSjKg6DcQryQsPgPjCeMrfnzRYdiMGsxu0ZYTYiNEBLMpJJN9+EG\/GO6AzwKc+XS9GjnSDz6aODLwAF\/AxV1d2OBEpZ4wiRSr52ExZ+UK6exG26wz2aHekZyHCO3Ch6asYC5IFeuxNOougn\/mO7RrFnkWQFKmJpFBbtITik3wg2w+5QIJCz+ZNEiY5wlGzAYCYxdcyb\/jRvFiQhA4LB50L69TUpnM\/wjuge\/B\/W4oVAQqSy\/ABzXXSdOOACWQQgTSHQbm4TFn8BPBPYMOxO9164dGNOwE0YDnt74Ob+U+wiFv3X3QJFrBA2awW6MOcYCmbPsKgAVjhUrjClrooW3SVj8CTYJUMhs1izRYQPIWifHdf78ojMC2I3EctzuTQq74B\/RPWQWL+SvALCCm7NvYX2pMv2BFVq3RvpM0UgAEhb\/Urasphf7twvsgOJBKcf3s89G\/luoJR5LfLwM\/3jugVgciAeWHSdPBosK1qNbtogfdAiEGqC8x+LFiQ8uEhb\/gl0hjD1EJttFx46BMV6vnugMw\/DhRh4Wv8I\/nrt06GBk7sc0VF5wLIVUZ5izwuTJhrAkY8AjYfEvyC2LFBn\/\/rfosAEUMpPjHA\/VSFnhUKmxVSt\/Gm6B68IinxLmQ3UhKatUqmRs8SUDCYu\/KVXKXhd6LIcKFQrYWsLZdJBoHuewM+pX+Nt3D3g63nBDQFDcvJgw1mJXINmnFQmLv2nXTtNtLXb5s4ChQwPjHTFKoT4tsDnCcHvqlOjwIfyjuQOmnVWrBi4wLuSkSe5N\/eAvkC9fYsl4zJCw+JvnnjPG4\/HjosMG8PCS4x5Lr1BP8sWL7csR4xT8ozkPnga1agUuLg4ot1vg\/SABt4rSryQs\/gcbB0uWiIZNwPlNjn2ErZjp2ze6YdcP8I\/lPA0bBotKiRKabsiyM1o5GihSj\/eB7e5kIWHxP3XqGDe3nUyaFBj\/2Ky4fFmc4JQqpemBt36GfyxnQWFreUFxdOum6d6OsG\/YVR0xGljfwrO3SpXMa91EIGHxP8OG2T+D3r8\/cA\/g+OQTox8lZtC2UsPKy\/CP4AzYVuvSJVhUOnXSdFdqmcULlQydBgZk\/O133hEdSULC4n+2bTPGBMqD2AXuB+xAyXsBRcnAypXGQxY2SD\/DP5L94CLedVfgIuLAzEVePNg44PGIVAVOR3Lec49hOI43ZWAkSFj8D8YgjKdjxtg7a0HBNHk\/YDmE0BXsGFWuLH7Ax\/CPZC\/YZbn\/\/sAFxIFgrNBljww8tFpmQwUyQ9fIkeoGEAlLatC9u2ELtBN4m5vvC8ya69ZlrHdv8QM+hn8c+4DNIlRU4GUbLiMWttyw9bZ1q+hwgDVrMgdBJgsJS2qwaJGmjw07s+Njpg5bjrw3+vc3EjvNm2fvTMkJ+MexB1w0+KWYRQXpCCIlapLRpW3bOnNRIXqlS2usenW1f4+EJTU4ccIYs6g7ZCdIiyDvj6uuMu6XI0fESR\/DP4Y9jB1r1EORFw2RmpHiIiQTJhgXFksUu0EpVvwt1RXmSFhSB5TdaNpUNGwCD1pzmhBUTEwF+EdRz7Rpmr6skRerUCHGzp0TJ6OAvXxMBV9\/XXTYCHaoEs0SFw0SltRhyhTc6KJhE5g5m53lmjUjYQnL9OnBolK8uDGttArygXbpIho2AR8CzKbsSJ5MwpI6oOwGxsnRo6LDJsxFzVA50S1HUZUoFRZkXzNP65CnFtn442HqVGMfP9EMblaAkQyCl2xcUDhIWFIHzKCRI6hHD3tnEdjezpEjcN\/EU9TMqygTFhm8JQ8sf+It9gWQcxZxO\/PmiQ7FIGIUsSB21XsmYUktkHAJntnYjLATc5Q\/Hnx+h3+M5PnXvwIXBQd2f957T5xMACR\/wm6NHV\/mkCHG7pNdno0kLKnF7t2GcRXZBe3k+usD9w9m0yrCS9yEf4zkWb8+UNoAGdg+\/FCcSBD4smBtu2GD6FAESjBAVEKjSVVCwpJawJETYxH+WHYBXxmIF0wAUlzeekuc9ClKhAV88IEhLqq2b+GB2KaNaCiid2\/DBmTndjYJS+oh64bHcpdIFKTrwO9HQT4pLJ07+3t3SJmwAJWlT5cs0XQFT8ROEw7YbpCaAVuIdkLCknpgOYSb\/euvRYdCsOSBTbFBA4098khg2\/kvfxE\/4FOUCotKsOVWrlxypTgksNU0bqyxbNk021MzkLCkHnhg4iE3c6boUAhsN5hFI6scghDlriqWXzt3ih\/yIZ4VFoDARDjM4YmRDHCRxhfmRJJuEpbUAw+mevU03XtctY+JDL6Vy3OUHZazFqfCW+zA08ICP5MmTZLzfoQvAgIfy5YNztJlFyQsqcm+fcYsItmNCTNYBiFxd6VKgR3QGTMCyyGkEfErnhYWgNkGLjLyVCSyBYfyCpitHDsmOmyGhCV1KVCAsYkTRUMBcALF2H7zTdHBQXpUuTuEf7\/9VpzwGZ4XFoC1LZ4WCByMhz17jC9oxAjnppQkLKlL8+Yay5PHyHqoArjyw7M3dHllTjQ\/aJA\/l0O+EBbMVG66yZgiWs3XAgs+4i5QYsRJSFhSFyyD8IDbuFF0JAHc+BF82LBhZuGQ28844Bfmx9ghXwgLwBoUYey42LFyZMCKj\/BzrFGxzewkJCypDapl9ukjGkmAHR+M5XD1i+BiIYUFy6FwidG8jm+EBcBBaeBAI88LUh4g+tQM8tY+9BCmq0YApB1+B7EgYUltpk41oveTTaF6++1GMu1wYIZuziwXrgyr1\/GVsEiQG7RyZePC58tnpFpA8mNp9ELibidz55ohYUltsLOIMYekZIny+edGGtaJEyP\/DhiJpbDg7zmdZD5ZfCksAFvRCHREVDXiOJYtM6zrblvRSVhSn4EDDReGRG\/2Bx9krGDB6Mv0vXsDwoIDibf9hG+FxauQsKQ+SBSG2fHs2aIjDmAvwTId4hQNLOtlYC8OJ5w7VULCohgSlvSga1fGKlQQjThAfhfYAK3MrFHETAoLPH\/9BAmLYkhY0oMtW4yt55deEh0WQNVNlBSxap9BpgApLDiQpMwvkLAohoQlfUDdcatJmeAuUbeu4WCHvEBWQAZ\/s7D4KWUlCYtiSFjSh08\/NW74wYNjz0AmTzaWNfEmcGrSJLAcQnVGv0DCohgSlvRi+nTDkAuRicSOHUaU\/pgx8ce7ybAUHDDm+qVYPAmLYkhY0gvEDcGnCsmavvxSdJqAhy1EpVMnxn75RXTGAdz5zRn8\/\/lPccLjkLAohoQl\/UAISeHCRgjJqlWGmz7iieSuTtOmWsIpO2CbqVAhsBxClL8fIGFRDAlLeoLsb7feGvD+xgFv8McfFz+QBAsXBoQF9cb9AAmLYkhY0htEQL\/4YvhlUaLAy9zsLAcHPa9DwqIYEhbCDpD\/WQrLuHHen7WQsCiGhIWwA0T1S2Fp1Eh0ehgSFsWQsBB2YA5KxC6THXXHVULCohgSFsIuUGtIigsMul6GhEUxJCyEXXTpEhCWm28WnR6FhEUxJCyEXSDnkBQWr5cGIWFRDAkLYReommjedlZVJ90OSFgUQ8JChOPNN99k38lyhxb4+uuv2dtvvy1aAVq0CAhLz57etbOQsCiGhCU9mTdvHqtfvz77ExnfTWiaxiZOnMi+QnWyONm3bx9bvny5\/jsk06cHtp0LFTJc\/r0ICYtiSFjSj99++43lzJmTdejQQfQEgDjMSiLN\/u23384OHz4sWowdOBCYsSAht1eTbJOwKIaEJf345Zdf2NVXX82OHj0qegwuXbrEKlSokGkWEw8XLlxgZcuWZZdFFCPSLpQsGZi1PPmk3u05SFgUQ8KSfpw5c4a1a9eOzx6Cpw+wkVRChbMk+B9XklKlSrF3TUW0Ro8OzFqKFNHizvHiBCQsiiFhST8OHjzIPkM19xD69+\/PBgwYIFqJ07NnTzZkyBDRMsrcSGHB8cMP4oSHIGFRDAmLM8AYumrVKnb27Fm9DQPniy++yA4dOqS3VYLfvXXrVjZ79mw2Y8YM9mm0dHGCn376iV133XXs0UcfFT3BYCZy\/Phx9vTTT2fMdH788Ue2ZMkSdu7cOb0tmTx5MitUqBC7KNLH4SObhWXfPr3bU5CwKIaExX62b9\/ObrvtNt1gOmXKFL3vjz\/+YLVr12ZNmjTJtCQ5duwYe+WVVyIea9eu1W\/qcMC20b17d9alSxf9\/xCYPHny8Bs6CytZsiT7PULFdogGfmYL0vmH4cCBA6xz584se\/bsuljBlnLXXXex4sWL6+\/HDJZU+F0nTVXLWrQI2Fli1ShyAxIWxZCwOEfr1q1Z3759RcuYWYwdO1a0Ajz77LOsTp06EY969erp4hOOOXPmsAIFCugzDAm2lceNGyda4YGgZMuWjR05ckT0hAezoHz58unb1ZFECrOwrFmzst27d4sefKbAjCVbNk1PkeklSFgUQ8LiHCNGjGBt2rQRLcZ27doVceaRCJgFQXgwC5JgB6hYsWJs0qRJoic8VoUFjnBXXXVV0JZyKFJYNmzYIHoCFQLk4TUvXBIWxZCwOMeECRNYw4YN9f\/DpjFz5kz9\/6HMnz+f5c+fP+Jx7bXXRrTNYHlSrVq1DCe18ePH6z\/\/QwyLqVVhgVDh51577TXRkxkpLBBOCdImmIXlqafECY9AwqIYEhbnWLhwoe4nApvK9OnTg5YrZuBKD5tGpOODDz7I8BMJBQbTYcOGsSpVqrBGjRrpYhZqXA0Hfm80GwvA+x0zZoy+69OvXz\/RmxnYda644opM4oeNIiksDRp4ywWXhEUxJCzO8dJLL+nGTvwrd4dUAx+Vbt266btQZtf6WOB1OXLkYC+88ILoCbB582Z9N2jlypXsxIkTbNOmTbqvyvnz59m2bdvETwVYvXq1bqgO\/YyhJVhPnxYnPAAJi2JIWJwDu0PweN2IWhs28cYbb+g7N8OHD2eLFi2yNFsBsM\/UrFlTn+2EsnTpUn05tW7dOr0ND10syR544AF9aRQKtpvr1q2byYMXJVjNVQGirKYch4RFMSQszoGn+4IFC0RLPTt37tT9SiBg9913n749jB2iPn366GIQCyzVpA0oUTBLatGiBXs8TB0RTKCKFQsIi5dqDpGwKIaExRm++OKLsMsMVXzyySf6NnQo2BLGTARiE4vTfG1SuHDhTH418YBZCmY3p06dEj3BzJsXEBarBeqdgIRFMSQs9oGbrEGDBnoqgVjbvcmyf\/9+Vr58efbNN99kGIWxvIHrfqtWrdjPP\/+s98XikUceiWrAjcVHH33E7r77btEKD6Kcpbh4xQuXhEUxJCz2gRsbkb4rVqwQPfaCLWUse7AdjAMzGHMwoBWQUqFq1ar6v\/GCz4vdqFivRZpKKSxTpnhjd4iERTEkLEQoMMgOGjQoomdtOLB8uvfeezPig6LRrl3Avb95c9HpMiQsiiFhIcIBcYln1vLrr7+G3SEKx6ZNgRnL1VfjteKEi5CwKIaEhXAa2Ibz5w+IC2pHuw0Ji2JIWAg3wAaWFJbevUWni5CwKIaEhXCD++8P2FkqVBCdLkLCohgSFsINkMDuiisMYYE37vnz4oRLkLAohoSFcIvSpQ1hwfHoo+5uO5OwKIaEhXCLnj0DwlKjhuh0CRIWxcAj00ocCUGo5umnA3aWggVFp0uQsBBEioCsClddZQgL7C0xckzZCgkLQaQQjRoZwoJj0CD37CwkLASRQkyeHBCWvHndK8FKwkIQKcTWrQFhyZYNNj9xwmFIWAgihUCcI+KFICxw89+zR5xwGBIWgkgxFi5kLEo1EUcgYSEIQjkkLARBKIax\/wdV0IyrtMs3SAAAAABJRU5ErkJggg==\" y=\"4.5\"><\/image> <rect fill=\"#fff\" height=\"69\" id=\"svg_2\" stroke=\"#ffffff\" stroke-width=\"1.5\" width=\"17\" x=\"70.99999\" y=\"70.99999\"><\/rect> <rect fill=\"#fff\" height=\"21\" id=\"svg_3\" stroke=\"#ffffff\" stroke-width=\"1.5\" width=\"79\" x=\"108.99999\" y=\"159.99999\"><\/rect> <\/g> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_5\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"65.99999\" xml:space=\"preserve\" y=\"82.99999\">10<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_6\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"73.99999\" xml:space=\"preserve\" y=\"97.99999\">8<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_7\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"73.99999\" xml:space=\"preserve\" y=\"120.99999\">5<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_8\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"73.99999\" xml:space=\"preserve\" y=\"134.99999\">4<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_9\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"109.99999\" xml:space=\"preserve\" y=\"174.99999\">3<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_10\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"149.99999\" xml:space=\"preserve\" y=\"173.99999\">8<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_11\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"159.99999\" xml:space=\"preserve\" y=\"173.99999\">10<\/text> <text fill=\"#000000\" font-family=\"Times New Roman, Times, serif\" font-size=\"17\" id=\"svg_12\" stroke=\"#ffffff\" stroke-width=\"0\" text-anchor=\"start\" x=\"177.99999\" xml:space=\"preserve\" y=\"173.99999\">11<\/text> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\bigg(\\dfrac{13}{4};4\\bigg)$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\bigg(7;\\dfrac{29}{4}\\bigg)$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\bigg(6;\\dfrac{36}{5}\\bigg)$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\bigg(\\dfrac{36}{5};+\\infty\\bigg)$<\/span>"],"correct":"1","level":"3","hint":"<p>T&iacute;nh \u0111\u1ea1o h&agrave;m&nbsp;<span class=\"math-tex\">$g^\\prime=u^\\prime_x.f^\\prime_u$<\/span>.<\/p><p>H&agrave;m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn khi&nbsp;<span class=\"math-tex\">$g^\\prime(x) &gt; 0$<\/span>.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;<span class=\"math-tex\">$\\bigg(\\dfrac{13}{4};4\\bigg)$<\/span>.<\/span><\/p><p><span class=\"math-tex\">$h^\\prime(x)=f^\\prime(x+3)-2g^\\prime\\bigg(2x-\\dfrac{7}{2}\\bigg)$<\/span><\/p><p>Ki\u1ec3m tra c&aacute;c \u0111&aacute;p &aacute;n.<\/p><p>\u0110&aacute;p&nbsp;&aacute;n <strong>A<\/strong>, Ta c&oacute;&nbsp;x&nbsp;&isin;&nbsp;<span class=\"math-tex\">$\\bigg(\\dfrac{13}{4};4\\bigg)$<\/span>&nbsp;th&igrave;&nbsp;<\/p><p>&nbsp; &nbsp;&nbsp;<span class=\"math-tex\">$x+3 \\in \\bigg(\\dfrac{25}{4};7\\bigg)$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$f^\\prime(x+3) &gt; 10$<\/span><\/p><p>&nbsp; &nbsp;&nbsp;<span class=\"math-tex\">$2x-\\dfrac{7}{2} \\in \\bigg(3;\\dfrac{9}{2}\\bigg)$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$g^\\prime\\bigg(2x-\\dfrac{7}{2}\\bigg) &lt; 5$<\/span><\/p><p>Suy ra&nbsp;<span class=\"math-tex\">$h^\\prime(x) &gt; 0$<\/span>.<\/p><p>V\u1eady&nbsp;<span class=\"math-tex\">$h(x)$<\/span>&nbsp;\u0111\u1ed3ng bi\u1ebfn tr&ecirc;n&nbsp;<span style=\"color:#16a085;\"><\/span><span class=\"math-tex\">$\\bigg(\\dfrac{13}{4};4\\bigg)$<\/span><span style=\"color:#16a085;\">.<\/span><\/p>","type":"choose","extra_type":"classic","user_id":"131","test":"0","date":"2024-06-13 05:08:07","option_type":"math","len":0},{"id":"5314","post_id":"7505","mon_id":"1159285","chapter_id":"1159288","question":"<p>C&oacute; bao nhi&ecirc;u gi&aacute; tr\u1ecb nguy&ecirc;n c\u1ee7a tham s\u1ed1 m \u0111\u1ec3 h&agrave;m s\u1ed1&nbsp;<span class=\"math-tex\">$y=|3x^4-4x^3-12x^2+m|$<\/span> c&oacute; 7&nbsp;\u0111i\u1ec3m c\u1ef1c tr\u1ecb?<\/p>","options":["<strong>A.<\/strong> 5","<strong>B.<\/strong> 6","<strong>C.<\/strong> 4","<strong>D.<\/strong> 3 "],"correct":"3","level":"3","hint":"<p>&Aacute;p d\u1ee5ng \u0111\u1ecbnh ngh\u0129a:&nbsp;<span class=\"math-tex\">$y=|f(x)|=\\sqrt{f^2(x)}$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$y^\\prime=\\dfrac{f(x).f^\\prime(x)}{\\sqrt{f^2(x)}}$<\/span><\/p><p>Khi \u0111&oacute;&nbsp;<span class=\"math-tex\">$y^\\prime=0$<\/span>&nbsp;&rArr;&nbsp;<span class=\"math-tex\">$f(x)=0$<\/span>&nbsp;(1) ho\u1eb7c&nbsp;<span class=\"math-tex\">$f^\\prime(x)=0$<\/span>&nbsp;(2)<\/p><p>S\u1ed1 nghi\u1ec7m c\u1ee7a (1)&nbsp;ch&iacute;nh l&agrave; s\u1ed1 giao \u0111i\u1ec3m c\u1ee7a \u0111\u1ed3 th\u1ecb y = f(x)&nbsp;v&agrave; tr\u1ee5c ho&agrave;nh y = 0. C&ograve;n s\u1ed1 nghi\u1ec7m c\u1ee7a (2)&nbsp;l&agrave; s\u1ed1 c\u1ef1c tr\u1ecb c\u1ee7a h&agrave;m s\u1ed1 y = f(x), d\u1ef1a v&agrave;o&nbsp;\u0111\u1ed3 th\u1ecb suy ra (2). V\u1eady t\u1ed5ng s\u1ed1 nghi\u1ec7m b\u1ed9i l\u1ebb c\u1ee7a (1)&nbsp;v&agrave; (2)&nbsp;ch&iacute;nh l&agrave; s\u1ed1 c\u1ef1c&nbsp;tr\u1ecb c\u1ea7n t&igrave;m.<\/p>","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>C.<\/strong>&nbsp;4<\/span><\/p><p><span class=\"math-tex\">$y=|f(x)|=|3x^4-4x^3-12x^2+m|$<\/span><\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$f^\\prime(x)=12x^3-12x^2-24x=12x(x+1)(x-2)$<\/span><\/p><p><span class=\"math-tex\">$f^\\prime(x)=0$<\/span>&nbsp;&hArr; x = 0 ho\u1eb7c x =&nbsp;&ndash;1 ho\u1eb7c x = 2.<\/p><p>B\u1ea3ng bi\u1ebfn thi&ecirc;n:<\/p><p><span class=\"svgedit\"><svg height=\"143\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> &lt;title&gt;&lt;\/title&gt; <rect fill=\"#fff\" height=\"145\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> &lt;title&gt;&lt;\/title&gt; <image height=\"143.00002\" id=\"svg_1\" stroke=\"null\" width=\"398\" x=\"0.49999\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAlkAAAC8CAYAAABL7rtfAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAFBhSURBVHhe7d1psGxVeT7wVCWf\/EgqlUq+WGVVqpJYSZnJxCmVqFFAISAoszLPXOAyX+aZy3yZpzCDmmgiyDzDRWRUEFRAUEEFTIKCimKm\/T+\/FZbZ9L\/PuX3O6T5nd5\/nqdp1Tu\/u3t2913rf9bzP+661fq0JgiAIgiAIho6QrCn893\/\/dzn+53\/+540zQRAEQRAE88OSJ1mI1QsvvNB8\/\/vfb375y1++cTYIgiAIgmB+WPIk67\/+67+aL3\/5y829997bvPrqq2+cDYIgCIIgmB+WPMn6j\/\/4j+YLX\/hC87nPfa75t3\/7tzfOBsFoQUH9xS9+0fz4xz9u\/v3f\/7356U9\/2vznf\/5nUtYdg\/Z4\/fXXSzu9+OKLRfHmJ37+85+XEoOgm9BuAujXXnuttFfNVvzwhz8stua5IFgIhGRNkax\/\/ud\/bj772c+GZAULAgOA1PTXvva15pJLLmlOOeWU5oYbbmheeumlOP+OARH++te\/3lx88cXN3nvv3WyzzTbNiSee2DzyyCNlsA66CXaEGH\/pS19qVq5c2ey2227N1ltv3Rx88MHNrbfeWgKbBDTBQiAkKyQrWEBQq370ox81999\/f3Pcccc166+\/frPOOus0p512WvPss8+W54NuABH+7ne\/21xxxRXNnnvuWQbprbbaqlm2bFlz7rnnNg888EBpyxDjboHCiGA99NBDJYg54ogjmj322KPZZJNNmr\/\/+79v9ttvv+aaa64p6lbqcMcTVWHWhk8++WSn7TAka4pk\/dM\/\/VNz9dVXN\/\/6r\/\/6xtkgGA04hueee665\/PLLy4D9zne+s3nve99b1JFvfetbIVkdAScutXTLLbc0hx56aLNixYriJ+68887mH\/7hH5pDDjmkEK2vfOUrJSUVVaQ7qORYGQiSdc899xTl8Ytf\/GKz\/\/77l8AGab799tvL4ByMHxBpbUepvOqqq5pvfvObxbd2ESFZUyTrX\/7lX4oDjZIVjBqirZ\/85CfNU089VZwDVWSDDTZoTjrppJCsjqCmcx999NGSypVionQbuH\/2s5+VNO95551XiJfgLGnebkEbsa+77rqrKMYvv\/xyGYAF0YjXdttt12y88cbNWWed1Tz\/\/PNvvCsYJ7A3KV+p37PPPrvYqtR+FxGSlXRhsMAwiIvEHn\/88eb0009vtthii5CsDkHbvPLKK82NN95YSPDhhx9eBmuzj7UdUvX5z3++2WWXXZpjjz22pCu66uCXIhAqKuT3vve94tP5eO3mL+UROd5oo41K2337299+413BOCEka4zA8Mws\/PSnP92pdCGHrkbnwQcfLA5eZEYeNavJLJmvfvWrRSq19IQOxqmIvpO2GB984xvfaM4444xmyy23DMnqEDhwtR5XXnllSekeddRRzRNPPFHSgsAOr7322uZTn\/pUs88++xQbTRF8d4Ak8+v8IXuqPlG7CmzUaJnAYHCOkjWemC\/J0jd+8IMfNI899lhz3333lfebPczG1fPxzXVpJ7WX3\/nOd4pCqm\/NFp0iWYzBzXMD3LBqJP6KThjOXH7kTHBNEnKX0oV+o8ancnz84x8vxZpHH310aXADsULcbbfdtvnQhz7UvP\/97y8R9XXXXVci7AzS44OQrG5CGzzzzDPFeW+66abNCSecUNqmOnEB0E033VRI1q677trcfffdRfkKugtjizHk4Ycfbo488shSZ3fbbbeVVGLQfVQlkg0SGgQ1lErjnnGSEFFFCIe2bhPsNoyvxsrPfOYzxX7XXXfdMoZSp4kZq1evbg444IDmox\/9aBlfqZ58wdNPP12uO1t0imS5iZwZwnPmmWcWhcnNczMUm15\/\/fW\/IhL9bt5c4DPdXJ\/RBSXL90H21BOcf\/75zfHHH19kbR3pggsuaE499dQylXz77bdvDjrooBJlm6WmvgAJ8xsyUI8HQrK6iUqyFLZ\/8pOfLDYnrVQdrJo6EfQOO+xQnLTi+AzW3YaBFRFGiJHmiy66qGQKuppiCt4MqpXx3yxsBFmdJBVZqYXZ2WzReOg5Y6KxkkJFfWpDPxAkUabVxJ588snNMcccU\/wve1+1alVz4IEHFrs2zrqW5\/kAZUUmLc22z3SKZCEXWCRC4UeaausmqInwWC79jjvuKESC4jUMIDXDSBdywNJ4UnhqOTDs6Q7P+x0GVYy8rc55TNI2i0knUWzruqRLncCAvPPOO5d1e9SCSBNKHeowOqFrzoVtBwuPkKxuQhsYgDlqRdIcb5tkcdI333xzcew77bRTWeMs9ZzdBj+vTQ2U2tXMQqRrWONIMFoQV4xxFCapXsupbLbZZs2HP\/zh5l3velfJ9giIPGd8JEwIfgREbegHiBKeQchAtpQG8MXqsi314VpIFYHH+KrfGFt9vpo+6cTZoBMkiyrFsSENSApCISWGmfrRaiMQL48vvPDCMl1TCnEYcNOHMbuQVMlw99133yIvfuQjHykyZL\/DbDLOW6NqcN+hQgNqfIdBF2tGwrzOd8TcsXj3qF0jovG9x8KJ9Xyw8NBW5GrKBsfAgB2MlcHr51WFDcnqJrSBtjCDUFq+rmFWSVatydJu7BjJEmkH3URbxUKwDJiC17YtBt0G25MeNL4Z66R9CRWEB8qTTJQx0XPqq6T9+mV1jKeuId3vdexWH6j9A8f4xCc+Uch4FV18Nn9gKRDEa7ZiTCdIlh9hIKLIYJYGJ2qPVBm5zo3z45AhRELB2rAGo2EpWYiNhrDInbVZkEEG3e+gQukUfi+H3Y6mED1ql0i5kixwXzh7JMvAzEnU95FERdo6gWv2SqTBwoAzR6T0VUGBmWnUDvl+jkD\/pUpWUh2S1U2wKwXR7Fh0zA8JAJFnQKDVcYqktS27S01Wd0F5NCj\/4z\/+Y7HBdlsG4wk2OpfCd+1uzTRjvrGypvldi+hhZwAHH16DKv5aUbw+xNZxldmgUyRLBb+\/yA4SQrLzF6lyjpqDhHj9sCKQYZEs38e1kC0DrYNx9zs8Jy1IjWunCgHpwtA5A+lCzhtpQrxEzQrhrd2DeFZHQf2ydo8Uo1RjlKzFgbbUrmabqSlcvnx5GYR33333oj4amPXlkKxuQztWIrXjjjuWQmn2pm0BUb7ssssKyUKeTVLJoN098Ml8ITvj45EswSp\/yacaWB1pu\/HDXEmW1xgj1WETMogTxmHqllmnG264YbPXXnuV5yofwDe8Ts2zTBsRaDboBMkysLSJCTJ1zjnnlGJuP4pReA7hcEOGRbDAgIfQMMAu1FVwCtKh5MoqgWLPVgS3gJ4aEJG1dKqppRyIQZ3y53WIamXgwcKD8evDlBCStfbRnggUo20HCIwdYd58881DsjoE7WPg5XvUgx522GG\/crr8BcJlsom6EGS6N+UfLD4QZW3I\/hBiNTomEtXp+vyqoJSakXq68cNcSRY7FSQRMoyh0obGTyVJsg5ShWxeX1HTpf8IoryeD0DSZ6tad4JkuTkGJQzR4YYhEoiWAQrJMtvHDx62SuOmq3XqyrY6Oo+ImTNQ9C9a\/uAHP1i2gjDbQToSAbOkg+nlpply9gZre3XpAL3qWNBNaC8K18c+9rGQrI6BHYpeOV\/FtsiUaFdtnbQChVLkK7BBqocZ+AXzR1UflGesvfbazR\/\/8R83f\/VXf1Vmoq233npFsbDFDqIlexCMF+ZKsmoAhU\/Y2kyWQfG85ZAUzeMc+gSBRwG98VX2iJ+2LRN+MtuAatFJFmMQ8SsyxSpFj5deemn58Wb1IFmKTkUelJsq2Q8LbliXlnAAHUHalDqFVavtMe1Yga3csPshlSHC9pwppgpxFQZmkO42tI9UlJw\/NYSB\/9Ef\/VExZHV8NZAIUV58UM+pVlK6ZjrX6dwGZ3bJHjnd2Fy3oN2oE+oiTTRaa621ml\/\/9V8vx2\/8xm80b3nLW5q3ve1tZRD1ukEG56Bb4B+lfPEDBevGvkHJj\/G19hFkyhiq4F1Axf\/yz2Yf4h+eUxKgPpOiNZe+sugky42i2qh9EBlyaJyYglOPkQdSnYhRJDns\/LmG6VK6sML3ouBR+KQA1fJ47DxiKvqqz5E\/PR52KjUYPrSddkPqGbCo+gMf+EBRs5Bmxq2dRWrB4kIbsCtOfOXKlaUmUjqB00Ww2B2CFZvrFgTLVAfEmIplA3bT\/OvxN3\/zNyVFL7CX6k1AM56oKWGEabZjH9vGPYgWxtBa741Eec4128\/pU3MNfhedZHFSZntIDyJWUl\/keUQL8VKDRPJV2Y9hDnvwQVq6lC4MJhuMlLGaHWqWC+UWsRJomLyQ7ZG6Bf4G6bXaMyVd8ataOqmKQSPnYGFhoESA1Vuxrd6DrVEoBTtRsYJRoxM1WWoa1KeQ6xQpKjiz5pTaByu9U7GwylHI8hxl19KFQRAEQRCMPzpBskSLZD\/SvINUp\/ZKBEm9IuuNSpZHshSSdy1dGARBEATBeKMTJGsxkXRhEARBEASjQEjWG0qW1GSUrCAIgiAIhoWQrJCsIAiCIAhGgJCspAuDIAiCIBgBQrKmSFYX18kKgiAIgmC8EZKVdGEQBEEQBCPAUEiWpRUst2BV8roKuX2j\/PXYwov+r6un1sde43\/n+j2u\/\/vb73zv9XpfO93\/7WvYL85aXBY8tUBdv+9UD+d6z\/d+h3q+XsPfeq59fpBrtM9P97rZXK++tl6v93y\/a8z22u1z051f0zUGufZ015ju\/EzXmO212+ccw7h2jm4e07Vjju4d\/dqq1zbra5zv9x7HoO+pNlwfz\/Ya\/m9fY5D39LtGfU\/v45muMdv3+L\/3cb9rtF\/T73G\/9\/jfa2Z7jfZ76uOZ3lMf976nPu59T31cD4\/xGVvezWa\/0qGQLGqQvQU\/\/elPNxdddFHZTNW+UbbIQV5s4OixvYBsZXDuueeW\/0877bTynHP1sffaAdueQp7zv3M2bqyv879ruL5zHtf3+d976+f6v309r\/e+9vVs32MvMpv01u\/kPV7nscP395nt7+6ov9H1vKaer59b70U9Xz+3fW3Xq7+jfe32vaj3r\/7G+jr\/13vRvp7X9X7X3uvV8+37Us\/N9Htdw3t6f69r+Ix6zvP9vl+9Rr\/v5xqDfD\/v6\/f96jV6v1+9Ru\/3q9eYzffr9xv7fT\/n+l2j3\/3L0c2j9pHe9s3RvYOdtW1R2\/X6Jec9rvbnPbV9\/e9cr6+odu9a9Rre47Pa12DXg3xu\/a7e46if63r1Gl3\/XP97Tb2G67vGIJ\/bvkbvd\/e493N7rzGXz+397mv63PY1HPV1BBmlRXYTGHT3maGQLAuF2qjxrrvuKps8X3PNNaXOyV+bHNtHymPH9ddf31x33XVlg2OPPedcfWyvQvuC+es5\/7uO99TX1f+dr9er76v\/18+d7nr1c32mG3jqqacWktj+TvV31MO1HfW7Orymfm77fPtz6zlHv2t7X\/0d\/a7hPdO9bj7Xq8dsrlF\/r\/e0z\/e7hsP7p7tGv+\/nGvO5Z17j\/KC\/sSvfL0c3j9pHets3R\/eOfm3Va7O99td+j\/8dvfZc39N7jWrb9Rp8hv\/n87muMcjn1mt43P7c+t3n87ne6\/Gg13Buuu\/e+572d\/f\/fD7XUT93Te+Zz+fWw\/M333xz2YHm2WefHXgfw6GlC+0BZZV2q7W\/8sorvzo8Jq3Vx\/4f5HH76H1d+7npztfP7Xe0X2sPMvVYV111VZEEez+rfczmfD033fn2uenO13Pt82t6PNP5em668+1z052v56Y73z43rPOzee1052fz2tmen81rZzqfo5tH2mt8jt62qo\/7nRv08SCvWdPjQV7T+3iQ16zp8SCvme7xIK+Z7vEgr+l9PMhrpns8yGvW9Him19RzeIUdaOwvOyhS+J4lHIIgCIIgGAFCsjK7MAiCIAiCEaBTJKtuFE2SI8fNdUNo75UGdB0kaqbrhGQFQRAEQTAKLAjJev3115sf\/ehHZYkHdVv9qvIVkVkG4vvf\/36ZJul1cyVZcqZPPfVUKU5DtmYibEkXBkEQBEEwCiwIybK+hMp8SyRY6oHC1CY9SNdrr73WPPbYY81DDz3UvPTSS\/NWsqhSX\/va15onnniiefnll8sMyH7XQ7LMHMiK70EQBEEQDBNDIVlUKEqVxTzrtMqvf\/3rRVFCbO6+++7m6KOPbnbaaafm1ltv\/f9IFoL19NNPFwKGGHk8V4IF3ou4mS3oO33jG98oswP6TblMujAIgiAIglFg3iTL0g1SfAiShUj32WefZscdd2wuv\/zykvZDdqhE+++\/f3Pcccc1jz76aEkfViA+P\/zhD8v6E1Qs\/1OdhgFkDsG6\/fbbyyquvmsveavpQmtkJV0YBEEQBMGwMG+SJRWonslKqogVVWjfffctq6NK1SFUV155ZXPkkUeWRb7UZbVrsjxva5vLLrusefDBB+etYrXhc9RmUamQQEpV+7OhpgsRrShZwShRFVZBhH7n76AL2gXdgPbShtrP4f9h+atgtIj9BYuBeZEsxel33nlns\/fee5cV0++\/\/\/6iRFGO7r333uZ73\/teSRl+7nOfay688MKiKvWSKCm9W265pahdVo1XTzVMUNOs8IpESR2avdgGY\/v85z+fdGEwUnDmFN\/bbrutbPNw4oknFvW02kTQffAdyhoEi3UbD7WmAs22Oh90DwiVPefuuOOOsg0a+xPYP\/7442UcC4JRYU4kC0nSae3fw9lst912hagoWEdapOmQK07JKqk6NiKlAL1GDvUaCJlBx98XX3yxnBsmzFh8+OGHi7JGsTLbsE3yfF8kMOnCYFTQp9Us2urp0EMPbbbaaqtm4403bnbffffi8NmRmsFelXVcwKYRRSq1IAvhaNvYJEDwp+TgiiuuaPbcc89m8803bzbddNNmv\/32az7zmc80Tz75ZPF3k\/a7JwHsit9XD8z+PvWpTxX7UyNs7FGmYpwaV\/ubK\/TVOkmsCiJR9oaPWZMsjYK4UIgQLB1WZ0WkdNS2kzG4OCda54TURFVoTI2K3Egl3nfffeW6\/RpZ5xdtIGkODt05n+Wvx3XZ+14H7zNFn8ccc0zZ9FHU2TYmJEuxftKFwSigL+qXiL7oWSrdZqSCklNOOaXZa6+9ykakZtaOq6LFhjhpE14ES4KVSRqwtKHfJFA84IADmuXLlzeXXnppIVd8lzpU23IhYcMOEoP5QdsJ+h955JGSbUGQ2Rv7E3jLwih1EegYj5YS2KjxVNbJ\/ZBVGnYmKZgDyTJr8OKLLy6O5X3ve1\/ze7\/3e8173vOeQmDUVnG4FQgT0lMJUC+54bgUy4suXLdfBOx1yI9ar8MPP7w54ogjSsrFe3UI6pdNqRkKVYAxtVOCXqPzeK9BDeFrS\/uur4NxmFGygmHDoPvMM8+UvnnggQcWO9HXBRQCC8uaVDVEOmMcI0k2xvbtUC\/tjnBNCtngj\/gIJPnkk09uVqxYUQJDhIpyT51EtMyeRjAFg1EDugNjjvUSjTMmX1GuzGBnf4gV4nXQQQeV1GFvvfCkg43qw4Kjc845p9RQt4WQYDiYNckyO5CCtc022zR\/9md\/1rz97W9vNtpooxLZUYx6mTAnxen0Oh6vq2oYx+W9Gr0fyZKCUFwvvSLVglB96Utfap577rmikEn3HXvssc3pp5\/ePPDAA31J1sEHH1xeU+uy6ue4ftKFwaggOtZXRdCcvFm0UhfsgVOnopqNS2mtE0XGDZNMsgy6gkSlBrvttlshxVRHZMrvRqAvueSS0r6CT0SZTwkWH3w8X2\/SE9vTRgJ0QTv74+8RDMqkMQj5WkokIyRrYTBrklXTf5zOzjvvXAYIjSSym00UZzDhoKRQSLaie06rl2S5ntcqGjZYIXMcHWWAzClKQaLqCu8ilHY04prOS9NQzBTnG\/jaJCuLkQajAkKlUPoTn\/hE6YP6Xy20VaclBaW+RwChP9fnxgmTTLL4B76HEiLAO+OMM4qv45P4GUq6AHDrrbdujj\/++OKH2kFesHjg49nY9ddf3+ywww7NHnvsUYJw6UMwllEfd9lllyIa3HPPPeXcUkFI1sJgToXvlCXqzyGHHFKcjoh8UHJVoTE5Zo5JXQola01SLeMQRYr6DzvssLLIKWLUj5xVVJIlWkGyFDmqfWmTLL8l2+oEowDCIRXx0Y9+tNTzUILrIMyh68ObbbZZmTxC5aKajBsmmWTxU2Y9SxVqJ+le\/s5v5vOQaPWcCBh\/SCkfR6I8ieDjkWD1cltuuWUJ5tlfrX0UbK9evbqQLJMYpH6151JBSNbCYNYkCxGSoiOvIjqmMM+F\/feSLBHgmkgWx6ZTcHgIE2XLoDQTwdORpCWpCJzgdCQr6cJgFJDSlk7acMMNi72YMl4dmcFYH6aCIFmcnULULoM9UY7N1BKY+G2WZznhhBOKGmDAUvtI+fGcWjNE0mA320CsC9BWBh\/q+Sc\/+clCJP0WfsPvoZRI+W677bal5k6d3VJSQ7oM7YMQmxHKxgQ52rIGOcYBqURpRARaOxpfJhHGOwSSvxEUsE02qsTG7xckEC9kiDxnbUuk07hs3A3mjlmTLGpSjb6l+ihLc6kjaZOsZcuWlXy460ynSAEHbxDi1BWa6gRUtZnIWTU0OXl1WYwq6cK5wf03qFAdRYQmGUx3iOgRCveeUxvHAXYYQPA5eZHyUUcd9aZokS1JERqgkSxOvut90HdHJFauXNlsv\/325XdJhX7kIx9p3vnOdzbvfve7m\/XXX7+c8xzSZRaXEoM1BVFdhN\/ruxuMpJyUKxiIK8nij\/gP98IgThkZRzWyH\/w+RIQNK+dg0\/1svR4KyfkG98T9WWz4\/mrkBNDKWgTZfkcvyaJwbbHFFmUClNdPItwLaW4kSmkC29xkk02aDTbYoPnrv\/7r5s\/\/\/M+bddZZp\/n4xz9enhMw1ckcVfkL5oZZkyxLIGC5nKoGQ3LmMoC2SZZcuUHbuZlIlsjfIOVzzeghcVLVGPR07\/Oc72w2JPUNk3edNsnC7JMuXDMMHuoWDCYf+9jHmnXXXbdZe+21+x7rrbdeifylyqRrl2o0pO8ZmDmuWtxeSZb6QUufqMkSaY+DkoUoUXIMuBYiVlN2ww03lN\/IxgxkbEkA5DkBGbKNnM9k212FtvL9qXNIlv5cSZZ7wf9R6ygB7MKgPSlKFjKCNGlbJAV57mfrDgM0tdY9UFyuvecyLgwTPl89nfHK96+z2CvJMg7onwIBhGPSlSxBnYBBIMA2zcqX3kemCB3EC\/VrnuOXzKh1\/wTXwdwxa5KlcNcsPQODCG6u9QeclAjJFFrMWkGia01nmByXQnmfL0WpNoKEj5wZ\/Bk1hUqHaDtzg7v0BikfMevdusf3yBIOg0H7iFaRW9Oe1bmJAvsdliWg3BiAtbP7vBTBSakJsfghAtKuydJnOTTRo\/XmODjnxg1sbFJrsqjrUiZmNCPCBiJt6jcjWQZl7UvZRzDahdXjDr+dEsuGpYPZdD9bd\/AFfCzfoCTDPVhsUu3ztY8+SSn2\/dmfcQJ8R0oNFZJ9GleQ5qUCNur+pCZrtBiYZOmwjM56VYwKYUF45tooHJRI3rRnA3Z1Tm2S5drkWwM7BcrniUQ4PZEyFQzR8zwnL+fcm3L02HMGOLVc\/dbJSrpwMGgbBBUZNdAYTKc7PK\/tEGD3eLEd7mKBMoU8CUqkrCkdNTDh4ETPouhdd931Vwv6jhsmmWTpu\/oxNcdAjWz5rXyT30iprDMPKQLKHuogPu5gs9qWDVMvB7F5voGP6EJq2Pf33U0oYV9qj6S6nQO2acs1JAuBpsB1XUkeJkKyFgYDk6zaIBQkypPBgVHN1ZkyQoON65ihSJLnnNoky+cpsFVLpSZC\/QoixIgpUhYmFT2peUGeXK\/XuF1T5yEV60i+c\/szONGkC4NRgWolOBDpUzra62RJdbMnAzR1WD9tBwDjgkkmWdpJ8EfNMXlGLRrfgwwbkPxP5ZFyUjC8lFXbrgHJ0kbSXsYK6WztaFzRrpUg13otBLmqzEsBIVkLg4FJlpuvE1o8VMRGUXJurgpFjZJEDyR4hZOUrTYBEnH4TIWLyJaZWtWBiS6dk+oTnSBI\/Rw7Z6h+hCNEpHojFdejzhkcomQFwwbSL13NmasJVE9IidW39d+adtWPq\/MfN0wyyeKn+AgTfBTway81PnwRH8Q3UfalxtUr9gaKweKC\/Wkrbcb+jF8CevYnO4JcIV\/KRah1XVDgFgohWQuDviRLR1MbYn0YOWqOQ4RGdeJI5a6Rlfk6Ew4MAeKYpVREFu0o0PVF9oiS7+C5Sup0EOdEmaKP6YxDJ7rrrruKkfVb7DEkKxg1OHR1KhRbyzhwaNLkiD+VVjE1JXZcZ\/GwxRr0sDFK3SQNVnyOIE5AiExpM\/tPOigkDiUH6peW0iA9LjBGCOLtWYhosUOqo5pebWlMQzDG1f7mCuMrYYNvUn6j\/7bH32A46EuyRKbYvk6J5ZJbzUgQhctha4xhRaqiBxHF5ZdfXgiXjl6J1DBgZhuVwPc3EPR+b50q6cJglDDwIlpqrqjAFkY0+1LaHfmnbI2zAsJeBUPIleCsHQxNCvwmfs+aegqo1dGZYSsFzEcKEN2DSfvdkwD2RxSgNErLm\/VspmSdLSorsxQVSH1Vv+abCAxUrKV2DxYC0ypZ2K1FQs2aUTBoY00zoay1MUy2i9C5JqJT037DjAbNSOQYKQX90pt+Swrfg1GD89K31fDoj4IK9VlSiZHoxwNIFKJl2j\/lW2Bm4Ba88WNBd2FM4d8JBjIX7I9gYHxYagpWsLCYtiYL8TGjRqRGIkdERlHUifTUdIqZV2o7hlH867oGNbUUVcXqR978HkYXkhWMGoiW\/oZUSXEbmPXJqB\/jAe2kvbSbNnRoT+2aNuw+qv0ZX9ifv7G\/YNSYlmRxIFJ5mD7ChYBwLqPokK5bCZFCd2kHab25fhbDUXvlWsgbKZ9R9bseo6OiZVudIAiCIAiGiWlJ1kIC+UGqFNmrT1GEqLZjrvlhBEvRvroyM0vIwdNdC8mi0iFaUbKCIAiCIBgWOkGyKihaVCzKmRmFcyVZVCvXMLNwOgWrAsnK7MIgCIIgCIaNTpGsqmjVWpW5AjmTb6\/1EjPBaxQiJ10YBEEQBMEw0SmStRhIujAIgiAIglEgJGuKZNUNokOygiAIgiAYFkKyki4MgiAIgmAECMlKujAIgiAIghEgJCtKVhAEQRAEI8BQSJYZfJZLsHWNxT8feOCBOR028XTYesRj1\/J4Ptec6XBdh931V61aVTaS9tjWC\/ZR9D383\/udPDeq75QjR44cOXLk6N5h3LeOJ74z6GLpQyFZll2wyea1117bXHzxxWUj6bkcNuu0p9RFF11UHtsp\/Yorrii7pF944YX\/3+vne7iuz7Npr62DfK7vbzuh+rn+7\/edvG4U3ylHjhw5cuTI0b3DuK+8CNEadJmpoSlZFhF99tlny4fbzmYuB6JGDbNSe\/vxfK450+G6PqsSJkzVufbn9n4n5+pz9VyOHDly5MiRY7IP4779lfGdBVWyxhlqsrJBdBAEQRAEw0ZIVgrfgyAIgiAYAUKysoRDEARBEAQjQEjWFMmy4ns2iA6CIAiCYJgIyUq6MAiCIAiCEWBeJOu1115rfvzjHzevvvpqISuDVtt3CaNOF7onr7\/+evOzn\/1sbO9REARBEHQJVjX4xS9+0fz0pz9tfvnLX3Z2bJ0XybLkgVl5N910U\/ODH\/xg4HUjuoSqZNkgethKlk6AYH3zm99s7r333nKPutwZgiAIgqDrMLYiV5ZTuvPOO5vnn3++jOVdxJxIFpLgB1mU84ADDmjOPffc5umnn+7sj5wJlWSNIl1YO4JOYEFTHeLnP\/95OR8EQRAEwexB0LFW1e23314WCX3ssceKqtVFzIlkIQlShYrFV65cWdaZ+t73vldWfh83IFnShaNYJ6uSrNtuu62sHm8hM\/ctJCsIgiAI5oZKsm699dbm7LPPbh599NHJIlmULITqO9\/5TiEOCBaFZhzTYEiWeqxRKlkhWUEQBEEwHEw8yZokLES6cK4k6yc\/+Ul5zxe+8IWSbqQYqu\/Sub773e82N954Y9nv0b6K\/n75y18uv2EcFcUgWGxw3Oxn9erVzdVXX132Yn3qqafK5B4B5d13313OqUVlg84rAbjllltKXeqTTz5ZHH1qLoNgtJgPyWKfxmXb5Bhbbavnry30fvSjHxXR6Oabby5jqu32lEV96Utfan74wx\/OaWwNyZoiWcPaVgeB4oy\/8pWvFMKj2B3BOuOMM5oVK1Y0V111VXPHHXeU856XR37hhRfKd+iFAvlnnnmmOPv99tuv2X777Zt99923kEHXdK1dd9212XTTTZstttii2XbbbZvTTjutdAadTycMgmBwcKD2X+VYN9tss2JT\/II9StncKaec0uy0007NSSed1Hz1q18tBItzPuKII5rly5eXsoNXXnklSnUQDBkIVB1b77vvvjKGEhlWrVpVxkWESO2z5+6\/\/\/5is\/3GVgTL2OpayJOxdeutt27233\/\/5sorryzjszF2zz33\/NXYusMOOzSnnnpq+UwkbLZEKyRriOlC6hLFCvn5+Mc\/3mywwQbNeuut17z3ve9t\/vRP\/7T5wAc+0Ky\/\/vrlvOd1jmuuuaY0XC8QpQcffLCQLCRQpPzFL36xsO5DDz202WWXXZply5aVSQc33HBD6XDnn39+IV86mCUjElEHweBAjpAkjvyYY44phIo9c7wKbNkhZ3z44YcX0kXx8hyV+ZBDDimEK3YXBMOHmfkyNsa9DTfcsIyhH\/nIR5r3vOc9zTve8Y7m\/e9\/fxlbPSdAOuigg4rqbHmpNhAkYgo1Wk25hcgp0V4ruGLHVdAwnrJz4ysbNxbLJFHBZoOQrCmSNawV31966aXSIBQljliDmX255ZZbFrK18847NwceeGA573kEifIkLdgLU1Kx8rvuuqvIl5aC8P3Io3vvvXezySablE5H7cLMMX3X0lkwecQtzj4IZgf+QAQsmNlnn32KjbFDqQR2RcU68sgjm+uuu66QMelETvrEE08sts9OgyAYLogO119\/fRlbjZ8HH3xwsU9K0zrrrFPUpjq2HnXUUWXGIbsV9LTBPo2ZNUgytsr6SAW6\/h577NGsu+66xe6\/\/e1vl\/e4xkMPPVSUamPsbMWYkKwppzqs2YVYMsLkOhqNs5Z+UPOlc6jpIFO++OKL5fmXX3552hotzlsnkGv2Oh0BK0e6RNOibM\/rAN7vs3UY6pdUpO+QtEUQzA5sTJR7wgknlFQC233uuefKoU7DeakDtse+v\/WtbxWF65xzzikOWMATBMFwYfyrYysxg+1J1xu32SSlWSbJczONrSboqcWSFapjKzGCgi1YkvanhLme9wObNrYaV++5554yfs8GIVlDTBf2QgPPtfBdyk8KUB5Yx6kRNmeuVgSLf+SRR3617haSRVJFsgwAOlpIVhDMDmzMwsQCGc774YcfLjYmTSC6Pf74439FvDh90fIll1xSnDYnn1rIIBg92NlcCt\/ZsnpKNkyZruPk97\/\/\/ea8885rPvnJTza77757IVT1ekiW56lZznvPbBCSNUVehlX43ov5kCySJsd96aWXFsIl\/Sc9ISf90Y9+tNRjIYY1XejA0DFwnacy9CAIBgelmdM+7LDDSo0V0sW2RLBS\/KeffnoJbiheZheqqTSxhYrlXGwuCEaPuZIs6UJZInZr3KeGGZOJE8pw1l577VL0jg\/wBeB5Yyuli+0bW2eDkKyOkiwNiTVj1yJoNSLHHXdckTIRLbUhUpCeU0\/m8BqdR9Ttc+Lwg2BwUIPZzplnnlmKXmuRq1SCgEcxrcCGsixNL7qleiFeSBbSxZ\/E7oJgtJgryaqF70iV2YVEDDMTTXTZZpttSt20oIkPMGbLcrFxr1FWpDygt85rTQjJGnG6ENlBlhTXayAdYRAnXNN\/2LPZhJtvvnmZUiqN4Vp1dgTHT+LcaqutSsGf1\/sdSVsEwewg\/Sc9KHBBqjhx9iqiFYRZwkH6nrLF0SJhnLRgx\/RxtRo1fR8EwejAxmR3pOuN3WxxkEknxl5jvkBJjSV12kx\/4oVieuo11cpMQpPWjLnIF4FDlshnznZsDcmauuEYKqI1bCVLgyJLcrgctXSCBho00uXMdQZRssbn+OWFnTMgqAGRxqBeeR6ZE117XxAEs4PUoCUZBC+CGAESMqXGUd0VO1OLBdQtDt6sQrMNqdX8R5SsIBg92Jhxzthqchl7nA35Yafs3dhKtDBbWCqQQCFQMrPQRDXPGXf5A683ns8WIVlTN3tU6cJhQYdqH23M9FwQBIODcqX+Ue2j2UR8AyVLKsKs3naqoCpZNUCzxENS9EEwXphp7Gw\/1+\/5QRGSNeVIR7WtThAE4wNRalWvRMkca035U6ERrpoKFDWLeNVOImdJEwZB0A8hWVMka1TpwiAIgiAIli5Cst5IFw5jxfcgCIIgCIKKkKykC4MgCIIgGAFCst5IF3a58H0YUEPitzpSOxIE\/1vYyhbYhr\/zKW6dLXyeGjD2OJsZx0Ewaah2yB4c1R4nBSFZbyhZFhybZCVL4a4pqA6FvXHqwVKG\/q+43VIo1r5hH9bZWSjnrlDeUiyWXPH5c5kaHgSTAKTKor\/GX4eJJB5PyhgVkvUGyZrkdKHO6rc99thjZV0tU9KRrcyICiYV7Bpxok4jM5ZksAWVLTVspcEGrDlncVGHdewWkmQhd08++WT5bGv1+G51eYggmCSwqRpU6OeWPjEWWSrFwQ6tSWWvXotpW3+OPU5K4BGSNeWMJz1diGSJlnXsa6+9tpDKuu6PRdzcgyhbwSQBYbFYrwUGrcZuIdHLL7+8ueCCC5qzzjqrbEu1cuXK8vfCCy8sW16JqBcKloVgfwYVAZ7FEA0+tuYxIC3kdwmCUQJZok4hVNdff31ZTX3VqlVls3UrqR977LFlQV+rrzt31VVXlVXXjUuTgJCsqYYc1bY6XYLUiI7Okd90002loyOWBiHkMumKYJKAqFidnXJrjzJb4hxxxBHNgQce2Oyzzz5lM1gbwR5yyCHleSs8LyTYG6VNxC5yr4GevdiefvrpqFrBxICSJaiwTRwFWUBx6qmnlm1rli9f\/qYD2bLCujT6pAQaIVlTJGspzS70ew0otgHxm20bIGVBxpXC0LGjagXjDiSGSis9SMkSVNgCx96fCNa+++5bnDryheR47WKgqsyifEvJIHwGIaqzoCgqczApqGSLgmvcOeGEE4o9Cnr8tfcutdnuCVL3k9LvR0qy3CSDtqhyvvU\/broG4nSGWTfhel3fVmeY0Cbupfw4SfaGG24oJNPfr371q2WTW\/d5mPc4CBYa+nlVi55\/\/vmyr6dd9alZImiH9IQJLxSvxYyafU9pQgoWQsge7UWqVkvK029I+jAYZ7BH2RQBhcBH\/dX5559f7BHJojCfffbZzf3331+Ci0kaf0ZKstqSOEfmJs8VNoKktlCb2ttbzBdI1lJIF\/ZC21CuFAQbgEQWoggKF6WrEq1JiSaCpYUaTLBpKhHSgmRRsw466KBCss4555zmwQcfLD5qscHWBKL8HBWLmkXVUkumXgwJY7Oxx2CcoL\/q28ZsAfzDDz9cbNHi3wKciy66qBAtKpZz0oTG5EnCyEgWh2BfLw6O05jvzXMts3HMREDYOKRhOBzfCcGY9CUcZgIFT+evdSGiDO1G7Zok2TZYOjAFnDJ0++23F2VI31bvJJg65phjilNX+8Hxd82p++5qJ9mhgQfRMlHF7xEYTVKUH0wujBuEFeMLDnDHHXeUiVfsTn+m1OrbAh+TT9QHC+4nDbMmWRip6f9uCGmP9KdIs9fwyYKmSpua+eyzz86bFJHLkSD1EwhB3SV\/vnCNpZQu7Ie24rh69eoyICGe2k7+XBSddEXQdVQ1iJ+QCkdSBE9S4Y8\/\/njxW5y72YWXXnppcfz8WdeCCL\/DYFP9rEFJTZm\/fpffl+An6DKMKTiA7BMyhVwhVJUPUGz9ZaNm\/AqGJnWcGZhkVQcmlcRprVixotl1112bM844o5zDWKvRu1FUp3pD+5GwucBnaBxEi8wvqpuvo0GylmK6sBfah+OWD5ee0MZXXnllMY5ahOv5YbRjEAwbNVDgbxCpWtdE+Taria\/gv\/gOaTiOv8u1H\/wa36Qgn38V\/PhNgh+\/QZBJ8UoKMegK9ENjv8DFOE0MMX5QY5WhKGg3xrJDrxHUI1cUZsG8905iXx6YZImsHnjggXLDzjvvvEKuli1b1hx22GHFkVUZ243iGDgCLBWbHSZ8Rl24TDprvk6mKll+11JVsnqBFItAFOG6Nxw7qTfpiqCL0B85b36o1ntYpkRwIDquYOvS4J4bp8UOfW+\/j6qlVktQSBUQaBrMxuV3BJMN\/VDgYgIVcmXsYGvIlhKf9rIk+rRznmOLxpVJxUAkyw1xI6xtYfEwqTXM8+abby6pJWnBugw+lmotDCTIwDzsolIOFdnTiP6q1ZrPoO+31VqkkKz\/hXakGnLs2tICctIu\/jKg1GoFXQCnLqAzA48yJRhAsAQH\/FWvgi4ApABR2dvkq+tgZ747XyrQqcuvIFuWX\/H7\/VavCYKFhL5pDGVPAnMlRAIdC4rWSVTGil4xRF81drPHSZ\/NvkaS5cerDUCadtttt0K01DcgU26SSArBctPcRETFDXaIvLxumPAZUgLqE+pKzfOZtaiDkOGXerqwF9V4RBgiDos6cuptx87pe03beIJg1OCTpBuQfUGA1LYgyV+Pned3eh23fup9CMk4qj98rAGJz6XS1d9t1XiBLv\/l903ygBV0B\/qjsd+ktqqy1gkmOIJJJdON\/3V8WQr9dY0kCwtV42Adi2233bYUYCJX\/QZWjgtzNXPH9Oj5EqB+8LmcKLncVGxqGSIw14FeQ0fJmhnuEQdOxUK29QHRCqnXPQvRChYSHLOomZIuOGK\/yhP4Hr5g0hUdg5LBzT3gm\/kuNolsVeUg9hiMEvoXWzMRg+DBDmU6kC2kSzAw6XY4KKYlWYhUrcFSe\/UXf\/EXzd\/+7d82p512WpGsDay9cGPddIuLnXnmmdO+DjSARjJQk\/kd2K9zyBr50bXkdBEp8n+9luekC\/fYY48y2CMAc21Q11zqswsHAaPi2KmIihX1C21G4Voqg1uweND\/kAe2XidmUMsRLHVWakHGUZ2aD9wPWQYpGmo8oiUIcn\/cj+l8bxDMFXy8DIZMBn6AYBk79TvLjhgHQvDfjGlJFlJjobCddtqpefe739289a1vbf7yL\/+yrJLMqPvJgG6+G7\/77rsXJctKy9MNvBwAOdECmDvuuGOz5ZZblqmcZHByuKUh1AEprLeRq5oLJA7I\/ZzsLrvsUhi0vO5cHazvkXThYNCWVAQEHAEWubhviDCCrN2SrgiGDbat9grBl6oWWCH4VBxqjue8Zqk5d79XpsDAxl+bgSidL2jkh2tKfynem2B40Hf0IUG2mbrGaKqpcZPvryn6qFf9MS3J4rjcPNGipRr+7u\/+ruzzZXVw5KgfqTGTkOOTVkSyDLrTGbeBGFkSdXEKdsM\/+eSTy+dxEAZxs2fMJPSYBFk\/U2Ma4LfeeuuyijMlZa5Rm\/clXTg7aFOO3QBXp5Zz7lVxTBFuMAzoZ\/oRUi8NgVhRa6QJQ+rfDGSLX3afavqGX\/PY\/ePnQrSC2UKf0Xf0ITZn3GWHlCtZqErk4++nx4w1WW4ugoP82EwV6ZqJzJCopZK22mqrZtWqVcXoBzFsA7ZrH3\/88aWeSwqKCuZ8PwfKoWhk6pf9j8x0nGvtl9+D5GUJh9nDPaf+1aJH95CDl74xAPYj4kEwCDhtkTPSTsVmo5RtM5aQ+6pqB\/8H90xwbPak4mP2KACi\/tVdMoJgULRr\/wTT6qARLGO81GDI1WCYlmQhR26wBSmlCK2STDGa6aa2Sdbpp59epMVBoszKlKUFFbPXdbemG6R9B3KlzxkGyUq6cG7QR7SRAc9gSMWkNBgQKZ7OMUT3OFF0MCjUGgnQBF7SERy7CLpu9dRv5mDwf8ofdU+QU9crotLzyxaDrOpf7DGYDvqQbITxmw0aa6mihA2pQuOkPuR16UdrxrQkC2mRojv66KML8XGDEaGZnFubZFmslEMcpBE0FseJMB155JElRSj1ON1nccJqsoalZCVdOH8wOkW4dQYi4krV8phj12YZGIPpwE8g7PoR1QVhF\/hIQ1OyBHhUmhD2weBemiBk8pF1w2ogyT+319XKvQwq+GfjqH5DDRXgCJplKZAtpKvW+AWDY1qS5UYrcFfEfvDBB5ebjAjNZJS9SpZBdxAjdl2Gr9BeuvCyyy4rTnW6xuRodYBhkSyR8lLeIHpY4LTrDMRahCtlwclrT4pXnHrQD+yX\/SHlVCtBDxVG3Ydgba72vZTB1pBWg6P7KN2DaAlQ1dfw8Ww2CBAs2SNjKZGD7REfpJ2twYZcBXPDtCQL6bnkkkuaHXbYoRSle7wmBkt9MqAiWd6zpvQiIFgUMylCjhU5816F76ItR5UmK3wPtRkK7BW+G9SRpbnA+5IuHB44dveUKsix13o3knO7WDlkK4Dq3NV9qB3SX9gjP8Kua9lA+svc4L65f4If\/tjklEpgBdHOTVf7Gkw+tLvg1xhct5wSHCPihBVjYrIQ80NfksUwRZT7779\/s9dee5VBEoFak6NjrArlLfugWF5xXD\/yw+i9VoSFJSuc1qAa2fRstVmcAcerrkeaUkPXz0fMzDAy6xE5mu8SDkkXDh\/aQ3pHZGQig8GTYtheVyuD59IFp82m2XZdDoSfkWr2OLVXw4X72Fa16gxEqSD3WxYig+nSQbU\/47rlkoy3ghvk2xheJ57FR88ffUkWaV7a7xOf+ERZtoERapA1AWERfdrfUOpPXrefzI8dG2zNJjz77LNL\/QXjNyiLZlesWFHWx+IEqB\/Otxu7LkYqlYmUUUfmKntHyRodtJd+o33q9F85fqQWqWbgSVcsPegXomdkm2KFXImepSmqepV+MRrwo\/ynANb95vsEmPwxNWMQPx+MN9hfLdHR7oJf\/cA4TBgR+OgnwXDQl2QhG268tJ8BcRAVq4IaZE9Bg6kGm45kMXBkTErSWlk1hcT4L7300kLufLaO4Br18\/01aLe31ZEvHvT79SIka\/TQNtqXqiVt6F5r2zoDUSrDoDrXNgzGB+yNnZmlJDVhgNcXrIlHvfJ8+sFo4f6yN75amQZfj+gKrAVDzqcdJg\/UK8ENQUOQq73ZnrFU6tiM3vZYGwwHv+amIi2iG1GMwVD6zkrsUn5SeM4NCtdBWhgtWVqj9oIBex0CpWHVXVWZGsN2jlzJ2H2ndqP73\/vI3Oedd15xCvOJvnwXqaykC0cL7att6wxE7Ue9MNBSSmutVtIVkwc2KzJGps0cpFZre37CBAmKVmYOLjzcb6qFjIMBlw\/UJtqH\/63BTzDeYFN8q\/GN8EE9NubxwYIbNkmoCMEaDX5N9IjNUoSQF3I9ByjdxwFqmNkYmsZktArn1FcgU8OEQdgg7frUsPmkCoGj8XujZC0MDLYMug62nLq12Bh+XTBRG8fYJwPasQ7m1CspY7ZWF63lf3oDqWDhwNYEwnVdMu1j1w3lGAZk5Dcq83hCm9Xglm81XhrrECxpQpkFdtkv2xQMD78mYlForshdiq7WRyBdCFa7FmoQaFREy674yBvlYljRUL028qfwXceZr4M2ACRduDhwvxVZVuVTKtFArN8lqpoMUKkFbhx8nfxgZrBiW7VXbDroBpAt62oJjvlDRKuuUdbONgTdB99prESeZZS0KfsjTnjsfOquFga\/hsleccUVZducZcuWlSURRJjqsGZLsCoYoygIUavR0DAMtBbrUUB0lPnUYlUgWUkXLg70r1qEq+hSOzi0L8eufZOuGD\/UYMiMNauMSwlTR9R+1Gnhnk\/bdgvaDdFSAC+N1F5XSztqT\/4ywU93UW2PjQlkKFaCWMEN4QO50sZpx4VDqclSfMyoNIJIZhikCHlDsFwTMdLw82lUDllqUKepjnoYTFxnS7pw8aCfIc\/uPRVLnYD0ob8mRCD7+uh8+2OwMGCnFCo2T3Gu6hUSLT2BVCeC7i74aPamnerClPyjNqQ6K5o2SGvnDNLdgbYwlqmjq0KETBL704bGYiQ5trfwmHYx0vlCYxogDZSiIMapE8wVroWZV0MfVmfxnTgQK75HyVpcGJy1sVWGRV+W5+AgpJs4jxCtboOjF1xRwtVcUYfb6YnUXo0XkC3tVlUtNqlmS\/vWUpKgG9BWSnPMFhWgIlgUZJPYqu0Fi4ORkSxghFQxSpnaLx1hrqB0GGwVys5XFWsDydIhky5cfFSpWxtzDnXBxLpApT6gD2Wg7hbYudSuCNpUcANyXRKgve5V2m28oL20LVWLEqJm0tI8yJblVywCTdVK8LM40D78IQGC6liVY+3j\/zqRKLa3uBgpydKwGpgh1lljcwUmrvhSpxqmUSNZOmXShd2APqNNDNp1sUoEmNrIsWcl4u7A\/WeX0vhSvQqlpZYUtnssss4gPP7gw\/ne3uVX6gSGulp87HFh0PaR\/GFbvRLYIMTGsrRJNzBSkjUO0Fmxf5F3lKxuAaEmdUs3SVNI6RrIpStqfUGcyOJB+1Cp6xpLnDwiTNGq6lUwOUCWtau6XW3OZ7JJ\/+sHUZlHj0qwBDZKZ\/hDASjCiwCbtDBfQSMYLkKypjps0oXdBaeiHotjl67g1JFiU8vJ4ZlavrDQHgZTkbJ6y1o\/J7VrYeBa2J7BdnIhpW8wZ4P8phQi26Sg1FnpwfDhvgourUOpVtW4xfao\/QIbqnHsrnsIyZoiWUkXdhsUEdEZEixaM6AjWxy7DcarNB6yNVpw8lIUVAuzl5Bd9VcKow26CG\/qPyYf7AzR1hfU3Jk5imyZqEJ1bq8Wn74wP7h\/xigKoqCSesX\/VXIlXSuwQXzj\/7qJkKwoWWMDToRj51g4dnUhnI2ojmOvU8uD4YKjd++pFJZPMZhKFVGx6vpJUS+WJgQ3Znu319XyVz8x+POvIVpzg\/tWVWPkVVqQz6t1V0opBJ9BtxGSNeUEUpM1XuDY21PLtZ2lAsxA1IYZ8IcHpJVCRb2y5p0omrNHcqUohjnTNxhPsDcEHOGuq8XXiSpmIOojweBgT\/WeIlPWhqxCQN3+LsHk+CAkK+nCsQMnpN0M\/tIVHI8VxZFlcjpZPTMQ5w9kVoGtWiuDpyjadlYcP5VClJ0URcDGDPpUlbr8SlU7pbT0F8FPZrutGXyWZY8QKUFke9agWiyqcSYYjBdCspIuHGtw7OqBOHYzEBFmf6uqFcc+O9QBk\/pAhVB7ZbCsygTnn8kGwXRoKzCIAXusZKum9NN33oxqc8gTEiXVWtcIFNRYDoVyX2seg\/FCSNYUyTKAZMX38QXHXqeW13W1qC5kdqQAEQvRGgzsgR1YJoN6JR1r5WiO33nPB8FMQKLYHJJucVoKcyUMJqqoqwxZ+D\/wX5Rhtab8F5sT+PvfIqMmEQTji5CsqUHDgJx04fgCgeLYtaX0Fpm9RtCiaY49qtbMcF8481p7xSYcpulbhNK9MzDm\/gWDQD+pwQ+iYJKE4Ef6SxG3lP5S3iqr3h+EUyBIiRfU8FvIaN23ld1F+RtvhGRNDcwiraQLJwPak3MSFZp1qG0dyAJnlqnlbwYHzpHXwmUOvtZecfQCD2mMIJgL9C8pQin9unimgNZEFf1Nv1tqNUb1nqhfkwpErihXlqTx2L2Kn5ochGRNDcopfJ8scExqitQxWFeLY7dgor91wcykK\/4X0jq2L6r1M5QGKZ4s9BoME1Qbm4cr3jZRBZHX36im7HQpEXl2RV2Xhqe2q79ic1Rkyl9802QhJCvpwokFsiVi5NhFi4iWegfpREW4S5lE6PeKbKlVdeNf98aEASkM9yVRdDBM6E\/IlpQ+UsHvyiBYDgTpQMI8P4n9DnGiTgle+B9KHpJpkk4N\/GJzk4mQrKnBJrMLJxdVmq8zEKlZ7XTYUqrVqoMcZ49kmi1oqr3+T1GQTk0kHYwS+mAl+NKFarWoOVL6+mN754Bxh9\/qd9TUIH+DXFluxl+P3Qe\/l10Gk4mQrKQLlwS0s2hRakytVlUvzUCsCybORLQ8N9PzXUcd3NTA1Cni+r2NZQ12yGbW3wkWCsgHclGDH2lqaqq\/6imR\/TUpO122Sd8LcbLmFSWdWoxICvIsi\/LMM8+UYCeYfIRkhWQtOagBodxQLx3qkRAN6Qr9oddxc\/YGhFqMOo5Qe0Wp4uApV0imKeLSF5S8IFgssC3raiFYVB4ptFoXqN+yv14ICBCxLtZy8R\/UK\/am2N\/vMsaowWpvoh4sDYRkTQ2qSRcuLVRFx7painCtkyZtVhfb7E2ZeT0FzOs919XouRcGJwRKSqIuDqmf1zqQqFdBF1CDGCls5IotCnqREipQDX4q9Fd9V2AkDdePhC0GfA+kULCuxoxKjFxRr6h1gjvP8y2xuaWDkKwp442StfTQrpUwA1H67Morryy1EhykaFPf4DilEi0BwWmKrseBmPh9tdC2LmXhN7a3HRpXVS6YPLAndoVQ1UU5BQT67UMPPVTstK4Z5bD2lv4s9c2OF9MefR++woQRaUD2JnBDrvgN5wR1baIYLB2EZE11\/Lrie0jW0gTniFjV\/fk4x1oIXtOEnrv88suL2sVhdp1k+Y7W3KFaKSz214DkvEEhCLoKZOsHP\/hBsUEky0Fxrntm8tmKxi+77LJil2oqF4vAsCU+oi7i6\/vwH2qw2JuZlL5blKuli5CsKQNIunBpg6Mk41vZXNTMSSLddQYi5UcK4\/TTTy81IyLtNRXKLwYoUxQqg47foRZEvzZFHmFEFkOwgq6DXfHLVC0pQXYoULDEiNXi9W\/bPl144YXlUGeIfC2kMus71rX4pN6RKgEam6upQQqb7xSCtbQRkjVlzEkXBhyhCJqzJu+rX6pTy6Uurrjiiuaoo45qTjjhhDLtnBNdrOi5F\/W7CxKQQmkUDl96k0LnvAEhBCsYJ9TlRtp7IAoa9GuK0SmnnNIceeSRRWEW+CA1owYbavsJs5MF6QggJUvtphmFUa+CipCsKWNgvAbUKFkBqP2o24AgLAjWypUrm\/333785+OCDm4svvvhXtSBdgD5ca68EDNLfnD+HT6ELgnEGsmXyhoVyq6p11llnFVvcb7\/9im0qkpeaGyWqeqVAn32xNQTL\/4IZQXpXAq+gOwjJmjKKpAuDNkj8tc6CarVq1armgAMOaJYvX94ceOCBzbHHHltSiupGFmsqNoev77ZnDnL6Imq1WNMtRxEE4wZ9WOBDPaZoXXLJJc0hhxzS7L333uVYsWJFc9FFF5XUotcNu89Tr5Arxfc+Q30YouegXhk3khYMpkNI1tRAlHRhUIE0SQU8++yzzerVq0sqQppQxLzvvvsWNQvZEklTutRALTQ49DpzUCE+JbYuQeGc5\/yOOP1g3FEDHsqyeiwq7cknn1yCnn322adZtmxZIVonnXRSqYtSVzmstDj7kRo0WcRsRkqxgLxOjMmswWAQhGRFyQpa4DRrIavZSzVNuOeeexan7n+O\/fDDDy\/knFNfSHD8iJ3vKJUpmpYqkUpJuiKYNEjJ19onfd3kE2lCtijw2WuvvcrBHi+44IKyHAtiNgz0znJE8KhYNTU4CtUsmDyEZE0NSrWgMiQrQLI4UevbWDNLv0C2pCPMZOLIzzjjjObMM88sxeUGgIV0tnXQqbOZpAlr7VUcfjBp0K\/1b5sqS93z1dazY5OXXnppc\/755zdnn312c84555RaSeryMGb+IlgCKOpwrXM0i5Gi5rkgGBQhWVMky2CVdGEA0mwcO7VI2lBtk37BuUohqskwfZzztUyCAWAhl0bwfahYSKDvoiYLycvMwWASoV\/r31KGZu0JggTD6qMsS6Ie0SQUJAzBEoDUpRPmA9eww4MUoSVQpAv5AwQrwUwwG4RkJV0YDABOm7PnfBEwzt7h\/4V0vKJ0xMpMKp8dchUsRej3fLeASJBTCdiw6hFdG6mSLkTofE5sLZgLQrKmjIkULN8fkhUEQRAEwbAQkpV0YRAEQRAEI0BI1hTJSuF7MC6QspAy1FfViVkN218BgrqVYc2sCoIgCOaPkKw30oXZIDoYByBYCt7NcrRWkOnrlpU499xzF23driAIgqA\/QrLeSBdeffXVIVlB50HBMqV87bXXbtZaa63mLW95S\/Pbv\/3bzVZbbVXWzTL7MAiCIOgGQrKSLgzGAGZLSRXa6se2IhtssEHz9re\/vfmDP\/iD5l3veldz3HHHlQVJzX4MgiAIuoGQrKQLgzFArcWSKrSFju1+HDavpmxZK8g09tRkBcHCQfDD5iwbYSzxl632W0KiBkrt13rvfJebCLqNJU+ydHSLzd12221lXZQg6CI4ZUqrlOAJJ5xQVrq2Wa41s\/ThIAgWFgiSNbSMH4J0AY+sCEXZJBSEqgKRUi9pIWPlKVdddVUpUbnzzjvLNbKK\/ORiyZMshmDBuWyXEFTU6JSyaUXpxx57rMzis9ChQ1956qmnymrvHCcCREWyAvWTTz5ZXittN8wIldOmVq1YsaJ5xzve0fz+7\/9+s\/POOxdVy2rUnk9EHASjBzszViBHtrU65phjmm222abZaKONmi222KI57bTTyh6KbZu0mCkV2tZcO+20U7PZZps1G264YbP77rsXYqYMgB+JDU8eljzJAgaTrUmCCv2Ag+RADzvssOIU7ZPGSTqsqXb00Uc3q1atKgQMGXv44YeLAz300ENLzRQCNkyFiYolAt5kk02at771rc1v\/uZvNn\/4h3\/YbLrppmUvxSeeeGJB91AMgqUK\/kHWw9ZW\/IIdQ+xzSsk66qijmuXLl5fZvs8\/\/3zxAWwSIbP3oqDIhu5s+dRTTy2+xaFkhR\/JGDR5CMkKgh5wdCJPO\/8feOCBzQc\/+MFCtjhJxMtGtJZOWLZsWXPjjTeWvQRt2Myx7rDDDs2RRx5ZUgbDVEYpZdISiN3BBx\/c7L333s3666\/fvPOd7yx\/pR848qQOg2C0YGNm8dq79I477ih2B2zUY0urUJwFPvyIWkpKFX9C6QYBEQVagLTxxhs3xx9\/fAnYqFnBZCEkKwj6ANGiHl177bXNbrvt1hx77LHN9ddfX3bi51ypVYcffniJSO+7776yQa1No0866aTm9NNPL860TXhEs6JfaUavs\/HsTIc1rzjhuj+h9KUUJOdu30IpyWuuuaZ8t3XWWacQu0ceeaQocEEQjA7VFl999dVib9XOkSkBF+J0yimnFFv3Oq954YUXirJV6375A+fVAlO+KOD+R76CyUJIVhD0QZX4pQL23HPPUmwuEn322WeL85QyFH0qeKVaOY9oIVgXXXRR89xzz70pdccxf+Mb3yjP7bHHHs2WW24548HxXnbZZc0zzzzTV51CvKQXKGnI3iGHHFKK4hXCB8Ekge0INl588cVik8gNxQchoR6xA8EHkuO1\/tosWjCC1Ay71sm1fI6jgj36XtQoqT8BmSDNa9hvVbTatkzpNnlFgKSuKyRrMhGSFQR9wGkiT2eeeWYpTpUiRKQ4TmTr7LPPLs\/53zmkCslRlyWt2LsoqOuJZG+++ebmvPPOK5HuTAcyJjUpAm478154nkOnoCF8NXURBJMAdsOW2A0iYj04\/yNclF42J4WuNkoQg3TVukkF6JRmr53JhuYL35EqRb1Wb8UnsPU1lQt4ngpOJbeDQ9KFk4mQrCDoA04ZyVHI6li9enWZWWgmKpJEPeLIpe1Epxy7mqzPfvazRX0StfaCM+ZYPSeynenwGg7Xe2aCQcWsQwTL4BMlK5gksEOBA7syI+9DH\/pQUZVNNLH8wVlnndVsvfXWzY477liCDSpzJWQmidhyygzhYdZHtsFG+QS1WCeffHL5PAESwod4TWe\/zvMn3nfiiScWRVqwtiZ7D8YPIVlB0APpALL9ddddVxyglKHIlNPksNVPOBSiIzlIkRoqapKFQREv7x9miqIfDEBSJWqxkECRdFZ8DyYJbEjAQSk2uUMNIptETtQu+ktRVmxOtVLvyBbYrskqyBbFq60QVYKDHAmIELOZDjOF2Vm\/wMl12D6Fbd11123e9773Neutt175jt7b7z2A9PEpyJVZiWq5hp3WDLqBkKwg6AFnJ6pErkSlHCBnqeZC3ZWZQ6ZfP\/3008VZSmeIqqX5OHqO22uHmaLgfA0Orkk58x19hpSmlIlifPUnw\/zMIOgC9Gk1VggJMoXAIFiCCjP4rrzyyuaII44oi3ta7FNaH9lij1KGgp62QiQQYS8K1M0QtsbVTMd+++1Xtl2zDl4vBFMIINWbqrbLLrs0733ve8uMQYpab9lABdtVj2Xyiu8SBXpyEZIVBD2oipUCVuvaqHsCkS9Hr7gdseFAOW8RKUImahZtey\/C069gfS5wHZG0dXksXCg1KFXJ8SN1HLVofVifFwRdggBHOt4uB\/vss0+pXxLgSCOqaVIfSUVmm2zVeQTHecpyL9Fh3wiO91hyxVpzMx0mqrBritZMoGqrydpuu+3KQqNSnHxGL\/weRFChu+BMQBfbnVyEZAVBD8xkUoSqgF0qoE67ttaNug8OvNZdIVkiWURH5GzJh2GnC30O4qbAd\/vtt28233zzclgry\/6FNS2RVEMwadCnkRc2J\/1nEWDEhBoluKFiqZn0t9oBAsYuBCHsRjq\/DcoYG7dzw3zThW24rusJwvbdd9+SslR0X+G31Bou5JDaxqf4fs6HaE0mQrKCoAdSgKJLTpiMX4tmSfxSBqJlTh7B4jg5bI5YAbrn63PDAufre0hVctzUNYdI2CAiMg+CSQTiQpmSCrRMCRW3bkEjVWgZFefVR7JZwY30mzotAY9zXrsQ4AuQKt9VOQHluaponvPd+BTn2TF79nrfEfGqyngwWQjJCoIgCDoJAQZiIl1HKa4L7jooQWb5rly5sqTLBTdqtyhd1CTqMoI27KBnOviugixE0GLFvlNV0RA9ijcCpg5MAb\/JM2rGEDL1XOrMRjULMlg8hGQFQRAEnQSSgqxI\/SFaUoTULQuNSiFKoau7ktKnFHkeubKcgvNULwr0MFNxCBuSVwvs7QLhMKvR9lq+q1KDOhHFb5BG9P0\/9rGPlX1H11prrea3fuu3mt\/5nd9p3va2tzUf\/vCHy1p8CGEwWQjJCoIgCDoJREVazcQSCpW0OZIjPe8cQlU3R3cgZCaFULfqpBUkZ5hKFrWJYmXpBetzbbXVVuUws5Aq5XtS0BA7h+\/ge+68887Nn\/zJnzS\/+7u\/+6bDRu\/W+jKZZk11X8H4ISQrCIIg6CSqYoRIUanqBA+F6CaneK7u74nQOG+hUksqeI\/3U5OGCZ9DSVMTKd2H0DnUgZkY43tW+Gy1VmYzWg6mvrZ9eJ8aLcRx2N81WHyEZAVBEASdBEKFeCA2iJTHUEmV5+o5cF79E7XJ8+3nhgmf4zOk92qNmP+pab1EqX4nilp9bfuY7n3BZCAkKwiCIAiCYAQIyQqCIAiCIBgBQrKCIAiCIAhGgJCsIAiCIAiCESAkKwiCIAiCYOhomv8H908wb3DCAiQAAAAASUVORK5CYII=\" y=\"1\"><\/image> <\/g> <\/svg><\/span><\/p><p>Do h&agrave;m s\u1ed1 f(x)&nbsp;c&oacute; ba \u0111i\u1ec3m c\u1ef1c tr\u1ecb n&ecirc;n h&agrave;m s\u1ed1 y = |f(x)|&nbsp;c&oacute; 7&nbsp;\u0111i\u1ec3m c\u1ef1c&nbsp;tr\u1ecb khi<\/p><p>Ph\u01b0\u01a1ng tr&igrave;nh&nbsp;f(x) = 0&nbsp;c&oacute; 4 nghi\u1ec7m&nbsp;&hArr;&nbsp;<span class=\"math-tex\">$\\begin{cases}m&gt;0\\\\m-5&lt;0\\end{cases}$<\/span>&nbsp;&hArr; 0 &lt; m &lt; 5.<\/p><p>V\u1eady c&oacute; 4 gi&aacute; tr\u1ecb nguy&ecirc;n th\u1ecfa \u0111\u1ec1 b&agrave;i l&agrave; m&isin;{1; 2; 3; 4}.<\/p>","type":"choose","extra_type":"shape2","user_id":"131","test":"0","date":"2024-06-14 01:43:28","option_type":"txt","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.