Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 6Toán lớp 6 - Sách kết nối tri thứcBài 26: Phép nhân và phép chia phân sốBài tập trung bình
{"common":{"save":0,"post_id":"4513","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"6381","post_id":"4513","mon_id":"1158113","chapter_id":"1158119","question":"<p>Th\u1ef1c hi\u1ec7n ph&eacute;p t&iacute;nh&nbsp;<\/p><p><span style=\"color:#2980b9;\"><span class=\"math-tex\">$\\left( \\dfrac{3}{2}-\\dfrac{2}{3} \\right)\\left( \\dfrac{1}{10}+\\dfrac{5}{14}-\\dfrac{4}{35} \\right)$<\/span><\/span><\/p><p><span class=\"svgedit\"><svg height=\"88\" width=\"154\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"90\" id=\"canvas_background\" width=\"156\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"60.984\" id=\"svg_1\" stroke=\"null\" width=\"126\" x=\"14\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfQAAADyCAMAAACMJscRAAAC8VBMVEX\/\/\/8AAAD\/\/wD\/AABVmf\/\/ZgD\/AGYq1P8A\/2YA1ADUKv\/\/qsz\/AGT7\/PwAzwD\/ZAAA\/mP9ZAAA\/24GCwf\/bQD\/AG\/\/cwAA\/3Qo0P0TAgH\/AHj6\/AJbkP8PEBX\/AFcB\/1H\/q8knAwP\/egHNL\/8n2f\/\/AE0bGh0A4QAA\/3soKCgxMTE8AAwA7ADRKfou7f9Gpv\/y9vQAOw8AIwf\/UQDq6upOAAM8PTznGP\/\/WgAh3v\/cJP\/OF\/9ERET69Pjk5ORVVVVIlP8s4\/4AyQHoLf+vsK8LKDdPnv\/+od+XmJecAADMzMyNjo5MTEzU1NS5ubnd3d0yMgDyAAAXFwDEAAAIzf\/t8u0qGgD\/FQP78gDDw8MY1A5YWQAAURP\/QwDkAAAx+\/9hq\/\/UAAA+rv\/VJuOfoZ5qAACmp6cAZSheACX\/KwBrKwDGVAJHRgCxAADi\/Qfs7ADcXgAA8WkA+gA\/GACBAABkZGQBlDzxaQBaov\/4L\/\/81+4RRloAfDL\/AB4BwVGxSwCXQACEhIRpaWmVAD5VIQD2AmxdXV3IAFbW1QAX0f4v1uPD+gvf3wAA4mHP+tX\/uMo8i\/8yx\/\/\/ADgAeQAp\/l1W\/5R2e\/9+fn14eHhycnJ4ADEArgAA01sEqkb\/2gCVlQDf9\/as\/h\/MywCHiAB3\/60B7z55eQBsawA+u\/9\/\/zaQvP8VcoYlV38t1isA4SE73AC3twAmwdfjGsON642BNQIgoLLnAGRos\/+1Ishn32XZAF5T\/0oAmQB94oE0\/3pN2kszCT\/\/wAD\/pgA+crH1CIja+DBn5QOoUP+s8av\/+h\/+kAOiogAhssX\/xcQaip6wAErAwACvrAC6Qf\/pcun\/sabuEKBvb2+V8AD\/a6FTD2L\/\/tVe4Ln\/XJX\/70j\/KSlzFolem\/WWG6rE3\/\/Tp9O2\/Muu72KQZ\/\/aSv\/4mfmW\/8D+\/4n\/QYFQj97\/jbf9jov\/zmz\/a2vgS+\/\/Hmr\/Q0OQn+vJr65k4P+0AiiG5v9VQp2ZzEBQOPTpAABMxUlEQVR42uzaT2jTUBzA8feLMBYwYfiQoRLFg62rPWwl5qBbC7OH2qatf+iwOrxYhwd1WKzgRWhl8+D0MsX9UfC\/eBAEYeic4lHx4sWhoohXd9vFqy\/Ja7v1NUV8ockgHxgb3WGDb34veUnQP4rGy4tTiYwqIZ\/nSGo+NbVYjkeRk\/LjGEyKnkojn6ekU7oCJjyeR44pY6gLVLII+QPvCSRDdjEAdbiMHHILGpQGkM8TBkrQ4BZyRAEYuOBn94CBAgZGATkgGwBLBEOdnvSXeLcldag7NASWQBbxK4NpUgwG5YUI1MSRz1VxqDnwfGJ0dPQBmMqIm6qAYbYoyrIYLgaHMVCxHPK5Ro3VZvyJQH0Cg6IiPhI9nvqKgyIhy8GiOAxUKIl8Lkn2AHVsVBC2bBFMx+gaLHFGj4FhMCgSVvbwbAQsSgb5XJFRwDL0SVjhPhhi3Jdb2Bz0oCzWBYuTQKWQzwUpoB4Lqxw5DQTmXd1VMEyGV0aXxeICBksJ+dquBJZDz4UGj8Ggco56BgwLQXEVOSz3gSXm79jbbCAGltMTQqOPYMhwTnoCCDxLo9eQC7phsOh+9bYa0MHyRGB9wkAkOCd9EYiILDLk4gJYeqL+fZp2kVC0Byx3hCYmhoBYRHzGzehiE3J4FtPqKvK1iUqb40tPhSaOHABiHPHRzejB5tUHwRKKIl9bREO0+e3uq0IzZnQd8emvRWfJQTlCZ92v3g61tT1yrfu1YB+9H\/HRgIiERZvqYh+YAmutumRYa5ci0QCY+s5t2PC0RXTN0ehs9SCd9ZDXz+tSq8zSmjgG1FCteRezujPRnV\/e2epaL\/IoNqbUm1Oj2WxUzfUyv\/Nu+16t1ryzs1PgWN45LuRo9XAfnXXPPnSTSOJkPFGu6FqPgoGBlR5Nr5QT8SQ5DDx71yFH53yYJO9iTumOXsjFmOjsrNPqGvKM6rSq6cxIuaSHAvCPlBCpP5JJq8jkpamvzXknib7zXqvoMcSnxO7T2VmPeOk+PA3Vm09U+kMBDP8BB0L9lVQ+56XwJTBFyPmcVO8Wmhsd4g8hoWkg8KBItT6vTyNPkJKJGKnNLxBLJL2RnHSge7VO0rxrww2huYlDVgeJK3qKuffear9eRq6RkCGXjk9p4ChtKp6mM49cU642Jyd045T+VNgiNHPfjJ7i\/FdHwMBEt7s3N8Lx57iX9HShoilga9P2XbtPzczMXG5APjq1e9f2TWBL0SqFtHtLvUQqWK6Rtd1AN2ys59iqwCfPPFq1uQ8PJpxGLslPhxS72rtmLl+Zn5+bGxvbaGNsbG5ufv7Kn6\/vFNtLvOk8ckkag+k2bb7t0dkPv7+Zfn9o8mg179BLFCsCy\/JRA\/nepLrS5uqS8RUt6Dajff7M8XVbNxMbN3Z0dKyv2cpav75j6+eLxL4Tv36+UxQMLL0Qldq\/zqcVMF3qNpp3bdt28zpa4YdQ94DzJQqq4c0Z+eirF9dzkpS7\/v7Nq2ckfK36ZPu36xIikimd7bN998nzhw+uM+zY3FHNvMOMu7y8tLT0nfhSRX4mHy0vj+017Nm3zyj\/8ufXdwFohPVUnuP8zrNBv0Cak+RvH95Fq\/1ufHMG8cJADFejy29WHmS596\/kQZGqVteRLeeTZ1OawgQ\/uf8vb2ca40IUB\/A3FFWmqrPu7dZZ1Fnqblln1tUKcV91xxU3zbhFfMM66oirYYU0iDNIWGfiCCKIIAgi7iJ88s2bN69vZvo6HWNm+8Mm3ZV0Or\/+j3d1h00on2JrjYImkIKKv74+S9avsnkzz\/PBIO0sGOQFPj3+2Egwb4Pqe0Pzb5+76Ao\/MJxL7TiLraglJHb35zigeEGkH0FvTMM31ivfGGnfRAXaGRLsC33kNFVuaDvdS2X0aSi+JVZWrfr1ZZIP6mnBWP7TR8E7pCsM+lYXnlOpxDs9Z7POO\/FEXDMhzGOZn\/aVYmOk1\/AW6A3ovYPj\/DZg6Wg7cxxrT03IFgEa02PcH+qRXsE79FcIf\/37988nPJBgtcNT+h9IvM3WqpXNJoh\/+\/xqmvkeIX8u4r2IQfhgnLu3v1d5QlYxTN9gVDrebSsedbiS+SYNv2i3i8N1Tsx\/VPdouvLRu9KCvEP\/uTLjI3\/\/\/E58q5nRNM8\/tkHtSDxM9q0u\/OmbFu67Rpe59tEuPECHzkvjQI078n3vAw1L74MH6mKgq3BbzPFN8XDdAyhMVR4KKKOuxdwJMuO\/n9zng8AUgo9htAvAeO9ki0a+3VB65wKhMtbuSQ3WrO5Ylud5haWbdMIlLLXvx7PUsSvw5\/YTzVbhGABlh38tpxyEz5UC\/PXvJ+TCzYGHwY7o2qhfP4slcj5yoy+n8L7WD8oOLx6sNXO4S4ASuoGvV+4AI2B8o+pwD2ojFgrSQRZgH3+4lrXWCgaxCxBMDvJ1LrnxDosnkBL+8ztP+TZOEFmHcZ7fxgIRvH87tlzu3bWkzMJ9V6pxhy0cyMYrUfpYlGeHG3\/RaCqb05QOzpyA\/aXVOY46yGymcsWQvEH\/ScT49\/vEuMnw3QTnjSzQOSYaiX471lcxeC8b7X3ICjp2rlXTR6DFAhNq2zpGQJiSO579ZX12WwXaiW\/\/MDCdPs0VrZsU40+CoAz51K1Tpw9t+lkURCLfljMymvcBphPGTZzV6S4F2SknwgisM23M0AuO1MdsAlkpgdYdzo34LgBz8U+VK2\/Rn\/Tp34OgbOE73Woz2UIRPR9VhHvzqWYX9+ZklcUdBzT07Mw800bMIQ4tucBOzn4GZCcmWK+1lEE8NTOxB6d6GYlpc6WsXvZzovwOZZjL0\/wNebh7pwbNvJan+CQLLOjvAQ1d0sXlFi4EjDOYdHL2ixoviS11CNZnMGTkYBKKqTfSu\/2+HwQ54F2hRRU4ijummKgz742OC\/qMWlaN5E7mZnAfN9i0TZhcSzwLm5W42yo1c64BJr3+kEfWvJG8\/hPkiHfFlmzAQZzs+jwhFpjCAFeqiXO4N2kHOmLof29LZvEXAp6IbVoZhbpmWYfSN3LinhPWlPYtkKGUv4aVPFdEVCOdNHXy4h4wpaVjxf0\/3Ebtzp2st4zi0CQs5VLfFnFWAAzEc3L2fwh11o0S\/KrUaJ01\/IGIPWTKUzOtI3OjnAS6JrC4y7T3CBtP7rukJXT3538M9JOpSVgByms2gt0HQ8J+KUmM5sicnH2M1sWiUHc0w2XdaIJnn3JSYh9WHvMd5JJirUDHvbwsyXNPWaPJHRf0ZjCGtmu07mQ5\/QB67gFSYfaHBZfds0ZIuM9uL8cQXM29gR4begQ8ZCIWJfjsbHI4UFn3iRXOb6ibmJpJuWYtz21yJ0TOy6Kdm2po6dUv3nOfU4igUu3kTqRDPEiat7lLsdWrTzhzl77Ow6iB0zu9ukqLKhWl7+WMbYVnhWUVupbDjh3klARJ7jqTfCBkYPi2BJ9HFqS7Y9rOyXKLOp51gwHFThejBune8T4KVmusjkbrRsdt6xiCtE7+HeSWCHSug+ibGwxhnYHRGtkfBaWXaDkncEw2XDvp5ZzsVG5qx9J7bdIs6qis+xjE8P974dM5sqiyWFo05UFOeVeYyXmhiGonz5FAmc7+3xoXg\/DBgi5J13Zer9woDYleZVIOMFnx7UEVneyfUYdItzo55r9PUIYD1BR77qt5PEH1cIXFxbBlS0DOR+CDTOLzz59aLuX48H+fFGY4p1WUHtPs4QgH5zBZCbSlDs1A2o3bdklk27Zt43y+dhDftj1NYZwT7PbL2tLhJPw+BlGkv5oP9JD+DU24Gk7tLPyr+KPNu0RhMWU8kngXx6eb2fi7RJTSnp8\/uXbP1udIafcM1F\/Zi\/D0K97k7ijVdk6o9\/DQ2CENRoxYtH7W2TVrVousmTWCwexWnGhAjLO3bNmyKaalRNPKknO8b0qVmHipZDpW\/7Rg944kP\/YvL\/EE5A7+8Q7KZ3FhgtIXjxYrnfer3aVS7Uo9Wz+QTkV11z3tjadfUzdSbUKOvVMuI3fzaiLyUsDHy2YxIqNJGHQUo7zywqZ2AWhVCX2ipbJaio8LQzaMs52YU1hdQVnEpFg\/U+b8v7v2IM9v3lw\/mUQb3IUvyWSyfv3NEGEzNIIVCELETdC2bp1uTU6P8ug7dHV02S+UlFuOdmlcCVK79sTGUo4v0vf6A6IMpxWhmt9f4DCnuD6+Ok1ew2UN5GWdBYPFsLKTuq2N3X4Fvv9YteyOE\/xehtH7WXaDyVmVEatnGo7zYJXky6+\/qsJjDgIF6B8Gfu9mKxvkowR81E2g06N05yTKKeLFijDHKHL8oMG6Pq2RnGDCZNopxeLjTDT721erQAO1zxcP633Hz7OEzL7ooNeYkgxv\/fducq2yiTld67iYWQ1HljdYz5Nff4nnlapWzEDVgimNbALdCDaRrjZLP2Vmj8ZVLZFp2vzJjWGYY4Qc3\/MYKVM6puNlU3GS9VjarSbKafI6V0DWKe0114j39YV43ZyY3HWANkG63bF4mvPPyDnBscCnq4P39yBhPr8hVG2kb+dfwmiWKVYAH1fcelp0TtMpv43SeUJ7\/ibfQsKcaJ94igR7D7+uzt23wGGV43Z8xreaZdGZRVWujc\/DzimWie3cD9lOrHEt9Si3H66FjtKVlrwnQdD2cyl2TnCu0vPLZELNpTDPk8f5SFa\/8oImVZFqUTcV5hUL6qo63zFZj3MQL4TO21QiYS5pb92aBHvzkJ5fkrQKJXeCeKtjJV++fHmFjKvTkAQ6HepiMzcbj9fwNKse5+Ig0gEvZju8mpLPJbFYqdttTafWjH\/\/INEiLjVOm12zJnRuoIlLFhQg5RVVqCokdzXnj\/Q5B2ykMP8oSu2U9cat77lSKb7o3z4EFG+cIEjaHe565bTYT5zT0vNmMwJnX5CMwjXVE+cOclVIPEJo25XvT\/QpSHXw+FCLtoNImNfMQ7md8Brog33ZBCtXl95ELbl3baTM7YVRzd4rkb+lCyWcNHTLSYpv+68fMuK0ZgJ+\/IQm11Wlw+\/nIRcdX5CTsO0W6ijnVph9aJx7NzqVP3BYt9c7SBZZNTeKIOqsblgB5nYDgc7\/aoK8ZnNecBM7p6WnF3RtVQlFOacq+7nUS3Np3gT5OXSav6xda2xkYxh2umZ30emZmXN2prOjS0eXqVa1U6XEos1q1GW1VdXqhcquS1vdjtIm1Nqlqpdt3DautauLLSGoa0JIiEvYxZK4JMQPCX+EiB8ifvnmu5z3fPOec7456vlBxoo55jnv\/Tan5LyzHihHCCdHrTWP55TzHrj8Vbsj56GUUTOxEIuEbJzHFsUxmfI8VfvkSDQcvUEWdH8Z9+MLNyDGEesbqeeOccIZvyAnTom\/ZiSekWVvPz1PFc+Ue48z55G38xD02oDuQfqktcf3Ul+kFx11HDI4guHs\/9Z1kRik5CKE84LpNkU2NmirqL0WNcPR3lUS\/vCVyPxuQyHiHCv3r0\/wNuhA+pNqa0LE2Qvt3yeeslXegor8q7GQ+8uG6F+JAClRr3uSPkBJv9RyHmoo6Woxf5GLMiZdeOpjMW7axVbDp1SHAavLhQc3ktT1aC3w7Tsvs6lwI9LsPjz3s87K6XY+7+qgOks\/g1S6xPnP2Te\/Q3jx1ar861gkR5gimcxagj15CHqvmad6D0K3q1rMSaSGAKl2hp4F+i\/BnuIW7\/Jy14lCtY9Hw7pp5nB+xWcrVu04LeNG+kNMuQPpPrQ7pGVsnvzM7M9sDqFblGC6vBsIaiI5lM+P1ZA8fCj13EoFPRCNQ7vqFIRsKmuOPDgpJhesG0+QfJJtkeVuT19uq2FT7YGAMOj9N\/o36T8w1a4UdFfl\/jHh3C\/pT7bLcl511evLFuvtsx\/CDiDRSeXmxcHWMFCfkYk08bKzpPu36Dhkg2ama3lyRqnZ10pijhHLTGgMEyngnA5Tum\/F2GV57VE9HNBNYdC3afFmRvqm\/L32vDgvvPto12ityT\/pa2bk0PzzEu35qmJhztGON4Jd7ntetJ6U3RFOLRg8houotXtnQPckPTqp2ZbMGRofXPKk\/LgUt9UY8JCZGq7iJWW03XBrnaqeEuacqPZA9qlXcdSR6SVfpP+2kaj2PDhfLTx3LOjWZCqQ\/mZQpdzbcwJzEpffVsVU+8yr8uLWFo1hqtqtRcrISKp9QhO19djiSgU9egf7BqnH2ihyV\/CE8kjEi3NQR7w3bqizAK03Kw+iLXVnC3NuEtVOSE9a0VqFpjX7UO+3\/orE3Lfn\/gt47sC6wnv\/m3MOpD9PSG8Qql1GQhj2s9Gmt03l3IsLwW+5tkd4SSQtO6wUdN1L0HmVDWYRqkXvo4usk3UDSsohcONTq23oiBA+0hk80TLnAco5eHGtpPx7Y\/6O3DF\/bqBSrMaG1ae4KPevQM5RnK6Sc0AD6Z84v4xynsDMHBDuXNDxkGY6Y5OfWJpX3OYjxCteYYxuEi+OYhMMv8sVdWzMJcZVws5VvF3Wv3RqoukSRu6OJHlLZUHvL9Xil+Ubsm0iYo449+u5Qz0170D9yTUW50D6IUMrWS4rbn\/HkZrDwp3rQuEatEjRnzEjbnGlsoperd17A+5pd53KubwsIsiTI8bjlXJjVLZr5sXjnENz99htTzeT9e02X64FbyXZXMJduEHBuRlYJXBZXCvtg7qqIlDDeVf\/njuL1rB+d1Xwwb9nHFJxZcslmnHozBkaqWEMi2N2JZvxnpGaGHA+n2aaPRMLZadclLWWT2vdOSf2nHN+ZxCfB9EeJB1TFt+NhPFnQkizqyQ9NMy1WEcBA4Rtxmk4VCsliVdeErDl4m4kf9DKG583Kaz5BgjOlZ574SmKVBxm\/cifHGc8f1oz45SJKysjRfRDM8ycY7x0UmNaNEjbqmuGHK6FRKvZdTTlHULa3V95LblTw4d2gtbqKq2msrKxiIDwnSU8FlnrD6T+Rm0XsuvdORMvFwi3PWoKzmmhBUivgIKLwmnPm\/PVD7go97POsEVrqO\/56mrswK1pd0m+NhDSX3fj\/Nuio9ghDLnLYAp6IXkYlOYbhviPOqwUdDfS9bA5Pik8idwksPCjDeIpEoUSi6VSMZr2VUOKMqTcaws81bQhrbt6WLjtyYDgXLcXWpop6Ur9fvyfG1ERVem5q5U7pp21Pove52fbJcoR6V+6UJN4qSh7m7gGAnZ2PzU36R7rYZyzoF0dpENnHM7DUdXu0sBUfYvGMZGJUQJ9MA5RxqLsp3bDcy2xEFVutB8wgfMkKHcgncKjP0YScxU23O3muaNUHKL9PDLkwKcc7rvGq6xWRUg\/6CroNJldKWKxRyRBt5R7bAzknCCPFGzURdCJmL+mcdxS7XV+P72Q8km4eLg9w7n6\/CnbeRGoKe+SQjUK4BxI9xb1IKFcis3VXpxr5wT23DHvAseeeuYaD5zpQXpREWzMBlm\/sISPK8qlq5qUJfgJlaD3OnIe1pOD1pzDRS7Z33JL2FUOu6K1A1gHTbd3wLLq32gMO6nbznU7cA6kC9zqEKb9kDXm\/jj\/QK3c1Ti2yZPz9ldbXNU7Ue7iDrlg\/RsxowoWPZLhrrylP9\/2WWmB4HzA6tG70K2ufbml4msWYr5VO40lcdZxWmSGA+Lgx6OC86geQJxjRw5SsdAIfC9pfCQ8AudqFLrmX6XRBiWayryL5wWupM814uvzhPVLRX6dkx6jJj8NlZfYoq+8DARqg6Max5TXsYetVh\/fWMqn176HdvPglHvHbh5HJgeYRhNm5I5oIIB1OyYdcrFBbsp\/I1Eazsb4F3TR5t7U5IP0+8u8OJ+lleSX7c5bwubFASoF6xftkjrdQ7EJ1BA7p0zAOnAeSO4UHlzJ1nznRa\/zJeuptx3sznZw5jp7w4FxzY7BaFg8Ksi5lJxplfpnNnHGf7\/hdka5T85Ji9T\/oNylHkiEmeJE9h5e235XLw5w0+OaHfPQNc5n06FPKqEUdAQ9AKr9bOU4HdS3azJ5G3Z02VlafXOAuZfh6Gt2zpNh6wHNesJq37YKlngVadjS\/lUyfvzxRxrIr1+NKF+JoH\/sh\/NnvTgvzuZkptuIcoNfoK1laTtT7rnpbYn1CUFyJi05cZCZUYRryGsfler3KlwohD0NrKtUO7I6UuC2v+A9anUGqb7huj0MbyXtcu+L07oaR6vIvWMUrvNDOCTdX1Hl3NVQOO4z77Cyect2+82stt3Ci5PR+MwTmoCxQwRAE6LwAqTPqcM1zHmHEPM8lz0FHxas5+XEh0C1uxx87dibnbAiGmcU63Yos5QC6QR17BPGA+v\/C+ekL+4UpXJXw7sFcibB1v0MFVjYJzJU3zai3rMYXY\/PdwRCmQUqrAx7fIdruhkt1RgeDvqeI0xHfEZqGAYrl0PDDuh2UO6ign6zRDr5hHG7X7ZhukHpuasNepl3tMaVW7ek6ugrkChCxUuSVuesg9sWSec2QYdUMw64jB4OmETOfeyJFdPLJ2uQJfJCSFXqPcyjszDt3ogj3Q4Z922aVicF6tucSN\/oT7lDj9QJLp67D86vOdO71znBe8P2gec+pGlLjsqdTAOGCKNMwxvcaWYtKEbEPjyQGvYbrunmJN8xc4m\/NRjnnGztIPbmHIJIT7NO0q3ZNzAO8TkHybgDzfFW8OQ0WltFgr6OTiRSIn2QjiotSLmvzKBDQ9zuDs2YhvilLZueSxTMIc5fZEqUsS4kfT5t\/eYgVMrGONwYxTlHXrsSPGKnXewI0N4xp6z\/VGgEo0mdqHf6NHEzoCPlTtBH\/sxGM\/nU7+7F0XFUH8odXHfULePbcS8uzlZQ2d8Bxe0f8mVuhlxR3k4k\/kpEeigCW7hofExDdKiqwzRgQcJb0HGwxqPz\/7S1ELKDrpzvGVaWf+oHhUoPM7UzkAzbn1CiuVlh1G\/\/YN0bb91zzz1vvUFu5QLtatZPcZ5taGryEaBzwhsaGmaXlw8tz842NJQB8bRVJlHwFDfpcEmH\/O0j7LmnQvZ1Hel5uI+wIEdGc56C3us0kryCbZ3XGszAeLhwbw8rE4T1ARael44HAiPUpxxhBXTw3AUqpCzcZUQnINLfuuv6iji9vHf9Y19kafdXacGT6H45L6tqeP2F2+jBppLzb3t+uaqK0z4zmxDrt\/cD6S3UjxtuRF5cCn5E3ihFhR67UZFhKbunCteoDYUeDf+Y4lVelzkmlIVDSJi1ejYfyCtqXLtjzx1Sr9oqSfBbZcr76+LSUdW71q8DYVfnZXC3jE\/Oi4urrnqeEA4ouW35qjLKevuwlYQsANCKk1OIbpv4m+AKNbIDmqCB89xGqcTLkASg6Q+Xttcp\/3xD0c2Y9+22wyPVE16zj6FRCU9OgiMPnjugVeMdsMibp2it0BC+AGH3WkBwgioto+acifnrGsL5s1VsYo1iKJuATHB+aD8oVu4kRLdLM1vHlOFLlMckcyr9yIntL3eztwi8ODfSoaymBu5bTKMUvHgFVWWAT4mY6zpYmckk4x577gJ1Es2XyY5ds+aEurdA2FVzyXgq2R\/nVXQXJMbnVWXtr4LjBr470+7DuMH4GUE6LObZkWJ+vFzngjbYzpef4usgD8rhGvbjSqHz0g+CkJVznpAPxVQu3F6zFl5D9vJR2z46HsbK3Ra0MZphyAU+OCN+jyJDBz1SyHP3x\/lVfJUIxm1VT0N7UHdC6hs5CModSJeFmfnsqR7HEHmO6o3DS2I6BjQJrCBAERvDLkKjL9VOwnQ0W6XMwu1vOyCrdsEudygp82bYeieTq2T0x7nHDu+AiNpKNTfEv\/BK1xS69kid0XSqPzl\/3dDcUC5+AEOqpR\/IJt5JFR3H6CFp8tOgZTa8VoogK1uJfW2aDS2dCa+u5zBdPkBxsh8Vf9otkBNW90vI00sHE\/R5erlqhylZ0eRu6ki5gxnnGRlw5+tE+cUDHqyTPxDTDXiI6VhfnH+uIdiJEBZ9yBakd2TTcUWe2h0uIhj2aQdomumUlvy2tXTv2+2WdAerOWn1xeUbtwVhH+9ExoHyUOxdZ9VOKskEQ\/sLOpO18rhF2Oq87rAyM7pZuwpV0eVQvU98rNA8cQ+wrsi5Y+Wuzskwzg9pnhgSL\/1uKUg3pr91ID2CJ\/tFNTsn3ZkZG7Ix3r1vv+eaQKixDcBG4mDeTrvIwTpGam5e+0Ge5V\/61GrlAFEX7a\/gu0ueu02Ly5Kv9dO\/eSK+TrCOlfu6E1yKa00+8u3FDQ2G5o0ldlnhgByvtQxf6bR3MUec56WqOvzQdDhdYOmweJ9wuIb7npmQ5eXGS9eRashEjYNqT4lGfizpQ1AtN\/UwWlIJmRmk3CFqk+ssFVmzfqPzoYI7t14g7u1WrHMWdJhowcrdB+e0r5nCOHfr1luc\/bmXpw17o3+C9nxDuIaDdEBK44hIW0cmoNw+dJj+N5VDqtBzOD7qfT0KfPbqi+AswRgtpqNc+9teKwst+zM5SJqbpWfiVdVkOOzkuUtOer\/s2jnac+Mi9sj8lNVdVNQx5SgVh5bFKWosZWxB1PNSdXqX4fREbaxfQmA6K53DEudIu0PnhOiTA8rHDMthOLAdGEfhmuuY6s44\/FjV7n581+mawHULtNKCZpa8a2rgaMYHzCjll4Pn3SeTYRFNOih33j9T0SpZeUd0sbNxYuI2frdyogVvf1VzfiTjvGyWEbCFficsyEfYL09nt3WScA1rdy7oeF12JmKp0ydqLG+BpOAwOiEgdlXxIxAznd7lfiMIxh1izrl25fDkJ58OwBZAM6zrMumDZlhS7hg3a3Khpd+Zc\/HmiluB16932v9auLKe52PXMNKvui13hfkWDUFOy1Dlvo8n3XEhPQcZw15eC8UyPRbl0y47YJGgI9aJYLFih8fdLLhomh5LOfVORHAnHOY8WQtDFaWD3LRDfmZcR567k4Jvlj5jTImfH7birwYFD\/2vp6xMud\/POG8oZmvb7YZwSsPolqNX8hm8OEDRcY6buSADa23z0IyeTMK5sPoeDddU0E3SBg1XYPHs7cPQmDnvpNkjqKSGQWO1sGla3zRAaKdKnpfSR6Nc0MFzR2iNSyn4Pg0BxiAprhWinss6itZw54Q6WANB32z\/vS7VHNApBTJtnbZwzXYFx8k7fsLqkgrF5nuEid0Ri7hVskC5K3Q8zLJpD+cOrVrWPL0DKEfWXMU5rfSR4t7IpNDxk+NJQrtof95phkVBVYLoewWF3uwp6NLt0E0nc6temFdt7QRQ7krHnQu6Qc2i\/UuDwXOdwjbpFuJuWwL2pMePqiyCdBwC65UjpJO2ubRokI2hcVUUrqlAFO2ng6WWZUfbL8QKOPpMWMwL1NirE87ZNyVHOjTY9moS0ktpKGfqDp57H5TRwXnbxr05DQHN4rHf\/zGu3yH96rYV8pomX81R3HW\/Ba1CQ2jj7343c+oWbYKe1horRTpuLQYrupDUjHDkDTJO6LoxcG+9knIov\/SSfDZRnmj\/y5YSCM0dNPta6GtXNMkEdFvEALTfMR6NsqUTvKDqloaD8RZxXbVZwzC2OJ09uZ6TDgMtK1LuMLLWwGL0rbJu3IzDNt4Rebgj+4yH7fOKlQ\/S9YxAOpIqZtRTmes4EdTE4qZIlHRXGfUA1amtQl+WbLFaX8Xzj0Wcxfy54Xw4r6ecw\/jcODgRowPMpJvcc0dGPI4qLwR1zSgZ53j0q4uX2ySLDgYdbYX01+1cdsiAhZdIOSL9fnCIyjxxuq0YnWyfsN1LCTlWM3gnRQ13qwgR7k2Rnb0Kiw5J+MAVOYVpgzfIVgs5n3eO07zn58DMiCeBiMEc0CRMRsNcuSNRr8sJ1+sYkaQ3CqP8nJwsItRdlBE6HOVRV1m4SeeVlpy01jlOpLe1tLFAa7u9Ma7opnRW0CvZRgIk6DDBZnBzvhDznFFO1ufLeb1NtISsV4ub\/CxKdBJzNqWmxvvo7aONUuZrpRpgp6nruql7RGmAG0vdC5mXItKFfgcn7hTXaUV\/He7F4jRD7pcK0jFa2NCqNIxOd6tDagbDgPQ3FXPY9o3Fy1Rwjse\/oWrFFgJfIMYanK35XH6c17qNxY+8BklgkprRo\/oVzlEamlxrrnO7Cn0hVu8EpZx0fKEFp2XUeweA9BLIAeJTFBhD+2BIlRn0x\/m5FEi8Y9BNgbBQiiEy5xwi5efCofFvbiovoPspYe8BtuaJvDj\/FHMuTHvAHB\/kAVx83AxH62XOweLEW9G70O8s7sZm570pd1vaXbFESok1Nsxqjjdjr3UR8umEvHaCLF81bJt3G+VF2ri8OgZEsAZzLOj5cc7DYizr5ZvEIlqnbb8xtpBUDRPK5wh6WDeTyUFKelS62oBeQpf0HMYuuyMdtBZjvcFFHWdlsHJXO3HCpC+LO4rSl0IyyyUpN3wl5\/wkfumQ+3SOnUhsvok58CHcFInPtKg5N4FzgNgaea648ojEnLkRanQSznXPig+fXBxNSpwjdvEY08YS1UVodoQGPDnYCqkcRVePsrAuKUf38fLTNSe0dcorCMjiVQP2qqNaOqqpj9kL6pFFvytgIVTDKU8oX53LtgbWZPBxrdBivpyrnEmRjxuQrQxunyjtz51n0ZxB4g6Qua0ax13r6U4SGErGl5iafBh0noN9XuO41v6lF2rOYBUx6ruzxQNZztOV1h5OF5NO\/iGcdfCaUU705kG5I+cQr594BIsLkaCn4BsVnLPwXLcDxw4DzHlf5Y4+ar6b5WHFN9z8d7vMWZ0+jxHSCecbENn+0jLAOCTe0fmVcjfSQbsTXc6WSKVF4h1G2DBibLpJmmLzmZcBzgNXuNcwCRDprISvzLTDSDzjPGByELkm+jysOxwVGESPgmcZ6mwqvtCBdKOEW3U5CQvlVeK4Ky4xqQ06Jp2rRQFu0UsMTDpskjqpsrGGii\/hHE854ANnsJDCfUZ5bx6cQ3juSnqJIB0oh4KaEu\/RDWa0irYzizsGR8bN7L12nRCf20EBfHronvi2PmsSfTUifWpL1wUnivR7MCj2JwPp0Cvje1pR3EbGki7wsPjSi6iWvKBr87mY9AQB0e4n3dTIdsX1AOfO1Rb79OoOUASRUEFCvQIWA3GOHOYSpqd6xLNkt8KmUGyuSsPBugEtHi\/tIEnXcDIZJQJvkT6qock01\/cwXncZ5fyD9evv0WQ8CrmYi8+h0fLpmkQ6zsRh5a426Jh0WOACG7joA9zp0kdR+XiNwS+U8whdTrxj0nv4HKMgIkWP2n351FJ399BQ99B+qLQoOK9VyVU5b5chU4o0ZovE1oKUqzm30nBhvk4GMEqqLKYZJrBIX6VEPzHsnPhtj11foQGgNBgUbSslZwvGgXTEud+cO5VzRDrAOP1sQ2reORmF6t0HlrrbRKG68SZFAwXcmodlM6Gsts18OST1XRYkkEVXpOEw+nm9cDNvyYsQ7Hn7OWTLFQPxegCRDry\/NkiIz9I+DqSrhN0l+wr7c8XNSAA4chvhyp56Q6DaoGPScQHgUc0d6QdvyrmV4bGha4KTHgoRJnaM1TiokL1erjveqoyxjcfppzHP6J\/FxcW54QIf2JuENBwiHcprI1Gi58c7gHQF+prdJxu28AaGizVH3LUaTTD5VO7PMs5xyIZx7r+0XWlMXFUU7jMWlwFHOoAzjAMMIgpkcCuNUq3FFhHXAhG1VWCEMQpFiBsQF1CLVlKtcYlL3Guspm3EpVqNW9QYjXWtS4xpxNQfNTExTTRGf3nfXd+b77133y36JSpqtHQ+zrln+c45XFNxvj\/lbx0iDmWoJ92f9BsY6cTG776JMg6k6zst1M51hp5aLOSQ3SC51Jk5G1ZTA7JDo6OjQ5NTg9fmNca6p0qqgXQN77zHduWd7v\/X2TxJPt1vvAkq7lBzN1okFDTOdD3z7nkJe+eX3LOfcP8Z9DGHeSYN6ccecQtlHEkHvYyxnfck2HeuGsOxr4zMvCTvTky0hKKsrJqEcGOT67qddA0OAenBuO\/D0tLScgK31Q8w0lk1DPHaCl\/nfpRhEIdlWKwKMtIHYLqJ4PtrriH1GK9pVQ3pN93gatSu3fTliHOOyaDcjhhOSDWC6ldsHgFFvWbdgBPFCgvtpG10atD5PBuRfjPTMxcWll7pJYI9z\/IGrIQ0cu5H0qoMoCZueeMCL6+zmX6CV794GGUc1wUerHHvCp2bn1wPnRaNMiqI846cW2smnshuspHfvKmGYCF7CfH46\/aPdLY2jCTdpbe7J5lI+VUc3kakVogXHaWQx5kGcdBaBXxHc\/bz5L9VCwNwgRi0VXWkn3ALPLdJaKki5\/oAWQm5VWD03EgYzSuN2nVxJG2vlU12m5MuxhEJ6V+AfEJ4JsQPExk\/5365+XpnEFEAzrKdTl4iMavq7rp5JiRdTZTZ54mTkB\/vN+cd11kC58JdNhtrP92g2y7Om2o62mk3vax6NNdgRnqFQwHzZjrfvh6qt3zws4+lN8MQk8F6ZyWXQtQ\/lO9zVm2gNkljdt20KqZsFCcStTu5kXUAgMpOJXAb7EWasBjustF93wLda6iTSpo31RDFdu2\/YziXEGVYPY4ud0jdShus0NjR7HdD9bj5bIOs2WmFxhr07lCOCyzOnPD43YRxex8sGnpJNET7HOVHDrOJDRS5dX6u3LdzzXqg3YhzFdM7xBBdoQJ3buc8knvUCov3mn0e9K9DcE4Fz\/43t8Jik0Mzg2Echu5YhuWh3tWavb8a3w4r2FTl2o3z6LC3Ag0ecRXpSUacn+wsBbWHCtwLXPL1aSssfloxj1LcQb6kqzllPTqZmfgaeiDpJ8ouG0pmUDuhl0xk293143PP8x5h\/K7O7axmvYYlAZrav2qlXBcqcHcPJ\/FMXY9Yf7O3c58LYehxJ+eYqccsX2CWzsM4BFKOrdXH5Fp\/VEMacT7c5NaSfue\/BHzZWaLugYOy2MLX1oFPciyDBG17qKsNhaVvhvXuE5LnjA0oxZkE7nEb8u96w\/r3EebdfU7QE88NNw5BRME27nq2MwFqAyP6dXfEeZZmH\/SF59S5aM\/3MUZTVG5ZTFofxAnOzU09o7z7ChsgnDAJ3FsaGxtblKnHrRCQJxwC8rXKyspFZLygEognbTUax+EOYFwqpLdzF+V151yo3RpIcMnD9Q63Oes7xBIyb+QDdDC7pLnUIUz9zpCGfpTk\/CeCnzPsQR8\/cz8q7vHPtxC0aDttXr305Ed++Rrh+sFfqeTqlwcrDwdhpJhzAEOH7WHIOUwCCtQ\/fAmnVc\/74pW3pVREZzRChXljT040yTsMgjgBWorVw\/Gir6CPWL8ov+rXykCSNkN\/870Hqa3eibD5mlwKimX3ygfvWSDwy8GVnhLoS+8+9uBjDQzdQw7X7ljFtHIxMB6I429NSdZhhEov01Lfi6gG6XM24Jy\/6okwobsqzExQy+9nO6T0FfdTPEhvpaTHxT2eu8juRy06WfzjZ+iLKn91fbwPVkJthuIGIklNBhg61Z2inSPnqVvhoG4YeydqNIavIGnQuHYZtnfIdWD68F1c6IBX\/Xa9c3emaxMxaukhlZBe5ZiXUva7JkknJxvsWywIKLur1e6Yrz21wI1fuYuXtzYFNm3wnVi0lYd0+6K0c4jaRbh+FiPRnPZlfLNK5wYqzwrLeYkoD\/XIMn8TtfecSRCncvXyJq1zd5CembApS+0gJXf5oOu7LEh6SpB+14+2WE3v3IMKM8e8I8wOWZdnmlSD7auLxUp\/powTbSzyapZMjqoPGuYCswnej1xmSjmOiW327\/EU5wf0UTGulm1KKxPvodSHqr4i69NpTQF2IuMk\/T3bTnc0Q4au5dw1kd4qSafbEmc1kTsj6Gmf0P0BLwaerczbL+UshUt5Q5IkylRTXkK0CsVT3XJhvtcsaE60T82Bc3obRIaOSSLZLeIEG5bs6HE85Q1ijCrdExS4c9IRRP8eyPrPlHNF+g\/sH\/Igzryz1rKd7vPmpItV7p8Gcj7iGGBDzrd5+9J3JOts09CJpBarECOrYEdGLk4+UVxGMDY2OjmYYHOg0WIfeXtWzOLMC0VcTfWV4BwOhhDxo5hxWEilM5d1dA075Y1NLHxLQCQHsgkFDOYagjinZCvSf6L\/FIK4wAQd+2pbGuPsNovaHqQA3bVA577ax9Peo0i\/iclTj3hMCGmVfGbVtQRpRzT7almxj7y9Syi55kn62WKy3HtIbYiIH9dNDY0utIkfGx2aGmxybY9oGnYWDIbDBnFo6w2+nOfV3DMrfrYI\/u4zStCx2L69Mc6jOIogD7+W2blvH\/2XBT6gpq52zjxuD40+s6lbt\/+YkK5K3Ej62f8r6ep6aoLDcuO6Hvf2i+u0LXTfd92n35bqhz5L8w7qnfuMuqkom9jZEmfOXWF9p\/cC6CTn3Cdyf2WBH36pdG2XOngRvc108frNlj+6J8cWFgPn\/y3pKwNILy6ZsnyRFkYuvbva+qoP4nC3b\/mbaaT8pwkP5UQ\/vafTF5JzJJ31Umd45O7Cc0j7qvUHBNv5Gwv8IQL4x9iK\/2NfEB3tkSfXruqM5Zt4+topokaKukrcSPrKeZN+B7+2E\/UkfRKJYOzm2l38irCuw+BOMrj40tsb3JT\/0E+fcyD9PYtgzqgQB7snWmdsQ4\/n7zlfv7kTl404pRNIOjAA\/p1vjLRiYvVEkv1as08+99zgumsJ1q0bfPXVqaGSMrqBk3OOyAr96Pw4L2IuhV3bQZDdIoOJfBPPDWcZubjLOesVxMl7S1oXP33no2kR2\/7wc\/+KZmnmGL7\/Nh6omghope5kx3ji9PAWYMPsmpgw8k3PqOLZId444+Ogj\/fBSi6QE8k+oHrhmA0+ERy1KUd5u7uxZRXNk\/Ulzms7CCp+LBmaoj+PTbnr2oFV9wmWnBfnIojTu3jCe3lBxY4dOzIrJiZWHJrxGWzYahFsfT1wp3eNL+m99D\/f0hKnJ3O9MbL+mQ2KbxW4o52\/G0BAEU\/VD5f1uOewp1osEaVLtUHejh51ybw4P29J3rUdBNO5VxPgt4KtvoS+ha47sjbdzzqnmYyfJO75D6jzfz0c50h6jAbvLTxbQyThK9FQRay+J9CR\/lrJ4jjobnkMOET9pFHYYVsiVTLmxfeBWji84s07QYnux6+dmrum+qpz8OQ8cuYoppHwn04d\/432isbH\/X17AOc1LexJr4nPkAddD6jKQBSnsXR62UHiK2i1mMjbb+YtydoBw9I73nkoc3l3BO51xr5PEzut1mVQiUPOC++DUWS8wnTmgX00\/P6gz8\/OgXMcXmtthAc9CB\/5GToIGOBNFwIKa80q1riBA7oGo0sF5XDLwQAXnl8nXXKJjvOonvM0rws3GVTiABW4ZgKH1kiTpW8rS9qMfbu60fN5Y3jOk76R+xnuFB1xRKXaITc70qkktWjoKG9HFJIDRgkpmTn\/QrP22jn1qhgwCpybTMgOS\/1Eln6RhSAuvGsv79dx3kzPKo4fSB91Eb+jnetlkJChB2K1X7q2AAB5ukjSO0cO+DImij1JkDCI\/qVmZMBVu6w\/J3yzbfHDtZbE4FgIzk\/ScU69OhblCsI+6PZgG3nOtZzzWZbXUzR+7wvJOdZgW3t\/TIbnXF7WxBe9KFipUkk3QEuF3Sxjfe0G2VONwnuuUZsVlk47pEa1Dy8O59jvcObcQ9ULo6HV7Yh2wbmqymX3I4grFK59qY0Mgf1XJF001vo+oMzNaX07gqlmds5crXHpyWQIQ9f4VxbHPSYHJVSh91NYK+R94QrcJtUf3Jl2jvrqnfyyh2LOfQJlELcDQL6Bhbgu5zWWHFTiwnBOMrWjCN37drVFIlUbN1ZF2nbt25dx8d7sUMSNWzSUG4e4XcN5nLVVY6f4B+6f7P79m2\/Ir98Wqfrm9927k5CugaH7453D1VbYZ6hPv7ibl2mobkVr5+g2sXYZe2iZpn1e51gdMjVGNocYb6TEkehhd7aufjJNXDux7X1tkY0EVRT2V5Fd5J86OBfNVBnKva7J1ZB0pnHf4hvE7f6mqs1GhIB+UfX7J1zojqRDMQ5aq8S5ixx9jbwFQtG5ie70gWPzmrlPUbt8zUl7XWCD\/RGHldunV6LFBlJnrAm6OO9JiG4rDLNoXTvZ8Lt0V4TQHXGBMN926FKvxQPj1L9bv\/UZ2Dm7i09DwH\/8KK+y6a6ywf5Cqf9z9TGepG\/Te3e+P44Hcu6+fecoPWynD5Yx9y20S9bOBtUj\/q693nIeWULGEdHAq3pMLQOq2C6TSpxt5uWZpfs2fsYZd2PjZ7sY69TOFfpuhKoc9tUQrBq32cexR\/ZG8n\/ubO7b9r4dojCDeMpO0R9XuwHUdWrha\/mFMwyW9SoUEseXv3ZlQgbyeS4el6wOjspfbH8T9C7uzBt61BZQgSbRTtWD7nr9lpg58eU++Kwts1RwrjD+m8UKNKiZ0BZmYs94cv57WxunHGn\/c1so7QTWYBed4JRcCWyKuQ7bsfFfvXNH2t+UkXyd0+3gabZ1QLn5qrocNFi6LIVh2loLwbgdwRX025yrTxuNverQpYJzhddbacoyB+vCADDlsNaH84jvN0G8\/mrzJJ2MtRFDV\/jS0cpbJX2u7eSLMXDHAW8A9fKS9iVBl1YnqxfKl2Q\/E\/R2j+mGNBuRZi6fpxf619xeAUk4\/yziBLLeLDhXGB+3ZK6OGsjATSPenO91UY6sa\/trWHeXItjrRaauMJu2HE4eHlFw7oV+fcnyL\/yvra6U8RtYuVmC3sMn19wbnbP8py3Fmi9srYw+gpsmyfnSfXmcI+t7PISvr2\/lDj4859t5wpz0eM\/3uu0cWf8TG+lFwYWZw\/n6CauOe1nns\/J+VN08Sk+OGgx4g+RI1OhW+jTO01B\/M0zQszm53lXuIFCGPiDWrtEJJn2i9i2twcHHDaj6YzmyPtdqsWYbKckwfbsmRW+RCnbEN2153wSy\/m4e6ZqpItJrWXS32IQ5wE096djxTW4eJRzCFBPnjgpybLOrJbtGnOM706WitVwHSmfqFy84fgnb3ctZ19fgiKFvjGhJ3yNJh7SttY+W4bSoaWxl+XLSg\/XdwLnO1A+DJx01kVw7cTqpfNfLV12dymbXcSXvPqpSjI+Q9Wnxw1XkIp39opOqAGdclOmhATt4doYGuYTrkpi8txIAR6mdRHF60qug4iorNNaNKG9HxGvE6rC1F3tHcVq0bcsbcCgKcu4PHM7F7lbtBfJQ2ipp6HStUHG0ml4vlbyDDi1c8lvI3\/V697dUxEKGMQjgwu8\/yOWJ3bHtUkt\/SVbab5gOdO3UzFl7JcO9u7l\/5311a2vvQXEd5wcxzpF09O56\/66vwdJG+t0xNYN0Wi2XULjbayRsL5laZyk0XdfVYa4rLZxmVlcE3h2kcMF7SAXnMJKc4y0VNHT6MRyvruwIYKJxdCntohqQfi9QTpN1znpNXGPnZO9AAOmfVEVCkP6Gi\/S33aRjAZbPMNU6rwSvTeadyraztZOz8rP1mhjRy1Do6k3074+gFA4R3PDJJlzhGxp6Suysc15RQ8Zp2ZULZMxJR9aZtLUlHhjDMTuHN30+pAcF709VHi4vsQk5W4qbejJvrVCUftQqWkp0hXDuuM8jgdVYmj9322ya+3YVoDfkvIfV3Ceu+PG8NMkzkHKqjyknEZwR6VXg3kVFhl9Va51pjMf9KI83zrQ6Z46T\/4l7\/yVY7i4aLQ+zT6VIjIoyQ3fGTieJXZ9N7NY0Ru5hst+0e0moPEpxbZkkXe\/bEcPDHYG6XJnCXJLCK\/eFNqgk6uiCl6VYwjSQwwlFcUsvtV26eHTt21MWRbtc5IyBXJVBIEdxT3AbfRFz7nWLZWi3RFbgnUfJo9XO1XBNoCLXtCrdqzfrXXFcHSO9OGp8xlOPnoRrflZdWLpTss5fpcKKo48udVFulrIh56RXut0SLr6XGDuaeW+LcO3ZHqjNGKVsq13B+4VFAdkaGW+AgskVYgGEGgvHomfHcNZATKxMipFe5\/yeThOkm5\/x1KOJJaPgWKz0NCGbUU7+qKiomP7w5UNpzO5mPVxxBkUy8VNoh5zslWDYMkP2hMkFcfSrlsYZKo9i5x\/bQXluXJxRcVxwF\/0W0fIsyntjrTUXUzWkDJ5CNtd0SRsj\/TQDS4cGugH+8jg\/foE8ryQa5hXT377cj4wT8DKs3tBRMCF65OLFTm3Z2dJIiaeEky93bkk5Kgs5EJ6bl2FRQIENVXk5u9brDvykQ7kSLfHpaJlqEsDSmekh6fr3XI+bC1Js57TnTeI72aHMowu+7c8IwhHQcIEX\/czlHgOKNaq+ulVKh1q3bj+osZcivn1ra0wOVYtacacogGPDpSp8w+Ww1ci2Wj8hau7WJe5P5TY+fq5YiELEHM65YwEe3nQeUKdHS6KGp1v1x1geZTaW98Dxg0sJO2+rKOgHwoH1QM4PXB58Gfmg3pdo7UNR38rplq5dZhmrIE03aa3quy3vOB70W\/N\/IJiBDFYXu0N34\/orWjorv58KOikYX9Kd8dSbORkqV+magjoX1FBaUPEhUA5wiijQtwPnR+Y31eKNvVtgwStUtbNSqmYoooiIIE5v6A\/SBz3G+sz5liDSNjJpALo4w\/0duIER8\/RlFsVQIOvREpiR1XT2S6cbxG8Pf38ib4MJBs93PSLkUpihA+ekqYZl1pnPvWlPtIs+QS5vvgRLNHvbPOVSbW8zzhXp94ChK87F+rAYz9bQAV47xkI58qf5OHfctbrMzQHf8V9SBgIKtaiw2sC1swO5vPoX8xqi5PL6v+hSVz3rxNg\/24gf+J655T4hHHZUGnemvOzcvS0j8JjJ7gih3ck7+bpt75\/bhDASS7CYoBMpJPS8JM6mPkBsDaNiNGPlBNY4S0vFARf3r7g4Jmyd3UdVbHPGyUi8WdReWk5\/wER3DVEvFv9lDg0DWwJdtbHKicgfB97rEcKJxZ+Ykn\/Ot3gkCNLppnb6dy69T2cezSiBjjABtNBA7xkgWtjDQiki2QoCoXO\/FTmn3Ta57gXzNfOyDC15CRrQtZylRJFiNZwCWVR4ElCuc+1EqZOQJ+4R4rpVSu7y1dOemdi1Z8+eCAH5yx9zy4HyYP1jTU2KFTKz2WxPB7NtNV3XBFl6wLDDHhJL\/Lly4I1th+CdxW3H+xfiZMn9XGfKDNf4E2TiAFTP2vprIaCggIgjH7V8be90KcWbXFitQE8qnnwVOHataydpAoseYuxaJmIA1vMD4O79cvKCz83NHXjmcoJwu+Hwhma7q27U7tR5JMPOo2\/bthq1kHrOF\/EhplpudejgLRnBRwPVkCTZhcZFOeDf9s4tNI4qjONzRNSEzCCOlyR1lVCduLNNugnrFsNuFjdbWXeTbLVucNNgvcQliKJEAw2ikGibVmserJgmFbzhBbRWKWqUxgQELyhafVCCD1VQn3wX3zxzds85M\/kyc3Yu3a7YH6KiD032v9\/1nPN9F30\/0cZ3\/kMSiDPy9AMGTz\/9aGRkZORGMjbIBS043LBNenm76oVW6+s1qt4nmuosvgu3N2S5sPmQ6cbujfy0RQx36PA+ZNTet+OFyQimVNbsKo+qYR1fQXQ29JYNnVb8rGUi0tHREYlMTEwsLS1N8DmtvFyDtu5A5CFXrp2N7IaZO7x1faYm1Xdsvfpe0RxvgeZ0c2pH9Tt8lxHgH+P6o9dczSCAKHbxXDY0x0drvTYlLGxhPALeJTv14nDk\/j6CHEhJNuRV5MCNNRbnhmvnK9VUp9dzsTCb7io28y9v2S5atEUX8AhXL0XoAeCtuysF221trEgX86y95nAKAR\/vTmYEEhYc35BWVBi5EhRL8HED1xzHUgfUvMOfN4gcuL+2aE78Dg3oKCM5kQshwrIghSdPUsEgb5dPUvmWNTjGMEI+moO1TZ44YTd44vi8w7w43n1NSY5kqmH98trLtZb2JQQAG9nsiC2EQ8iO3WLP3m5EczKZn98RcKKk1qJ6H96ot93b2E940XknvIByVwTVlro7rFJVlFG7Qxb5WmLnVPO45IhMj55vdUiaat90EwovxCQhufGjqURcD4fDuh6PJxKDibhWm6k\/cQ2+2Wz5IeJRwS9IU3jVNOMVLlFs\/hOYOSzVhGZOD93A4NrdHXQzlQCH5Q3K6Ird7zpfWdhCN3aEo5KAaBwYmXO5xjZVanEsVyIe14l88UTq6HhJqpVorN8gFitGMbFChkV1sWcnY\/nbaCtOBP1aa1x1WKiJN+Typ2pi1b9V6QuC3XRvHX9AKObEZlaurBRt70yQhVzslEXLSUKGVLjpCDbdYW89U4hFMcVYVb6oqxlygAQIhPAQFXt2mlV00E5jDfzEVO\/afJDMn\/fe4mpcv9jWQzYz291m7tzKZYe7UZea7TyUk8TQtycdNTbdWyovlxICKcWA3rxFdJizt+OfhGeSvNMo5oB5ijeM5heK1++AUk2gOo7rcGa7x8xdUY5bU3ZYqmHYenQnzeGFgxsF12W46LC37h+d\/Ai2oj9\/EfHsPMCIk1TYFlqDqu9oFibt8FQNAq88f7fB2N\/0Nj1MSSuffCU7zB34jGkuKNBtmiaPiZ07f8ygS8FiTeSg5PRuI3tDwy96iinGN1N9a\/MOQW1OT8\/BqZqQO36583WwU1YAHOSvpJtOFrFdyraak7SdzQGF7W9xC+NW+ywOxnQpQGSpZPrawR\/C9BqxhWnOu8tiklVbD7HKra9vR1\/zj1eTaO67PIeak1G\/p\/fsGsE8+Lq7iXG8RFudh1EThnNeq6FxqXZiGnzQAq\/LWJ1rKVD\/vkj\/fBBfnr+oHSsNKka6VMKlratY9b4dO\/q2\/vjlny\/ecq\/AzNllOJccemYLneB8p\/EPF3N\/FZaur54sOkseNTaqkn471TzrfpEKLNyu2VT0iqUtBmrqOu1Yg5Yrd+z8\/QwMXmLVdWrr011fvnj1Ldu3b6fL7n23ZKDmcEqci8ydRPKV+aggN37lherWBvyswcW2NHi5qG03yOLsVtfpQRp6RiV5HLwCd0WLRXKueVZySZEe8v3z9r2C3A2cnrsV3aK5m3Ggim3rzXa\/4mV0t6I6LrklW1X9HsFCWnavXc0EGNKnoJ\/B2Zshuc0y3BnJNVGSr4KRrsLNam5pvcOrnW9RiOSrv0Mbh66dav6cWtW8LLlnxqI6LNFBVJ0KLqgXKvWNxa\/ThN2qeQebaeMeeZCpvu9sav7HBR45oRhHp1ByyFeGaydtOHLx1bsNTtEr2iCLAwtpK9GxEJih52nuznrs5lAONU\/J3v6gA\/TZ2cf7AtIc4l3znxV6jCZiRbmUSH7JDbQ87y15\/OxTJtVhFgeP2fKBmbp1vdYTVr8O4\/kBySszqMqv0MW7b71C+HI99zyrKIbk4s90fjT9xmWG6jxt14uSVw7QbE40dGI\/IgRl6FnamSElWguVHNg5vaORlDwzTg\/9P7+7wTS\/YDT9CZFcbOZK07UkbX+uh95Uinq3v2SKbzeDT9dgfyYbkKlrvEhnoRy6F2LnvvdDlVUa2D92lpxswXbfiPOs+RdkwZqQ+eNY8\/cuM7pwNJyjqai\/LWnU1i1ZHJzSM8ffRPonz1r\/17dDyXkfjl3t9cUQnVC7E6RzYEGDe823eA7o6RqjuYITfOzdabed2J4\/kjTB\/RsfYzqssRpYE3YD3DaBHyLnaLa541N0j4BHO4fNORQCLh48YnHHIe+aP6vUovlXxytd2stwpTZGfwuetvv28E\/ZTt\/Dmm8d+E1w5OG6Q9ABE3a48pjk7b5JziLm4vf5arfD5qtHtoyeFIfK4idKpXnz3g1XPdlLU7hcEGkVVX2JBnUwKrsdn1lMa9Sz+JZAoy\/JgeTwJuYBKRCyiLr4fXcHpzlrxLnnxKok5CTty6cv48v1UiCce8\/h+aRNOGnReAXaNbBciereAiy8pBdxmPp2Be77gj6cP\/rZaTd08bDd7r7hHnxAnx9l529vvETNHMZX38Vsx34cY+F0TfLyt2t6jV1G9UVyw0wgh\/IcZYPr+8bYw4vH\/7o7CM1bfdj5s+lVkeSGZyconZ0sg9Phu1T\/3q9tDmZW15MRbMzUkV9Tn614FXvNWQqHyoGe62URy+doZOdHLO4BDXc356lph4gu478+YSeuTZPpHubai1KQlBFL5yyqtxhJXHOFgfXqrBdflFSLoUMzZ+Fcy0nBMqSByE5br\/VpuPOnDWmn5op8klg5oXPbEYTYoVrA5DQW2Lkc5DHRfc1U9GWil1ryZW+DfAoUxFgWEeGLYWQpSGRJnkUssu\/bBzSvQ8OdXpBSHFL2r1gwVzq3HWPRPFGQAkbmi5Uin2IXz0SgC2hJVF8H7wddk0EEnDzYVOdtwJUFyTA3duzjqeb1ar7yxeiKrWNfOa5wz97Uw\/ffydJZoMiek7OKHRv6\/q3m++LgMZlrwpXqcFNDN7l2RH\/HoOlPIcrjd3\/sWfMV75q\/qjis4FkZZZ5d2TZ5RGWbkXLS2UFeQGYXT1R43jJId\/pM5SfwWye0Ec1Br5dn7TyEBE9JQ5R3f735ptaL69BwB3dl0vMwdkXnV9NMcRzMTwleiAZESeVZPFbBGJ9MNGdMh\/wVizHTEgZYnLNnkvEh\/pEET3FWZT7+w5vBLOeAG+7wOLW6eIkhy6RGO7lK\/hcL5j38hSgw80AD+1AcVVkir8jMU9JJ2fYbnC\/j\/tpGBGhOFvdG2EbHqHR2GY4jLvvem1tdag6ar+4uv\/KhnzKmmq+vjpoln1S45KGyLJ1domw3amSunfZlTFTPXaY8ftigXOODLlg0V4els09e5bJ\/4E72Q60X+NecDxWR5Xmcu2HFOZNNY4gx605yX8KQ\/skV19B6jZdtPoRJJmi5BiT\/vo01IGJSPX7N2JTKM7pvjZG+wR+yQM3p7AH6tGF19fiokjYprmDHnjZJPih4pBt8v7Lt+5aBZvru01q2JVwLw5d20XMd3o7hs03UrEw0rwO5BOKyf9gNYnvQDXc4b0IhWP7DtsljY\/zbqJel+oA\/9KzKfPxv031W1fsGkMfnLrKUoD0\/6xLH\/RP8tyxI9UPOaIihfbu3G1q7\/9vOUHMIl5y0XBnZqFRHCjqirPdNY2OHZVvCvUHK1U1aTHMyie4jLrk2LtWZcZPs6nfPCL38IV8NdxvNWY227VQvYmgLUt2An8b6fQN95pef1VzOvaGXK4Z+RQsvzK+YW0KMVL9UX2RcvuXJ95tN7O\/G5t7qcLD2R1CaQ8nTR0ySh44W3Dz\/D75zhc4sD\/DY3jVwhr8sc3+81jZ3UQsbRjgXaUOUcEY6J8TyIfPY9g+7915nK\/sdQWvO+q2WUI7UxSHp3JAJ8+\/d2vI0Du4V3fuWQ94O2xKVGr3q1tv3kzY76DnVn2RWQxz1Hbx4B69havWnOezJ2Bv5ZCfut3LUo9G6WLl48l\/oTNe04ea7aK2e8Cq6wUdzT0UQR1ssSueUbByZePy7D7qx7q3BHbL8vLnmiuHWm06NIRP6zDn+LIqLZhtYO7N83wDGm+gyXYk6sTQx0YFMqFN+c3b\/sT06PIhMhB7\/rnVvN9UdHLK413xzxbdNdp4a60Um4uNFYOV1p0D61AxtbX19fc3TjUW5cqoK+akgNQJybgpZdN\/5bfdektb5f9WgbKo4DeScwVJSaggKP6FNybj\/QoYQIDwjNRB53SrCTlzFYUePlWea+0\/hDE\/faXj1no0fRVRqIGbCCBDyMmZGRRa0VCZ57p2ZZUDa8JSGrLq\/86Eh\/KFnAknhFIXU403HjvRs\/CjKcgN9FMZPksykNnwWqqcBNCUdMdRUuTH8+gbZC+UEsrJz5zsf\/PI16alt8ebaueCTk7ge7+lFVvRsoXH0NlEop1TTT1nyepyTCodUTU\/lcw35W9LSHbi2tl2vH\/b0joVoTv7WidO2NLNwc+ut4b78llQnb0gWCqcCOfyUG1R28mMNHY3DDGTXm9+cPviwC8l\/TpP4jR16Z9OxU5sIruqL2Hwaya9vQA5QablRFa8gV77igyEEuP3BPW+9fNqk\/BYD02wh\/O8GRjQ\/gY0bB3As9xj26AA1MTMcbeBvv0SlamgbDZpkjMQ0iHr7yK49r79\/2Lk470wfOzLW26uqaDMS2f6GytbPY6I\/n9C4bNDyd+158+VvTr928ODBw4cP47+\/dvqHl9\/c8+DtyJ5QfCHX0E79\/03Fp8WGZ1K6igIhPLhQ7v8\/ucv\/JnLF4HPjP8VVn4LPZksF+bzi\/y3kQnlWDyH3qPqB7FCDtFjP4zqNJd4+uziohzVVrHUorCdm85lCg1ep5xEKT0j254bL2YWpVELHvYsNUmt6PDW1mC8P5wo4Q\/8vFKnncdOzkJPGUpvCUK6UyYyXM8OloUK\/sZvofybxv\/EXZtJ6ZwYwAAAAAElFTkSuQmCC\" y=\"10\"><\/image> <\/g> <\/svg><\/span><\/p>","options":["<span class=\"math-tex\">$\\dfrac{3}{7}$<\/span>","<span class=\"math-tex\">$\\dfrac{4}{7}$<\/span>","<span class=\"math-tex\">$\\dfrac{2}{7}$<\/span>"],"correct":"3","level":"2","hint":"<p>Th\u1ef1c hi\u1ec7n c&aacute;c ph&eacute;p t&iacute;nh trong ngo\u1eb7c tr\u01b0\u1edbc r\u1ed3i m\u1edbi th\u1ef1c hi\u1ec7n ph&eacute;p nh&acirc;n.<\/p>","answer":"<p>&nbsp;&nbsp;<span class=\"math-tex\">$\\left( \\dfrac{3}{2}-\\dfrac{2}{3} \\right)\\left( \\dfrac{1}{10}+\\dfrac{5}{14}-\\dfrac{4}{35} \\right)$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\left( \\dfrac{9}{6}-\\dfrac{4}{6} \\right)\\left( \\dfrac{7}{70}+\\dfrac{25}{70}-\\dfrac{8}{70} \\right)$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\left( \\dfrac{9-4}{6} \\right)\\left( \\dfrac{7+25-8}{70} \\right)$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{5}{6}.\\dfrac{24}{70}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{5.24}{6.70}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{5.4.6}{6.2.5.7}$<\/span>&nbsp; (r&uacute;t g\u1ecdn cho 5.6)<\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{4}{2.7}$<\/span>&nbsp; &nbsp;(r&uacute;t g\u1ecdn cho 2)<\/p><p>=&nbsp;<span style=\"color:#16a085;\"><span class=\"math-tex\">$\\dfrac{2}{7}$<\/span><\/span><\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp;<span style=\"color:#16a085;\"><span class=\"math-tex\">$\\dfrac{2}{7}$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"3","date":"2021-08-23 13:28:52","option_type":"math","len":0},{"id":"6382","post_id":"4513","mon_id":"1158113","chapter_id":"1158119","question":"<p>Th\u1ef1c hi\u1ec7n ph&eacute;p t&iacute;nh<\/p><p><span style=\"color:#2980b9;\"><span class=\"math-tex\">$\\dfrac{7}{9}.\\dfrac{8}{11}-\\dfrac{7}{9}.\\dfrac{2}{11}+\\dfrac{19}{33}$<\/span><\/span><\/p><div class=\"lt123_imgs\"><img class=\"img_dd tiny\" src=\"\/data\/library\/do-an\/banh-sinh-nhat.png\" \/><\/div>","options":["<span class=\"math-tex\">$2$<\/span>","<span class=\"math-tex\">$1$<\/span>","3"],"correct":"2","level":"2","hint":"<p>D&ugrave;ng t&iacute;nh ch\u1ea5t ph&acirc;n ph\u1ed1i c\u1ee7a ph&eacute;p nh&acirc;n v\u1edbi ph&eacute;p c\u1ed9ng \u0111\u1ec3 nh&oacute;m c&aacute;c ph&acirc;n s\u1ed1 m\u1ed9t c&aacute;ch th&iacute;ch h\u1ee3p.<\/p>","answer":"<p>&nbsp; &nbsp;<span class=\"math-tex\">$\\dfrac{7}{9}.\\dfrac{8}{11}-\\dfrac{7}{9}.\\dfrac{2}{11}+\\dfrac{19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{7}{9}.\\left( \\dfrac{8}{11}-\\dfrac{2}{11} \\right)+\\dfrac{19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{7}{9}.\\left( \\dfrac{8-2}{11} \\right)+\\dfrac{19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{7}{9} . \\dfrac{6}{11} + \\dfrac{19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{7.6}{9.11} + \\dfrac{19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{7.2}{3.11}+\\dfrac{19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{14}{33}+\\dfrac{19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{14+19}{33}$<\/span><\/p><p>=&nbsp;<span class=\"math-tex\">$\\dfrac{33}{33}$<\/span><\/p><p>= <span style=\"color:#16a085;\"><strong>1<\/strong><\/span><\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave; <span style=\"color:#16a085;\"><b>1<\/b><\/span><\/p>","type":"choose","extra_type":"star","time":"0","user_id":"131","test":"1","date":"2021-08-24 01:22:52","option_type":"math","len":0},{"id":"6384","post_id":"4513","mon_id":"1158113","chapter_id":"1158119","question":"<p>Bi\u1ebft<span class=\"frac123\"><span class=\"ts\">1<\/span><span class=\"ms\">2<\/span><\/span> &nbsp;s\u1ed1 h\u1ecdc sinh kh\u1ed1i 6 s\u1eed d\u1ee5ng \u0111i\u1ec7n tho\u1ea1i th&ocirc;ng minh&nbsp;\u1edf tr\u01b0\u1eddng. Trong<span class=\"frac123\"><span class=\"ts\">1<\/span><span class=\"ms\">2<\/span><\/span> s\u1ed1 h\u1ecdc sinh s\u1eed d\u1ee5ng \u0111i\u1ec7n tho\u1ea1i th&ocirc;ng minh&nbsp;th&igrave; c&oacute;<span class=\"frac123\"><span class=\"ts\">1<\/span><span class=\"ms\">4<\/span><\/span>&nbsp;s\u1ed1 h\u1ecdc sinh th&iacute;ch \u0111eo tai nghe \u0111\u1ec3 nghe nh\u1ea1c trong gi\u1edd ngh\u1ec9 gi\u1ea3i lao. H\u1ecfi c&oacute; bao nhi&ecirc;u ph\u1ea7n s\u1ed1 h\u1ecdc sinh kh\u1ed1i 6 c&oacute; \u0111i\u1ec7n tho\u1ea1i th&ocirc;ng minh v&agrave;&nbsp;th&iacute;ch&nbsp;\u0111eo tai nghe \u0111\u1ec3 nghe nh\u1ea1c?<\/p><p><span style=\"color:#2980b9;\">C&oacute;&nbsp;<span class=\"frac123\"><span class=\"ts\">&lt;input class=\"tim_x input_number\" type=\"text\" \/&gt;&lt;\/span><span class=\"ms\">&lt;input class=\"tim_x input_number\" type=\"text\" \/&gt;&lt;\/span><\/span>&nbsp;ph\u1ea7n.<\/span><\/p>","options":"","correct":["[\"1\",\"8\"]"],"level":"2","hint":"","answer":"<p>S\u1ed1 ph\u1ea7n s\u1ed1 h\u1ecdc sinh kh\u1ed1i 6 c&oacute; \u0111i\u1ec7n tho\u1ea1i th&ocirc;ng minh v&agrave;&nbsp;th&iacute;ch&nbsp;\u0111eo tai nghe \u0111\u1ec3 nghe nh\u1ea1c l&agrave;:<br \/><span class=\"frac123\"><span class=\"ts\">1<\/span><span class=\"ms\">2<\/span><\/span>&nbsp;&nbsp;.&nbsp;<span class=\"frac123\"><span class=\"ts\">1<\/span><span class=\"ms\">4<\/span><\/span>&nbsp;&nbsp;=&nbsp;&nbsp;<span style=\"color:#16a085;\"><span class=\"math-tex\">$\\dfrac{1}{8}$<\/span><\/span>&nbsp;(ph\u1ea7n)<\/p><p>C&aacute;c s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u1ea7n l\u01b0\u1ee3t l&agrave;<span style=\"color:#16a085;\"> <strong>1<\/strong><\/span> v&agrave;<span style=\"color:#16a085;\"><strong> 8<\/strong><\/span><\/p>","type":"blank","extra_type":"","time":"0","user_id":"131","test":"3","date":"2021-08-24 02:01:59"}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.