{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'> Bi\u1ec3u th\u1ee9c n\u00e0o sau \u0111\u00e2y l\u00e0 <b> \u0111a th\u1ee9c<\/b> nh\u01b0ng kh\u00f4ng ph\u1ea3i l\u00e0 <b>\u0111\u01a1n th\u1ee9c <\/b>? <\/span>","select":["A. $x^2yz+1$","B. $(a+1)x^3y$ v\u1edbi $a$ l\u00e0 h\u1eb1ng s\u1ed1","C. $\\dfrac{24xyz^2}{5}$","D. $-\\dfrac{x^3}{7}$"],"explain":"<span class='basic_left'> C\u00e1c bi\u1ec3u th\u1ee9c $(a+1)x^3y$ ($a$ l\u00e0 h\u1eb1ng s\u1ed1), $\\dfrac{24xyz^2}{5}$ v\u00e0 $-\\dfrac{x^3}{7}$ v\u1eeba l\u00e0 \u0111\u01a1n th\u1ee9c v\u1eeba l\u00e0 \u0111a th\u1ee9c. <br\/> Bi\u1ec3u th\u1ee9c $x^2yz+1$ l\u00e0 \u0111a th\u1ee9c nh\u01b0ng kh\u00f4ng l\u00e0 \u0111\u01a1n th\u1ee9c.<br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span><\/span>","column":2}]}],"id_ques":1171},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" <span class='basic_left'> Thu g\u1ecdn \u0111a th\u1ee9c $A=2{{x}^{2}}{{y}^{5}}-xyz+{{y}^{3}}+3{{x}^{2}}{{y}^{5}}-2xyz+7{{y}^{3}}-4{{x}^{2}}{{y}^{5}}$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0: <\/span>","select":["A. ${{x}^{2}}{{y}^{5}}+3xyz+8{{y}^{3}}$","B. ${{x}^{2}}{{y}^{5}}-3xyz+8{{y}^{3}}$","C. $6{{x}^{2}}{{y}^{5}}-3xyz+8{{y}^{3}}$","D. $6{{x}^{2}}{{y}^{5}}+3xyz+8{{y}^{3}}$"],"hint":" Nh\u00f3m c\u00e1c h\u1ea1ng t\u1eed \u0111\u1ed3ng d\u1ea1ng v\u1edbi nhau r\u1ed3i t\u00ednh.","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & A=2{{x}^{2}}{{y}^{5}}-xyz+{{y}^{3}}+3{{x}^{2}}{{y}^{5}}-2xyz+7{{y}^{3}}-4{{x}^{2}}{{y}^{5}} \\\\ & \\,\\,\\,\\,\\,=\\left( 2{{x}^{2}}{{y}^{5}}+3{{x}^{2}}{{y}^{5}}-4{{x}^{2}}{{y}^{5}} \\right)+\\left( -xyz-2xyz \\right)+\\left( {{y}^{3}}+7{{y}^{3}} \\right) \\\\ & \\,\\,\\,\\,\\,={{x}^{2}}{{y}^{5}}-3xyz+8{{y}^{3}} \\\\ \\end{align}$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B.<\/span><\/span>","column":2}]}],"id_ques":1172},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'> \u0110a th\u1ee9c n\u00e0o sau \u0111\u00e2y c\u00f3 b\u1eadc l\u00e0 $5?$ <\/span>","select":["A. $6x^3y-xy^5$","B. $x^2y^2-5xy+4y^4$","C. $5x^2+3$","D. $4x^3y+5x^2y-7y^5$"],"hint":"","explain":"<span class='basic_left'> \u0110a th\u1ee9c $6x^3y-xy^5$ c\u00f3 b\u1eadc l\u00e0 $6$ <br\/> \u0110a th\u1ee9c $x^2y^2-5xy+4y^4$ c\u00f3 b\u1eadc l\u00e0 $4$ <br\/> \u0110a th\u1ee9c $5x^2+3$ c\u00f3 b\u1eadc l\u00e0 $2$ <br\/> \u0110a th\u1ee9c $4x^3y+5x^2y-7y^5$ c\u00f3 b\u1eadc l\u00e0 $5$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D.<\/span><\/span>","column":2}]}],"id_ques":1173},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" <span class='basic_left'> \u0110a th\u1ee9c n\u00e0o sau \u0111\u00e2y c\u00f3 b\u1eadc l\u1edbn nh\u1ea5t trong c\u00e1c \u0111a th\u1ee9c? <\/span>","select":["A. $1999$","B. $x^{1999}$","C. $-2x^3y^5z^6+4y^6$","D. $x^3+4x^2y^2+2y^5-5$"],"hint":"","explain":"<span class='basic_left'> \u0110a th\u1ee9c $1999$ c\u00f3 b\u1eadc l\u00e0 $0$ <br\/> \u0110a th\u1ee9c $x^{1999}$ c\u00f3 b\u1eadc l\u00e0 $1999$ <br\/> \u0110a th\u1ee9c $-2x^3y^5z^6+4y^6$ c\u00f3 b\u1eadc l\u00e0 $14$ <br\/> \u0110a th\u1ee9c $x^3+4x^2y^2+2y^5-5$ c\u00f3 b\u1eadc l\u00e0 $5$ <br\/> $\\Rightarrow$ \u0110a th\u1ee9c $x^{1999}$ c\u00f3 b\u1eadc cao nh\u1ea5t. <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B.<\/span><\/span>","column":2}]}],"id_ques":1174},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["29"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":" \u0110a th\u1ee9c $5x^2y^2-xy+29-2y^3-y^2+5x^4$ c\u00f3 h\u1ec7 s\u1ed1 t\u1ef1 do l\u00e0 _input_ ","explain":"<span class='basic_left'>\u0110a th\u1ee9c $5x^2y^2-xy+29-2y^3-y^2+5x^4$ c\u00f3 h\u1ec7 s\u1ed1 t\u1ef1 do l\u00e0 $29$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $29$.<\/span><\/span>"}]}],"id_ques":1175},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":" <span class='basic_left'> \u0110a th\u1ee9c $x^3y^4-x^2y^2+y^6-5x^3y^4-6x^2y^2+3y^6-5x^2y^2+4y^6$ c\u00f3 bao nhi\u00eau h\u1ea1ng t\u1eed m\u00e0 trong \u0111\u00f3 kh\u00f4ng c\u00f3 hai h\u1ea1ng t\u1eed n\u00e0o \u0111\u1ed3ng d\u1ea1ng v\u1edbi nhau? <br\/> <b> \u0110\u00e1p \u00e1n:<\/b> C\u00f3 _input_ h\u1ea1ng t\u1eed <\/span>","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>Thu g\u1ecdn \u0111a th\u1ee9c \u0111\u00e3 cho r\u1ed3i t\u00ednh s\u1ed1 h\u1ea1ng t\u1eed c\u1ee7a n\u00f3. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3: <br\/> $\\begin{align} & {{x}^{3}}{{y}^{4}}-{{x}^{2}}{{y}^{2}}+{{y}^{6}}-5{{x}^{3}}{{y}^{4}}-6{{x}^{2}}{{y}^{2}}+3{{y}^{6}}-5{{x}^{2}}{{y}^{2}}+4{{y}^{6}} \\\\ & =\\left( {{x}^{3}}{{y}^{4}}-5{{x}^{3}}{{y}^{4}} \\right)+\\left( -{{x}^{2}}{{y}^{2}}-6{{x}^{2}}{{y}^{2}}-5{{x}^{2}}{{y}^{2}} \\right)+\\left( {{y}^{6}}+3{{y}^{6}}+4{{y}^{6}} \\right) \\\\ & =-4{{x}^{3}}{{y}^{3}}-12{{x}^{2}}{{y}^{2}}+8{{y}^{6}} \\\\ \\end{align}$ <br\/> \u0110a th\u1ee9c \u0111\u00e3 cho c\u00f3 $3$ h\u1ea1ng t\u1eed m\u00e0 trong \u0111\u00f3 kh\u00f4ng c\u00f3 hai h\u1ea1ng t\u1eed n\u00e0o \u0111\u1ed3ng d\u1ea1ng v\u1edbi nhau. <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $3$.<\/span><\/span>"}]}],"id_ques":1176},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"],["6"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","input_hint":["frac"],"ques":"Cho \u0111a th\u1ee9c $B=3{{x}^{2}}y-\\dfrac{1}{2}x{{y}^{2}}+\\dfrac{1}{3}{{x}^{2}}y+\\dfrac{2}{3}x{{y}^{2}}+1$ <br\/> H\u1ec7 s\u1ed1 c\u1ee7a h\u1ea1ng t\u1eed c\u00f3 ph\u1ea7n bi\u1ebfn $xy^2$ l\u00e0 <div class=\"frac123\"><div class=\"ts\">_input_<\/div><div class=\"ms\">_input_<\/div><\/div> ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>Thu g\u1ecdn \u0111a th\u1ee9c \u0111\u00e3 cho r\u1ed3i h\u1ec7 s\u1ed1 c\u1ee7a h\u1ea1ng t\u1eed c\u00f3 ph\u1ea7n bi\u1ebfn l\u00e0 $xy^2$ <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3: <br\/> $\\begin{align} & B=3{{x}^{2}}y-\\dfrac{1}{2}x{{y}^{2}}+\\dfrac{1}{3}{{x}^{2}}y+\\dfrac{2}{3}x{{y}^{2}}+1 \\\\ & \\,\\,\\,\\,\\,=\\left( 3{{x}^{2}}y+\\dfrac{1}{3}{{x}^{2}}y \\right)+\\left( -\\dfrac{1}{2}x{{y}^{2}}+\\dfrac{2}{3}x{{y}^{2}} \\right)+1 \\\\ & \\,\\,\\,=\\dfrac{10}{3}{{x}^{2}}y+\\dfrac{1}{6}x{{y}^{2}}+1 \\\\ \\end{align}$ <br\/> H\u1ec7 s\u1ed1 c\u1ee7a h\u1ea1ng t\u1eed c\u00f3 ph\u1ea7n bi\u1ebfn $xy^2$ l\u00e0 $\\dfrac{1}{6}$<\/span>"}]}],"id_ques":1177},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["3"],["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","input_hint":["frac"],"ques":"\u0110\u1ec3 bi\u1ec3u th\u1ee9c $\\dfrac{x^3+2x^2}{(2a-3)x+4}$ ($a$ l\u00e0 h\u1eb1ng s\u1ed1) l\u00e0 \u0111a th\u1ee9c th\u00ec gi\u00e1 tr\u1ecb c\u1ee7a $a$ l\u00e0 <div class=\"frac123\"><div class=\"ts\">_input_<\/div><div class=\"ms\">_input_<\/div><\/div>","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> \u0110\u1ec3 bi\u1ec3u th\u1ee9c c\u00f3 d\u1ea1ng ph\u00e2n s\u1ed1 l\u00e0 \u0111a th\u1ee9c th\u00ec m\u1eabu s\u1ed1 kh\u00f4ng ch\u1ee9a bi\u1ebfn. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>\u0110\u1ec3 bi\u1ec3u th\u1ee9c $\\dfrac{x^3+2x^2}{(2a-3)x+4}$ ($a$ l\u00e0 h\u1eb1ng s\u1ed1) l\u00e0 \u0111a th\u1ee9c th\u00ec $2a-3=0 \\Rightarrow a=\\dfrac{3}{2}$<br\/> <b>L\u01b0u \u00fd: <\/b> <i>\u0110\u1ec3 m\u1ed9t bi\u1ec3u th\u1ee9c c\u00f3 d\u1ea1ng ph\u00e2n s\u1ed1 l\u00e0 \u0111a th\u1ee9c (\u0111\u01a1n th\u1ee9c) th\u00ec m\u1eabu s\u1ed1 kh\u00f4ng ch\u1ee9a bi\u1ebfn. <\/i><\/span>"}]}],"id_ques":1178},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-10"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":" <span class='basic_left'> Cho \u0111a th\u1ee9c $C=5{{y}^{3}}+{{y}^{5}}-4{{y}^{3}}+y+3{{y}^{3}}-2y+6{{y}^{5}}$ <br\/> Gi\u00e1 tr\u1ecb c\u1ee7a \u0111a th\u1ee9c $C$ t\u1ea1i $y=-1$ l\u00e0 _input_ <\/span> ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> Thu g\u1ecdn \u0111a th\u1ee9c r\u1ed3i thay gi\u00e1 tr\u1ecb c\u1ee7a $y$ v\u00e0o \u0111a th\u1ee9c thu g\u1ecdn v\u00e0 t\u00ednh. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> Ta c\u00f3: <br\/> $\\begin{align} & C=5{{y}^{3}}+{{y}^{5}}-4{{y}^{3}}+y+3{{y}^{3}}-2y+6{{y}^{5}} \\\\ & \\,\\,\\,\\,\\,=\\left( 5{{y}^{3}}-4{{y}^{3}}+3{{y}^{3}} \\right)+\\left( {{y}^{5}}+6{{y}^{5}} \\right)+\\left( y-2y \\right) \\\\ & \\,\\,\\,\\,\\,=4{{y}^{3}}+7{{y}^{5}}-y \\\\ & \\,\\,\\,\\,\\,=7{{y}^{5}}+4{{y}^{3}}-y \\\\ \\end{align}$ <br\/> Thay $y=-1$ v\u00e0o \u0111a th\u1ee9c $C$ \u0111\u00e3 r\u00fat g\u1ecdn ta \u0111\u01b0\u1ee3c: <br\/> $\\begin{align} & C=7.{{\\left( -1 \\right)}^{5}}+4.{{\\left( -1 \\right)}^{3}}-\\left( -1 \\right) \\\\ & \\,\\,\\,\\,\\,=-7-4+1 \\\\ & \\,\\,\\,\\,\\,=-10 \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $-10$.<\/span> <\/span>"}]}],"id_ques":1179},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-146"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":" <span class='basic_left'> Cho \u0111a th\u1ee9c $D=5x{{y}^{3}}+{{y}^{4}}-4x{{y}^{3}}+2y-3{{y}^{4}}-5y-6x{{y}^{3}}$ <br\/> Gi\u00e1 tr\u1ecb c\u1ee7a \u0111a th\u1ee9c $D$ t\u1ea1i $x=-3;y=-2$ l\u00e0 _input_ <\/span> ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> Thu g\u1ecdn \u0111a th\u1ee9c r\u1ed3i thay gi\u00e1 tr\u1ecb c\u1ee7a $y$ v\u00e0o \u0111a th\u1ee9c thu g\u1ecdn v\u00e0 t\u00ednh. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3: <br\/> $\\begin{align} & D=5x{{y}^{3}}+{{y}^{4}}-4x{{y}^{3}}+2y-3{{y}^{4}}-5y-6x{{y}^{3}} \\\\ & \\,\\,\\,\\,\\,\\,=\\left( 5x{{y}^{3}}-4x{{y}^{3}}-6x{{y}^{3}} \\right)+\\left( {{y}^{4}}-3{{y}^{4}} \\right)+\\left( 2y-5y \\right) \\\\ & \\,\\,\\,\\,\\,\\,=-5x{{y}^{3}}-2{{y}^{4}}-3y \\\\ \\end{align}$ <br\/> Thay $x=-3;y=-2$ v\u00e0o \u0111a th\u1ee9c $D$ \u0111\u00e3 thu g\u1ecdn ta c\u00f3: <br\/> $\\begin{align} & D=-5.\\left( -3 \\right).{{\\left( -2 \\right)}^{3}}-2.{{\\left( -2 \\right)}^{4}}-3.\\left( -2 \\right) \\\\ & \\,\\,\\,\\,\\,\\,=-146 \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $-146$.<\/span> <\/span>"}]}],"id_ques":1180},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'> T\u00ednh hi\u1ec7u $E=\\left( 4{{x}^{3}}-3{{x}^{2}}{{y}^{2}}+{{y}^{5}} \\right)-\\left( {{x}^{3}}+4{{x}^{2}}{{y}^{2}}+2{{y}^{5}}-5 \\right)$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0: <\/span>","select":["A. $3{{x}^{3}}-7{{x}^{2}}{{y}^{2}}-{{y}^{5}}+5$","B. $3{{x}^{3}}+7{{x}^{2}}{{y}^{2}}-{{y}^{5}}+5$","C. $5{{x}^{3}}-7{{x}^{2}}{{y}^{2}}-{{y}^{5}}+5$","D. $5{{x}^{3}}+7{{x}^{2}}{{y}^{2}}-{{y}^{5}}+5$"],"hint":"Ph\u00e1 ngo\u1eb7c, nh\u00f3m c\u00e1c h\u1ea1ng t\u1eed \u0111\u1ed3ng d\u1ea1ng v\u1edbi nhau r\u1ed3i t\u00ednh.","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & E=\\left( 4{{x}^{3}}-3{{x}^{2}}{{y}^{2}}+{{y}^{5}} \\right)-\\left( {{x}^{3}}+4{{x}^{2}}{{y}^{2}}+2{{y}^{5}}-5 \\right) \\\\ & \\,\\,\\,\\,\\,=4{{x}^{3}}-3{{x}^{2}}{{y}^{2}}+{{y}^{5}}-{{x}^{3}}-4{{x}^{2}}{{y}^{2}}-2{{y}^{5}}+5 \\\\ & \\,\\,\\,\\,\\,=\\left( 4{{x}^{3}}-{{x}^{3}} \\right)+\\left( -3{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{y}^{2}} \\right)+\\left( {{y}^{5}}-2{{y}^{5}} \\right)+5 \\\\ & \\,\\,\\,\\,\\,=3{{x}^{3}}-7{{x}^{2}}{{y}^{2}}-{{y}^{5}}+5 \\\\ \\end{align}$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span><\/span>","column":2}]}],"id_ques":1181},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'> T\u00ednh t\u1ed5ng $M=\\left( 1,5{{x}^{2}}{{y}^{3}}+xyz-{{z}^{4}}+5 \\right)+\\left( 0,5{{x}^{2}}{{y}^{3}}-3xyz+{{z}^{4}}-7 \\right)$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0: <\/span>","select":["A. ${{x}^{2}}{{y}^{3}}-2xyz+2z^4-2$","B. ${{x}^{2}}{{y}^{3}}+2xyz-2$","C. $2{{x}^{2}}{{y}^{3}}-2xyz+2z^4-2$","D. $2{{x}^{2}}{{y}^{3}}-2xyz-2$"],"hint":"Ph\u00e1 ngo\u1eb7c, nh\u00f3m c\u00e1c h\u1ea1ng t\u1eed \u0111\u1ed3ng d\u1ea1ng v\u1edbi nhau r\u1ed3i t\u00ednh.","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & M=\\left( 1,5{{x}^{2}}{{y}^{3}}+xyz-{{z}^{4}}+5 \\right)+\\left( 0,5{{x}^{2}}{{y}^{3}}-3xyz+{{z}^{4}}-7 \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,=1,5{{x}^{2}}{{y}^{3}}+xyz-{{z}^{4}}+5+0,5{{x}^{2}}{{y}^{3}}-3xyz+{{z}^{4}}-7 \\\\ & \\,\\,\\,\\,\\,\\,\\,=\\left( 1,5{{x}^{2}}{{y}^{3}}+0,5{{x}^{2}}{{y}^{3}} \\right)+\\left( xyz-3xyz \\right)+\\left( -{{z}^{4}}+{{z}^{4}} \\right)+\\left( 5-7 \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,=2{{x}^{2}}{{y}^{3}}-2xyz-2 \\\\ \\end{align}$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D.<\/span><\/span>","column":2}]}],"id_ques":1182},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" <span class='basic_left'> Bi\u1ebft $\\left( {{x}^{4}}-y+{{y}^{2}}+xy \\right)-M={{x}^{4}}+7y-6+xy$ <br\/> \u0110a th\u1ee9c $M$ l\u00e0: <\/span>","select":["A. $-8y+2xy+{{y}^{2}}+6$","B. $-8y+{{y}^{2}}+6$","C. $-8y+6y+2xy+{{y}^{2}}-6$","D. $-8y-y^2-6$"],"hint":"\u0110a th\u1ee9c tr\u1eeb b\u1eb1ng \u0111a th\u1ee9c b\u1ecb tr\u1eeb tr\u1eeb \u0111i \u0111a th\u1ee9c hi\u1ec7u.","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & \\left( {{x}^{4}}-y+{{y}^{2}}+xy \\right)-M={{x}^{4}}+7y-6+xy \\\\ & \\Rightarrow M=\\left( {{x}^{4}}-y+{{y}^{2}}+xy \\right)-\\left( {{x}^{4}}+7y-6+xy \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,={{x}^{4}}-y+{{y}^{2}}+xy-{{x}^{4}}-7y+6-xy \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=\\left( {{x}^{4}}-{{x}^{4}} \\right)+\\left( -y-7y \\right)+\\left( xy-xy \\right)+{{y}^{2}}+6 \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=-8y+{{y}^{2}}+6 \\\\ \\end{align}$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B.<\/span><\/span>","column":2}]}],"id_ques":1183},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'> Bi\u1ebft $\\left( 2{{x}^{2}}+{{y}^{2}}+3xy \\right)+M=0$ <br\/> \u0110a th\u1ee9c $M$ l\u00e0: <\/span>","select":["A. $-2{{x}^{2}}-{{y}^{2}}-3xy$","B. $2{{x}^{2}}+{{y}^{2}}+3xy$","C. $-2{{x}^{2}}+{{y}^{2}}+3xy$","D. $0$"],"hint":"Mu\u1ed1n t\u00ecm \u0111a th\u1ee9c ch\u01b0a bi\u1ebft c\u1ee7a t\u1ed5ng hai \u0111a th\u1ee9c ta l\u1ea5y t\u1ed5ng tr\u1eeb \u0111i \u0111a th\u1ee9c \u0111\u00e3 bi\u1ebft.","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & \\left( 2{{x}^{2}}+{{y}^{2}}+3xy \\right)+M=0 \\\\ & \\Rightarrow M=0-\\left( 2{{x}^{2}}+{{y}^{2}}+3xy \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=-2{{x}^{2}}-{{y}^{2}}-3xy \\\\ \\end{align}$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span><\/span>","column":2}]}],"id_ques":1184},{"time":24,"part":[{"title":"Kh\u1eb3ng \u0111\u1ecbnh sau \u0111\u00e2y \u0110\u00fang hay Sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" \u0110a th\u1ee9c $P=5x^2y^2+3$ lu\u00f4n lu\u00f4n d\u01b0\u01a1ng v\u1edbi m\u1ecdi gi\u00e1 tr\u1ecb c\u1ee7a $x;y$","select":["\u0110\u00fang","Sai"],"explain":"<span class='basic_left'> Ta c\u00f3: $x^2y^2\\ge 0$ v\u1edbi m\u1ecdi $x;y$ <br\/> $\\Rightarrow P=5x^2y^2+3 \\ge 3 > 0$ v\u1edbi m\u1ecdi $x;y$ <br\/> Do \u0111\u00f3, \u0111a th\u1ee9c $P$ lu\u00f4n lu\u00f4n d\u01b0\u01a1ng v\u1edbi m\u1ecdi gi\u00e1 tr\u1ecb c\u1ee7a $x;y$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 \u0110\u00fang.<\/span><\/span>","column":2}]}],"id_ques":1185},{"time":24,"part":[{"title":"N\u1ed1i b\u1eadc c\u1ee7a \u0111a th\u1ee9c \u1edf c\u1ed9t ph\u1ea3i t\u01b0\u01a1ng \u1ee9ng v\u1edbi \u0111a th\u1ee9c \u0111\u00e3 cho \u1edf c\u1ed9t tr\u00e1i","title_trans":"","audio":"","temp":"matching","correct":[["3","2","1"]],"list":[{"point":5,"image":"","left":["$ax^3+4xy+8y+1$ v\u1edbi $a$ l\u00e0 h\u1eb1ng s\u1ed1","$mx^4+x^4-1$ v\u1edbi $m$ l\u00e0 h\u1eb1ng s\u1ed1","$13m^3n^4+mn$"],"right":["$7$","$4$ ","$3$"],"top":100,"hint":"","explain":" <span class='basic_left'> Ta c\u00f3: <br\/> - \u0110a th\u1ee9c $ax^3+4xy+8y+1$ v\u1edbi $a$ l\u00e0 h\u1eb1ng s\u1ed1 c\u00f3 b\u1eadc l\u00e0 $3$ <br\/> - \u0110a th\u1ee9c $mx^4+x^4-1$ v\u1edbi $m$ l\u00e0 h\u1eb1ng s\u1ed1 c\u00f3 b\u1eadc l\u00e0 $4$ <br\/> - \u0110a th\u1ee9c $13m^3n^4+mn$ c\u00f3 b\u1eadc l\u00e0 $7$<\/span> "}]}],"id_ques":1186},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":" <span class='basic_left'> T\u00ecm $x,$ bi\u1ebft $\\left( 0,4x-2 \\right)-\\left( 1,5x+1 \\right)-\\left( -4x-0,8 \\right)=3,6$ <br\/> <b> \u0110\u00e1p \u00e1n:<\/b> $x=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$ <\/span> ","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & \\left( 0,4x-2 \\right)-\\left( 1,5x+1 \\right)-\\left( -4x-0,8 \\right)=3,6 \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,0,4x-2-1,5x-1+4x+0,8=3,6 \\\\ & \\,\\,\\,\\left( 0,4x-1,5x+4x \\right)+\\left( -2-1+0,8 \\right)=3,6 \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,2,9x-2,2=3,6 \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,2,9x=3,6+2,2 \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,x=2 \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $2$.<\/span> <\/span>"}]}],"id_ques":1187},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 \u0111\u00fang nh\u1ea5t v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["3"],["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","input_hint":["frac"],"ques":"T\u00ecm $x,$ bi\u1ebft $2x-10-\\left[ 3x-14-\\left( 4-5x \\right)-2x \\right]=2$ <br\/> <b> \u0110\u00e1p \u00e1n:<\/b> $x=$ <div class=\"frac123\"><div class=\"ts\">_input_<\/div><div class=\"ms\">_input_<\/div><\/div>","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} 2x-10-\\left[ 3x-14-\\left( 4-5x \\right)-2x \\right]&=2 \\\\ 2x-10-\\left[ 3x-14-4+5x-2x \\right] &=2 \\\\ 2x-10-\\left[ 6x-18 \\right] &=2 \\\\ 2x-10-6x+18 &=2 \\\\ \\left( 2x-6x \\right)+\\left( -10+18 \\right)&=2 \\\\ -4x+8 &=2 \\\\ -4x& =2-8 \\\\ -4x&=-6 \\\\ x &=\\dfrac{3}{2} \\\\ \\end{align}$<\/span>"}]}],"id_ques":1188},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" <span class='basic_left'> Cho c\u00e1c \u0111a th\u1ee9c $A=4x^2-5x+y+3y^2; B=3x^2-6y+y^2; C=-x^2+3x+2y^2$ <br\/> <b> C\u00e2u 1:<\/b> T\u00ednh t\u1ed5ng $A+B+C$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0: <\/span>","select":["A. $6{{x}^{2}}-8x+7y+6{{y}^{2}}$","B. $6{{x}^{2}}+2x+5y+6{{y}^{2}}$","C. $6{{x}^{2}}-2x-5y+6{{y}^{2}}$","D. $6{{x}^{2}}-2x-5y$"],"hint":"","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & A+B+C=\\left( 4{{x}^{2}}-5x+y+3{{y}^{2}} \\right)+\\left( 3{{x}^{2}}-6y+{{y}^{2}} \\right)+\\left( -{{x}^{2}}+3x+2{{y}^{2}} \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=4{{x}^{2}}-5x+y+3{{y}^{2}}+3{{x}^{2}}-6y+{{y}^{2}}-{{x}^{2}}+3x+2{{y}^{2}} \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=\\left( 4{{x}^{2}}+3{{x}^{2}}-{{x}^{2}} \\right)+\\left( -5x+3x \\right)+\\left( y-6y \\right)+\\left( 3{{y}^{2}}+{{y}^{2}}+2{{y}^{2}} \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=6{{x}^{2}}-2x-5y+6{{y}^{2}} \\\\ \\end{align}$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C.<\/span><\/span>","column":2}]}],"id_ques":1189},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'> Cho c\u00e1c \u0111a th\u1ee9c $A=4x^2-5x+y+3y^2; B=3x^2-6y+y^2; C=-x^2+3x+2y^2$ <br\/> <b> C\u00e2u 2:<\/b> T\u00ednh hi\u1ec7u $A-B-C$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0: <\/span>","select":["A. $2{{x}^{2}}-8x+7y+2y^2$","B. $-8x+7y+6{{y}^{2}}$","C. $2{{x}^{2}}-2x+5y$","D. $2{{x}^{2}}-8x+7y$"],"hint":"","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align}& A-B-C=\\left( 4{{x}^{2}}-5x+y+3{{y}^{2}} \\right)-\\left( 3{{x}^{2}}-6y+{{y}^{2}} \\right)-\\left( -{{x}^{2}}+3x+2{{y}^{2}} \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=4{{x}^{2}}-5x+y+3{{y}^{2}}-3{{x}^{2}}+6y-{{y}^{2}}+{{x}^{2}}-3x-2{{y}^{2}} \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=\\left( 4{{x}^{2}}-3{{x}^{2}}+{{x}^{2}} \\right)+\\left( -5x-3x \\right)+\\left( y+6y \\right)+\\left( 3{{y}^{2}}-{{y}^{2}}-2{{y}^{2}} \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=2{{x}^{2}}-8x+7y \\\\ \\end{align}$ <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D.<\/span><\/span>","column":2}]}],"id_ques":1190}],"lesson":{"save":0,"level":2}}