{"common":{"save":0,"post_id":"7573","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"1247","post_id":"7573","mon_id":"1159414","chapter_id":"1159417","question":"<p>\u0110i\u1ec1n h\u1ed7n s\u1ed1 thích h\u1ee3p vào ch\u1ed7 ch\u1ea5m:<\/p><p><span class=\"svgedit\"><svg height=\"75\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g><title><\/title><rect fill=\"#fff\" height=\"77\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_2\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g><title><\/title><image height=\"74\" id=\"svg_1\" width=\"398.00003\" x=\"1\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAq4AAAB5CAIAAAB3OTTvAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACY7SURBVHhe7Z0JWFRl+8aZYWbOjAgiuOJWmor7bu6mpuK+p2liqflZ7jtqqVHuaf9UTNEsSENzyTVJxfxcIQxDU1EUUUMFBAQEXL\/vf3fOCxfOkDEsH8q5f9e5lHnflwM851nu58w5Z2z+SwghhBAVQylACCGEqBpKAUIIIUTVUAoQQgghqoZSgBBCCFE1lAKEEEKIqqEUIIQQQlQNpQAhhBCiaigFCCGEEFVDKUAIISTnpKQ8iY19FB\/\/GNuDB0\/FKHmpoBQghBCSEx4\/\/g90wNGjCfPnRy5adN3L68\/AwEQxR14qClgKhIenHjwYf+LEvbNnk6ErxSghOeLGjTR\/\/7jDhxPOn79\/585D5CkxQdJB05aU9BjhBkOFhCRHRT1AKhdzhFgJnAeBNn58uMm0x2TaZzL9MmfONTGnShBf8fGPoYd8fW8jvl6iFFTAUmDNmqiGDYP79j03eXI4MrgYJc8Cf0L6RsihwoWFpcDVWOSyZNOmO66uQW3anPH0vAZ34rlKS+A8cKFp067AUGPGXN66NQZyXMyRrEDoIe4gniCb8DVDLzMwSEREWsuWIZL0hSStMBq\/7dnznJhTJXAS6IAhQy6YTHuhkJCC8sNhsE9EMbpouCXqQp6o+QKWArVq\/SpJS4zGdSbTbg+PqwyzLMGRRjJC1kbuhmY6ejSBasAMWANR1779GYNhjiT9H7qT2bMj2O9agsS9Y0csGjiDwdNo3ObmFrp7d6yYI1mB3g5x9\/77YRs23A4OTkLxExNElgI3bqQh7iRppSR9ZTRuHDDgDzGnSuAhK1bcNBq\/0+l6mUw7kYLyPFErJ\/ag5h0cjg0ffhF1AbIg9z+lgKVA5cqnkJJkObkZ8ZZPGuplB7rP1\/c2ml14mNH4\/ejRl5CemJIyA7dB1DVpclqvnypJC02mAwgVmsiS8PBU5A6TaZfBMBOJu2HD4M2bo8UceRZFX86fH4lm12hcX7Vq4PLlN9H2iWlCKWBBYGDiokXXJWmtrW1bFLV8kgKoCNDxOt1bev0HaH6MRj801ZAgEPo5TnoFLAUqVoQU+ARtnFLhKAWyBMGGHAQNaDAskKQl0AQHD8bz0orMKFKgbt1gvX6SwTDfZPqZUiBL0qXAToNhhtHogwyyadMdMUeeBU4VH\/8YjZfB8KnBMFdxKmRbMU0oBSyAFIB2hClsbVuiqOWfFIDBtVpXeatta9tVrx8jSatMJn9UB2gR\/Bo4NFb9aJ4VeAlAsC1desPO7qickuaj9\/X3j6MUyIwiBdDj6vVTIJhMpgMeHlcpBSyBFJDfIBBnBSCeeFbg70A6QpQNGXIBOsBgmIU8O3lyOKVAZhBiUVEPOnb8PV0KbBo06LyYUyWZzgq0RlHLj4qGHcItUTQ1mldsbIrZ2GhsbPQ2Ng5abU1b2y5IgEbjBkh8dI\/79t09f\/5+Nt9NLmApULVqIMob5IzR+APCTIySZ4EU8PL6s0yZE8pZAWjww4f\/ulxATJN0WrYMMRimSdIikymA1wpkCXwJCcJk2oPahq4FsnLr1hgxR55F0ZejR19KPytwCPqSUiAzKHVIRN26nZUkL9Q\/o9EPyknMqZL0awXWyW8QbBGjeQ0UGAyu0bxmY1Pc5i+gBrSyILDTaErJmqCrXj\/JaPzG1TUIAQ7pgCMlvvlvsMGBLMCtZMnjBsM8+Q2CTe7uF+\/ceYhf2mwNt7Nnkz09r5lM\/1bOCqCTw9FFe2e2TM0b3AbdCfxefoPgM5NpPzI4yp7ZMpVvsBJS1YYNt43G7fIbBN9Ci69ZE2W2jJuyIR2h8Pftey79rMBPymU6ZsvUvCHE0Hc2a\/Ybcrjc0fm4uYWarVHV5u8fhyYEddrWthWKWn5UNOwQyV+SvswkBTKAJrC1sTFpNCW12uqQIzrdUPkCYT9E+pw51xTvzfJchQ36pwLc0OPqdG\/r9SP0+smS5A3dLW\/my1S\/\/WQ0fgcRoNMN1unekaQvjMZtJpO\/xTI1b3CbnyVpmU7XU6cbgtxtNK7HiMUybnvRrBgMHjpdX71+giR9bjRutljDTdkOIMok6SudbpBO11++PgtOtc9imZo3hNg+6AA5h4+SPcrLYo2qtp1Q2Hr9aLTmKGqyC+V5RcMO9+v172s0LjY2dkIDZIHWxsZgY+Ok0VSzte2g138A9YDfp2fPc+vW3UJLYHaewEajqVSgWykbGwcbG0f5Ny5jMctN2SpqNOUg9GRbFdNoSms05eVBs2Vq3mANbHAne9lEJRAnNFFWWwXZeZxlX0LQKb5ktoabsilOVUa2lX26U8GAZsvUvCkmKi3ncGzFZY8yW6OqDe6BCg1TKGXYbDavtory+QCdXO+zgwaL4clabXO9fgqUxLRpV2KfvdrMxta2SwFtXW1tu2u1TTWaylptdfkyyFa2tm7pU5lXqnyDNWCWN7TaxrCVRlNFq30dKk8epKGUTbGDGywjJyaYqIGtbVt5nCbKvMEanWxt22u1dTWaVxB0si+1p5Wy2hSbdLa1baHRvIpNdqrWjLtMG+wAa3TSapvJOdxVq60Fc6nVPviru9vadkTmgSmgBuSipoznoUGUXXWGwW1sTLIayA5YZo\/fSqfrKUmLqlYN9PL6M\/7Zq81sTKa9BbftMxg+0+n663TD9PpxkrRSfnql2Rpu+0ymHUbjeoNhnk73lk43CMfSaNxkMu20WKnybbckLUSowEQGw0xJ+ir9Yahmy1S9GY3bjEYfdAY6XS+9fozBsAAvzdZwS9\/gPzsl6f90un46XZ90p9pBp8q07TYat8vv8w6V0\/hoSVpusUY92z6jcYskeev1w1F3UdTyp6L95ZY63bvyyZgiotZnwV\/lX6Nxka8ifFOvH4XDhIPVpMnpNWuiQkKSzd8gEP8XEPLNhJ\/INxP6jRlzOc\/vuygc3JCfK+DkdMxgmI9q17JlCJ8rYAY8B54t30yoPFeANxNmTYR42uAug8GDNxM+H3gUOid394vIUQbDR3yugCUp8mcQyHcQrEW7gkKo8jsIAgMTly69IUlr5OcK+GV5gV4uwQ7hlpK06m8uG9TL+sBJo6lsa9tavnBqNiIdVWPduls4WGIvFhSwFChX7iRiDEISbS6kgBglzwIpsGLFTfluC0iBRXzEkCWKFJAfMTTWYPBUsjalgCWKFEBzoNdPNRq\/dXUN4iOG\/g4l58qPGPI0GOYo+pJSIDOKWpLvbwowmX6pWPEUCqGYUyXpzxVYpdU2RVHLcx0AsM\/0mwmrWUgBvXxBQAOdrp\/ssfvgvfv23YXTol48\/3lHBSwFlLtQkJJMpr1z5lzLD8MVAiAFEGDyzYToTj5F74ujSymQGXgOspKbW6j8mAovJ6dj8+dH8rkClsCX5OcKHJKkJSbTLn4GwXOARyHKBg06j3bFYPAwmX7iI4bMUOLu\/Pn7EJSbN0fDl8LCUsScKgkJSV6zJspo\/F6n64+iBuPkeVHDDuGW8s2EleQLWrXyhdIVtdpmOt1bBsM8\/PQyZU6gtcYRwaHJZkdUwFIAAgrNbpMmp4cMuYAMRSmQJXfuPESkwUqS9JUkrXV3v8jPILAEzrNixU2T6TBaE6Rsf\/84xKGYI+kgiSA7oFewszvat+85L68\/z55NFnPkWeBRiDL4EtKuJH2B9ApFzs8gIM8BUvvo0YSWLUPQ3yK+4EJ5XtSww\/j4x0bjeq22iVbbCP\/qdAMMhunyhSz++KEoFjkQrAUsBdC34a9i9\/Z8YB9obeWBg5Urn0KRExPkWWAoZGp4VJ6HXyEDFU45YShek79nx45YyCZsnp7XTpy4RwlO\/hEEl\/LxweJ1XoPINZl+lt8MnSdJa8qVO7lmTRQkvpjOEQUsBRTRxMT9fJQTlfCtzZujt26NgfCkxbIEZsmPM3KFDyXoaKjsgHBDm+Xr+9cnFENo8lQT+UcQWajW+RRfys7nz490dQ0aPz4cUjUk5C\/ZkUtlX8BSgGQHHHskILQjON7YmIwI+Z+BcFPiTjl\/Sf1EChw4YVhYysGD8Xl45QqlACGEEKJqKAUIIYQQVUMpQAghhKgaSgFCCCFE1VAKEEIIIaqGUoAQQghRNZQChBBCiKqhFCCEEEJUDaUAIYQQomooBQghhBBVQylACCGEqBpKAUIIIUTVUAoQQgghqoZSgBBCCFE1lAKEEEKIqqEUIIQQQlQNpQAhhBCiaigFCCGEEFVDKUAIIYSoGkoBQgghRNVQChBCCCGqhlKAEEIIUTWUAoQQQoiqoRQghBBCVA2lACGEEKJqKAUIIYQQVUMpQAghhKgaSgFCCCFE1VAKEEIIIaqGUoAQQghRNZQChBBCiKqhFCCEEEJUDaUAIYQQomooBQghhBBVU5BS4PHjx\/ctePTokZgmOeXBgwexsbExMTHJyclPnz4VoyQTaWlpwuGeJSUlhRYjuec\/\/\/kPfAkxCOBsYpQ8F1gMMQjTidfPgqno6GjYMzU1VQyRvKPApAASrp+f37Rp0yZlYsqUKbt370YlE4uIlcTFxW3bts3Dw2PUqFEjR46EPX\/66SdmIjOQcRYuXCh87lmmT59+8+ZNsY6QHHHv3j3kMYTh+zL4IiAggBLzOSDnnzx5ct68eZ988gmsJ0bTwciuXbtmzJgxYsQIxZ4\/\/\/wzOkkxTfKCApMCDx8+7N27t9ForFq1arV0XF1dFy9eDPUnFhFruHHjxujRo6tUqVKnTp1+\/foNHDiwVatWCBtIabGCyCCzdO7cWfhcOrBb0aJFDQbD6dOn\/64vIeQfSUxM9PLyqlWrFrJZnz593NzcnJ2d69evv3XrVrGCZAKxdvv27VWrVrVo0aJIkSKvvPKKmRZPSkrCbI0aNWrWrNmrV6+OHTs6ODg0aNDAx8eHcZqHFJgUgAzs1q2bi4vLiRMnfk0nODgYfkD5nANSU1PR1Nrb20M1\/\/bbbxEREZGRkefOnQsPD+dZFjOePHkCywifS2fz5s2NGjWCQ16+fFmsI8RKkLtOnToFZdmyZcsff\/zx6tWrly5d+vbbbyVJatKkCaqaWEfSQYIaNGhQ7dq1IZtee+01MykAe+7fvx+6qk2bNnv27Lly5UpYWNjGjRthz\/bt2yPFiXUk1xSwFMCBf\/jwoRgiueDIkSMQzq+\/\/jrPAeQAiAN0HqVKlZoyZUpCQoIYJcRK0tLSli9fXrx4cU9Pz4zMhsFOnTpBpkNuKiNEAW09lFO\/fv0gm9AHtm3b1kwKQDx98sknjo6O69aty7AnBnv37o1oXblypTJCcg+lQGEAETVv3jwEjLe3N8+p5ICoqKihQ4c6OztDUfGsI8kxqFJjxoypWLGir6+vGJLx8fHR6\/UjR44Ur0k6yFeoBfj36tWr7dq1M5MC6PsHDx7s6uoaEBAghmThvm3bNltb21GjRjHd5RUFLAUQM7du3YqJiUErlpyc\/OjRIybiHJCSkoKAQS9y5swZmDE6OvratWv4NzU1laHyj8BEP\/zwQ4UKFQYNGnT9+nUxSoj1IPomTpxYtmxZiHIxJHP8+HGULmQ88ZpYkKUUQEJr0aJFhw4dfv\/9dzEkdz7BwcE2NjaQ77x4MK8oyMsG+\/btW7Ro0WLFihUpUqRUqVKdOnVC\/KCGsXpZC7RU9+7dS5Ys+fnnn\/fo0cPR0RGGxcsRI0aEhITw\/sznA+uNHz8eQsrPz4++R3IDOpzVq1fb2dmNHj0aTQ5eAvQ5cC2tVuvm5ibWEQuylAJHjx6tXLlyr169wsLCxJAMlAGkwDvvvMOTynlFgUkB5Nz169ePHTsWWXjcuHHu7u6NGzdGAcMXUANiEckeSDrIMmg76tWrN2zYsKlTp06fPh3x4+zsDIlw\/vx5sY5YAD8MCAhwdXXt3Lnz2bNnxSghOQINK6rU66+\/XrZs2ffffx+9zdq1a2fOnImXCE8Eo1hHLMhSCvzyyy+VKlUaMGAAZsWQTGhoKKTAkCFDoLTEEMkdBSYFzHj8+PHJkyfbt29frFix77\/\/ns2ZVURFRaGSOTg47N+\/P+MdFiiqwYMH29vboyPh2y5\/x7179+bMmQOvW7p0KdMKyT1paWkHDhwYPnx4ixYtateu3axZs\/feew+yQKfTvf3222IRsSBLKfDvf\/+7SpUqkFAXLlwQQzI8K5DnvChSACCEFi1apNfrkZT5PCmrUN4gcHJyunTpkhiSz1UuXrwY9kRrwnfUsgQKCe1FvXr1kK9PnDghRgnJHfCruLi4oKAgf3\/\/U6dOJSYmbt++XZKkWbNmiRXEgiylAGxYv3791q1bnz59WgzJ5kXfqNFooLGY2fKKF0gKQN8tW7YM2hkFLCUlRYySbHD\/\/v3Bgwfb2dmhnmWcAIA9IaoMBsO6deuePHmiDJLMQC2tWLHC3t5+8uTJfLAVySdQrvr37+\/o6IgeVwwRC7KUAmFhYd26dXvttdcOHDgghuQ7CDZu3Ih05+HhwfOdecULJAXQ2o4bN85kMvn4+PANAquAuWbPnu3g4PDZZ59lmC42NnbChAnFihXbsmULAyZLbt261aBBA1dX171794ohQvIUhN7Ro0cRhvXq1eMjwJ9DllLg7t27kyZNKlq06DfffJNxAiApKalt27YI24MHDyojJPcUmBT44Ycf1q5de\/369dTUVERIVFQUWlgEjNm5IJJN0HBUq1bNxcUlNDT00aNHiYmJ3t7ezs7OPXr0MHubjWTw\/fffG43GwYMH85QAyStQqC5dunTv3j2EYUpKir+\/f82aNeFmmftakgEKfHx8PPqW4ODgVq1aVahQARkMLzEIFaWcAChTpgwk+7Fjx2BSmHfBggWSJHXv3p3SKg8pMCkAHYADrH2W2rVr79mzR6wg1vD06dN58+ZBPgtTytStW3f\/\/v1iBXkW5KDGjRuXLl0aDYcYIiR3oHQh4kwmk4hArVaj0Tg4OOzcuVOsIM8SFBSEGFRsZSOjfF2xYsU7d+5gAbqaqVOnQkvBksoUaNiwYUxMjLIHkidYJwWQPSMiIuDWw4cP79mzp4eHx5EjR5KTk8W0NUDxnTp1atiwYU2aNIHia9++\/erVq3O2q5eXPLSnwqFDh2BJ2LNZs2azZs1SYqnQkJqaevHixQ0bNqCP79evH5qDM2fOZJw2tBZ0Hj169Jg2bRqvUSVQ0igtgYGBiBo3Nzd3d3dfX98\/\/\/wzB+9U3rt3D6msTZs2Shh+\/PHHcXFxYq7wkuPYjIyMnDx5MgxuxsyZMzPuDoDA2rFjR5cuXerXr496gZ3n4LiQ52OdFECoFC9evFKlSq1atWrevLmLi4skSUuWLOH51ZxBe2afR48eITs7OztXr169devWTZs2dXR0RK\/AfovknuvXr\/fp0wftKfyqbdu2devW1ev1iEo+kyM7MDYLAdZJAT8\/v3fffXf37t3o6VNSUry9vVHGUMz4bnTOoD2zT1paGpqtCRMmnDx5EuZKSEhA32Bvb4\/0zfsjSC4JCQmZOnXq8uXL0dPjZXh4eIcOHaDLp0yZwgb0H2FsFgKskwLJycmZD21cXFzfvn11Ol1QUBA8QIySbEN7Zh8Y5P79+5nzclRUVOXKldG9JSYmiiFCcsSDBw8ePnyYEXSIyr1792o0mhEjRvDBU\/8IY7MQkKvLBu\/evYvSheMNTc3SlXtoT6v4888\/kW7QuvEpFCRvgRTYs2ePVqsdNWrUI36Eh\/UwNl86ci4FECE+Pj6vvPJKw4YNIyMjxSjJKbSnVaBXmzNnjr29fbt27SibSN5y586djh07lihR4osvvhBDJNswNl9GrJYCFy5cmDx58siRI9u0aVO+fPk33ngjICCAwjnH0J7Z5+HDh4cPH540adKQIUOaN2\/u7Ozcr18\/s48sIyRnxMbGLlu2DN7VpUuXOnXqlC1bdv78+Xfv3hXT5LkwNl92rJYCvr6+RqPRYDBo5dtAq1Wrlvlht8RaaM\/sk5CQ8PHHH8Ncer1eo9HAXI0aNYqPjxfThOSC06dPN2zYEN5la2sL17Kzs5syZUqOb1VVG4zNl52cvEGAQgVw7GfNmlW0aFFJkpQLRzEVExODwQn\/E3x8fJTf52WH9rQKxVy3b9\/u06cPJBSyT0brFhISMmPGDPH35CfTpk376aeflB9KCg2KawHIAhcXF2iCESNGZLzb7eXlNXHiROEB+cnSpUuvX7+u\/NCXC8V6jM2XkVxdNgjJPH36dMjnWrVqKbfC37p1a8iQId3\/JyxYsABup\/wmhQPa0yoePnzYpUsXrVbbtm1bZeTYsWMDBw4Uf09+0q9fPyinQuZ+JAMc2dDQ0AoVKpQoUcLb21sZRNfbs2dP4QH5ydixY1\/2U+uMzZeOXEkBsH\/\/\/mrVqjk4OCQlJYkhkgtoT6vYsGGDJEmVKlUSrwnJI2JiYkaOHAnvWrx4sRgi1sDYfLmwQgpAZ5k9yPbp06eQzC4uLjVq1OAD8qyF9rSKJ0+emF3DBXN5eHjo9frWrVuLIUJyBJS32WfbXLt27c033yxRosTatWvFEPkbGJuFACukwIMHD8aNG\/f555+jc7158+bVq1c3b97cvHlzSL9ly5bxondroT2tAl3axIkTV61adezYsaioqAsXLiBHV6hQwWAwbN++XSwixHpQybZu3TpnzpyNGzdevnw5Ojr65MmTcDaTydSpU6c\/\/vhDrCN\/A2OzEGCFFEBxeueddxAetWrV6tWrV9euXV999VUnJ6fJkyfDFcQikm1oT6uATdzc3IoVK9a4cePevXujYyspAy2FVC4WEWI98B9fX98qVaqUL1++c+fO\/fr1a9asWZEiRVq2bHno0KHMD9EjWcLYLARYd61ARETEjz\/+CMXn4eHx0UcfrVu3zt\/fH37AazRyBu2ZfZBTzp8\/v23bti+\/\/HL69Omenp4+Pj4BAQH8zHKSe+Li4o4cObJp06Z58+ZBiy9fvhztbGhoKCtZdmBsFgKsvmwQGvnBgwf37t1LTEzEFyxauYT2tAokndTUVJgrOTn50aNHNBfJK+BLjx8\/TkpKSkhISElJoQiwFsbmS43VUoAQQgghhYn8lQLQiVCI0dHRWZ4pUjR4ZGTkkSNHrly5gq\/NrpWDrsQgvj0wMPDcuXPx8fGZPz1MhdCeVgGDoEeJiYnBnymGMoFB9H9hYWEnTpy4fv262adEArxMTEzE1KlTp8LDw7Er7FDMEXWDqEEMxsXFwUPM3AY8ffo0JSXl9u3bQUFBoaGhWIZ2Wcylg2+HR\/3+++9wv9jY2Pv376sqszE2XzTySwrAre\/evbtjx4569erZ2trOnj1bTKSDmrRhw4YqVaqUKlWqYsWKTk5O1atXX716NcaVBdgDoqhGjRqOjo7Ksz6wcu7cuahkqooZBdrTKvAXRUVFwSAlS5bE32t5Pxiy88KFCzFbpkyZ8uXLFy9evHnz5nv27HmQ\/om0yCx4WblyZRgKC7AT\/Ovj42OZ04naQKH67bffPvjgg6JFi3bq1On8+fNiQgae8+uvvw4YMADeBZ9BlBUrVszd3f3WrVvKAjgnvv7www8xVa5cOawxmUwtW7YMCQmxVBWFD8bmi0m+SAE4NAQdQqVatWo4SFqt1sPDQ8zJoFtds2YNwqBp06Zff\/318ePHP\/30U1dX10qVKm3cuFG5ZPePP\/4oKzNz5szDhw+jqmExYm\/ZsmUQicp+VALtaRVKLu7evfurr77q4uKCRPzVV1+JORnkFBhQp9Mhj\/v5+f38888TJkyA9SCzgoODFWF05MgRpJg6deosXbo0ICDA09Pztddeg7n27dun7ISoE9Sb7777Dq4Cwe3g4PDmm29mvtsQznPx4sXOnTsjTidPnnzgwAFfX1+4GeT7wIEDlbN0aIXHjh2rfGDPrl274H5vv\/02XAtq4PLly8p+CiuMzReWfJECKC04PG3atMGhwoGE5jUrXeHh4R07dkRveuzYMeXopqWlrVu3zt7efsyYMbGxsSh+Q4cOhUN8+eWXSiXDv1CCNWvWbNKkycv+VE5roT2t4u7du4MGDeratev69euHDRtmmW5Onz4NWyF9XL16VRmJj4+HYe3s7KCQYDqYq0WLFmhKtm7dqtgT5lqxYgW6ENgZ6Uz5LqJCUOmhyKHLP\/\/888aNG5tJAVQyLy8vNLJTpkzJ+DAehCckOJzn3LlzcKedO3dCow8YMCDD\/VJSUt566y0sWLJkiRKehRXG5gtLvkgBHLCjR48GBgYiMBYtWlSkSBGz0oWjWKVKFWjhjGgBQUFB9evXhzSGbMR4jRo1jEYjdiWm5RNH7u7uKIRqu9mX9rSKpKQkNFtosPBHjR492jLdLF68GD0EmjbxWm7m0Oqhz+vfv390dDT6NrRxsF7mNzKjoqIwAuObPSOSqAq4waZNmxISEhBWzZs3N5MCCLTevXtXrVoV9V4MybVq4MCBiD6oB4TwsmXLDAaDt7d3RtDB\/Q4ePIgFgwcPLtynPBmbLyz5e9kgsCxdOLQICUdHxwULFmR86heIiIiANIYk3LdvX2ho6CsyYk4G3jN16lREkZ+fn2rVH+2ZHWAT5QvLdIO\/GgLI8jloJ0+ebNq0ac2aNSMjI48fP67Vajt16iTmZNCOtGvXDuMwphgiqkTxriylwK1bt6ADMH727FkxJIOOVqfTDR06FPobQVe8ePHNmzeLOZlLly7BUbt165ZxSUFhhbH5YlIAUgBV56OPPkIzun79emhkMSq\/hTZ+\/HgnJ6dt27b9+OOPZcqUef3118VcOvhG7A3ek+V1p2qA9rQKy3QDEyHhIi8HBgaKIRnlTZayZcteuXJlzZo16DyGDBki5tLBN2L88OHD4jVRMVlKgatXr5YoUaJDhw5mnzJ86NAheA78B8Vs0KBBEOi7d+8WczIQ7ohQ7A3uJ4YKO4zNF4oCkAI43tDFRqMRujjz3W4JCQnTp08vWrQoxr29vZ2dnbt37y7m0pk7d66dnd2KFSsy1zxVQXtahWW6uX\/\/fvv27dF5mF0hcfPmTWQTKCfkndmzZ+v1+nHjxom5dHr27Il04+\/vL14TFZOlFLhw4YK9vX3Xrl0hxMWQDBajZ4XjXbx4ER2tq6vrwYMHxZzMtWvXypUrhwXquRCKsflCUQBSAA3ojBkz0MX6+fmZlS6MI5C2bNnyzTffQFzDLcRcOpQCtKdVWKab1NRUdBhIN0jKYkhGSTcQTEg3np6eaE3ef\/99MZdOr169mG6IQpZS4NKlS46Ojl26dDGTAqdPn4YUwGIsgFCoUqXK\/v37xZwMpED58uXbtWunZinA2CxACkAKoFxB2aF0ff3115nPS8fGxk6YMAHHe\/v27du2bStdunSjRo3EXDqzZs3CN27YsCFzzVMVtKdVZHkSErkY2SQ4OFgMyVy5cgXtGtLx1atXV65cibQycOBAMZeOm5sbEvrJkyfFa6Ji\/u4NAkQcBlG9xJDM4cOH4VHoXCMiIgYMGFCuXLldu3aJORl8Y8mSJTt37hwZGSmGCjuMzReKgrlscNmyZcWLF8\/yMrfq1asfOnQIIrpixYplypQRczKPHz+eNGmSJEmIoidqfUI47WkVlunm6dOn7777LjoPyCMxJKNcmtSsWTMkcVhMo9G0bdtWzMlALbVp0wZ5CvlIDBEVk6UUuH37NiIO42bXr3l5ecHlxo0bpwh0e3v7TZs2iTmZCxcuODg49O7d2+yD\/wsxjM0XigKQAkC5+a1Xr14IDGUETvDLL79Uq1atf\/\/+0IAYR0Th0Ga+Ow6HGd+CehYUFJRxGaraoD2twjLdgCVLliAXjxo1KuOvhhJavXp12bJlZ8yYce\/evaioKHQYtWrVynhWIwgJCYENoaju378vhoiKyVIKIL769OlTuXLlLVu2ZHgXml0sQ6XfvXt3Wlra4sWL0deuWLEi41Qc3G\/Dhg12dnbQCoX1Al5LGJsvFPklBVCK0HSChQsXonRNnz4dX+OgKgc4LCysY8eOpUuX\/uGHH5TBW7duTZkyxcnJaenSpYgcLEZHi4CZO3duYmIivgVOgN7XxcXF3d0d0lv+ISqC9rSKDHP961\/\/QrpZtWoVvs4wF6RPpUqV8LcfP34cKwGyORoyqCJ\/f38sQ45u1KhRiRIl1q5dq5xogYnGjh2LJDV79mxlJ0S1KK516tQp9KkdOnT4\/fff8RJehClU+pUrV8Llhg8fHhkZCVdBad+xYwfKfIMGDRB0WIaWt1y5cl27dv3tt9\/gbPiu0NDQJk2aQM2b3VZQKIEFFAMyNl8o8kUK4Gjt2bNn\/PjxELktWrRAM4qDh69RnHbu3ImjhQXr16+vUKFC7dq1p02bNm\/evGHDhkHTQVBn3I8bGBgIoacoRCz48MMPXV1dETABAQFwHWWNSqA9rQLpGK0G7APq1KljMBjeeOMNfD1z5kzl\/AcWzJkzB+NI5Rj86KOPevbsWb58+QkTJmSoor179yJfv\/rqq\/hG6CcIJvQlbm5uPAOpcu7evTtx4kR4BbQ16hOCbvDgwXi5YMEC1C14F3R59+7dMTVw4EC4GYIULSxeQqYre0Bfi1guXrw43AnVC2s6deqEl\/BDRaYXYhibLyz5IgUghL\/99lscG7SqmcFBRcXC8caahISETZs29e\/fH3EC4BDwAOhrRSYDxNXhw4dRtxo2bFizZk14xpgxY1C3Mr8drhJoT6tITU1FBkF6FWZKB7n70KFDirmio6PRvcGkMEXdunXRon3xxRfXrl2DlZSdwObbt29Hlq9Xrx7s2aZNm1mzZp05cybDnkSdwHPgLcKlMoEeV\/EN6PLg4GAogObNm8O7oNrfe+89SHaMK3uAB4aHhy9evLh9+\/ZwLcj3Hj16eHt7F\/qHCwHG5gtLvkgBHFFUJhw8M65fv575veoHDx7cvHnz\/Pnzf\/zxx5UrV\/AtiitkgJdwC6hsLLh06VJsbKzazgco0J5WofyZwkaZuHHjRua3EpGVIiMjYS6ALzBlZi4YBw3cxYsXM+yZkYyIakG9gbcIl8oEXEWskNfExcVdvnwZnoNwQztrWaWSkpIiIiKwAO6HQEY3LCYKNYzNF5Z8v2yQEEIIIS8ylAKEEEKIqqEUIIQQQlQNpQAhhBCiaigFCCGEEFVDKUAIIYSoGkoBQgghRNVQChBCCCGqhlKAEEIIUTH\/\/e\/\/AxuNI1wljz\/bAAAAAElFTkSuQmCC\" y=\"1.5\"><\/image> <text fill=\"#ff0000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" font-weight=\"bold\" id=\"svg_3\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"187.99999\" xml:space=\"preserve\" y=\"57.02272\">...<\/text> <line fill=\"none\" id=\"svg_4\" stroke=\"#ff0000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"3\" x1=\"197.99999\" x2=\"198\" y1=\"11.02272\" y2=\"20.02272\"><\/line> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$3\\dfrac{8}{100}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$3\\dfrac{8}{10}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$4\\dfrac{8}{10}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$5\\dfrac{8}{10}$<\/span>"],"correct":"1","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>A.<\/strong> <span class=\"math-tex\">$3\\dfrac{8}{100}$<\/span><\/span><\/p><p>S\u1ed1 li\u1ec1n tr\u01b0\u1edbc <span style=\"color:#8e44ad;\"><span class=\"math-tex\">$3\\dfrac{7}{100}$<\/span><\/span> và li\u1ec1n sau <span style=\"color:#e74c3c;\"><span class=\"math-tex\">$3\\dfrac{9}{100}$<\/span><\/span> là: <span style=\"color:#16a085;\"><span class=\"math-tex\">$3\\dfrac{8}{100}$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2024-09-10 02:28:32","option_type":"math","len":0},{"id":"1248","post_id":"7573","mon_id":"1159414","chapter_id":"1159417","question":"<p>\u0110\u1ec3 \u0111\u1ecdc h\u1ed7n s\u1ed1 ta \u0111\u1ecdc:<\/p>","options":["<strong>A.<\/strong> ph\u1ea7n phân s\u1ed1, ch\u1eef “và” r\u1ed3i \u0111\u1ebfn ph\u1ea7n nguyên<br \/>\n<br \/>\n ","<strong>B.<\/strong> ph\u1ea7n phân s\u1ed1, ch\u1eef “c\u1ed9ng” r\u1ed3i \u0111\u1ebfn ph\u1ea7n nguyên","<strong>C.<\/strong> ph\u1ea7n nguyên, ch\u1eef “và” r\u1ed3i \u0111\u1ebfn ph\u1ea7n phân s\u1ed1","D. ph\u1ea7n nguyên, ch\u1eef “c\u1ed9ng” r\u1ed3i \u0111\u1ebfn ph\u1ea7n phân s\u1ed1"],"correct":"3","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>C.<\/strong> ph\u1ea7n nguyên, ch\u1eef “và” r\u1ed3i \u0111\u1ebfn ph\u1ea7n phân s\u1ed1<\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2024-09-10 02:31:00","option_type":"txt","len":3},{"id":"1249","post_id":"7573","mon_id":"1159414","chapter_id":"1159417","question":"<p>Chuy\u1ec3n h\u1ed7n s\u1ed1 <span class=\"math-tex\">$5\\dfrac{3}{10}$<\/span> thành phân s\u1ed1 ta \u0111\u01b0\u1ee3c:<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{53}{10}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\dfrac{3}{50}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\dfrac{25}{10}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\dfrac{15}{10}$<\/span>"],"correct":"1","level":"3","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{53}{10}$<\/span><\/span><\/p><p><span class=\"math-tex\">$5\\dfrac{3}{10}=5+\\dfrac{3}{10}=\\dfrac{50}{10}+\\dfrac{3}{10}=\\dfrac{53}{10}$<\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2024-09-10 02:33:13","option_type":"math","len":0}]}