Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 7Toán lớp 7 - Sách kết nối tri thứcBài 28: Phép chia đa thức một biếnBài tập nâng cao
{"common":{"save":0,"post_id":"5817","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"8585","post_id":"5817","mon_id":"1158532","chapter_id":"1158660","question":"<p>Khi <span style=\"color:#2980b9;\">chia \u0111a th\u1ee9c A cho \u0111a th\u1ee9c B<\/span> trong tr\u01b0\u1eddng h\u1ee3p chia c&oacute; d\u01b0, \u0111\u01b0\u1ee3c <span style=\"color:#2980b9;\">th\u01b0\u01a1ng l&agrave; \u0111a th\u1ee9c Q&nbsp;v&agrave; d\u01b0 l&agrave; \u0111a th\u1ee9c R<\/span> th&igrave; ta c&oacute; \u0111\u1eb3ng th\u1ee9c n&agrave;o sau \u0111&acirc;y?<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$A=B.R+Q$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$A=B+Q.R$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$A=B.Q+R$<\/span>","<strong>D. <\/strong><span class=\"math-tex\">$B=A.Q+R$<\/span>"],"correct":"3","level":"3","hint":"","answer":"<p>Khi <span style=\"color:#2980b9;\">chia \u0111a th\u1ee9c A cho \u0111a th\u1ee9c B<\/span> trong tr\u01b0\u1eddng h\u1ee3p chia c&oacute; d\u01b0, \u0111\u01b0\u1ee3c <span style=\"color:#2980b9;\">th\u01b0\u01a1ng l&agrave; \u0111a th\u1ee9c Q&nbsp;v&agrave; d\u01b0 l&agrave; \u0111a th\u1ee9c R<\/span> th&igrave; ta c&oacute; \u0111\u1eb3ng th\u1ee9c<\/p><p><span style=\"color:#16a085;\"><strong>C.<\/strong>&nbsp;<span class=\"math-tex\">$A=B.Q+R$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"1","date":"2022-06-02 02:59:10","option_type":"math","len":0},{"id":"8587","post_id":"5817","mon_id":"1158532","chapter_id":"1158660","question":"<p>Th\u1ef1c hi\u1ec7n ph&eacute;p chia \u0111a th\u1ee9c&nbsp;<span class=\"math-tex\">$2x^3-3x^2+4$<\/span>&nbsp;cho \u0111a th\u1ee9c&nbsp;<span class=\"math-tex\">$-x^2$<\/span>&nbsp;\u0111\u01b0\u1ee3c th\u01b0\u01a1ng l&agrave;<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$2x+3$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$-2x-3$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$2x-3$<\/span>","<strong>D. <\/strong><span class=\"math-tex\">$-2x+3$<\/span>"],"correct":"4","level":"3","hint":"","answer":"<p>Ta c&oacute;:<\/p><p><span class=\"svgedit\"><svg height=\"226\" width=\"303\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"228\" id=\"canvas_background\" width=\"305\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"226\" id=\"svg_1\" width=\"303\" x=\"-0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAS8AAADiCAYAAAAf30EGAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACQcSURBVHhe7Z15vNVz\/sfv\/MPjMeMxgzHEQw2GydBmKaFGqCQmSwmViESEiklEZCuKqWRfWuyUJUvZtWuZIrsWtA3ZyqCs79\/v+fb95tw7bffec07nvs\/r+Xh8Hu753NNx7z3f7+u83u\/P+\/P+lJgQQlRBJF5CiCqJxEsIUSWReInQfPbZZzZixAi74IILbMKECcmsiIDES4Tm3\/\/+t\/3zn\/+0f\/zjH\/avf\/3L\/vOf\/yTfEVUdiZcIjcQrLhIvERqJV1wkXiI0Eq+4SLxEaCRecZF4idBIvOIi8RKhkXjFReIlQiPxiovES4RG4hUXiZcIjcQrLhIvERqJV1wkXiI0Eq+4SLxEaCRecZF4idBIvOIi8RKhkXjFReIlQiPxiovES4QmkniNHz\/e6tevb3vvvbedeOKJ1rZtW3vyySeT7xYfRSVeH330kR199NG2+eab2x577GG9e\/e2hQsXJt+NwfLly61NmzZWUlLi4+CDD7apU6cm3y0+IokX7+Ozzz7rX3\/55Zd28cUXW\/v27W3JkiU+V2wUlXidd955Nnz4cFuxYoUL2UEHHWTXXHONtwqOws0332wvv\/xy8sisX79+1qdPH1uwYEEyU1xEEa833njDTj75ZOvYsaPNmzfP5+655x479thj3ZEVI0UlXnfddZfdfvvttmzZMhewZs2a2bnnnmuLFi1KnlG1wXW1bt3ajjrqKJszZ47P3X333dahQ4dSglZMRHVecNNNN9lJJ51UtB9MRZvzeuutt1y8cCorV65MZqs+XNyTJ0+2b775xh\/feOONdsYZZ9iMGTP8cbERNWH\/3nvvWffu3T1yKFYKVrzmz59vDz30kA0ZMsTGjRvnTikbTJo0yROe5IP69u1rH3\/8cfKdTQPi0q1bNxs1alTWb6wvvvjCOnXqZFdccYW7skKA9xI3+MEHHyQzuSWqeN1www3WqFEje\/rpp+3bb79NZouLghSvd955x3M1vEHDhg3zsOfII4+0F154wVavXp08q3JwDBYrNrz53333XTKbP7iRqlevbjvvvLP16tXLx+GHH24DBgywxYsXJ8+qHIQVxx13nL300kvJzKaFxHK7du2sS5cuEq9KwPvZtWtXe\/DBB+21117zD+RipODEa+TIkXbCCSf4m5LCJ8tZZ53ly8SvvvpqMlt+SNL\/97\/\/TR6ZuxJubpKh+eSrr76yY445xp3fJ598ksyaXXTRRbbVVlvZHXfcYd9\/\/30yWzEQrp122snzfBWF0POZZ56x119\/PZmpHLjMHXfcUeJVCch73XfffWt+j2nTpilhXygMHjzY3VbZi2zMmDFWs2ZNXzmraKjHpxWvna4uIhZ\/\/OMfbezYsf44X5BvO+SQQ7xc48UXX0xmf\/kda9eu7StIc+fOTWbLD86VkJu8SGXg33NY6xNPPJHMVJxXXnnFQ2MctMSrYiBcd955py++MIgayNlKvAqEHj162JZbbulLwpk1WNOnT7e99trL6tata7NmzUpmNx4uWlYWn3\/++TWuhv8H7quyN3lFwOrjajKdF8K89dZb2+WXX26ffvppMls++JvxuuSW0oucwQprecmWeH3++ed+k+EGWQ2VeP0K7xflO+ecc45\/mM6ePdtXinHmm222mZ1yyin+t2JFnOgjrd9LR8OGDSVehQJvHMWjxPWrVq1KZn91XkcccYS9\/fbbyewvDBo0yG8yPpXSi\/Pqq6+23Xff3S655BJbunSpz\/FvecOfeuopdwKEbfkOGdcFyXUuWJxXphtLocRj11139Yv53Xff9TkcI8l43CpCw6opAv373\/++1AWOWFRkOT1b4nXrrbfa\/fff739ridevsCrctGlTz3cCKZPOnTvbdddd5+\/t448\/brVq1bLzzz\/fvy9KU5AJ+7VBInv77bf3mykVIzjssMM8oU\/h3i233GKXXnqpVx0\/8MADHiI2aNCglBjgSBCIQtpWwQ2G42zVqpWNHj3avv766+Q7v8Dv17hxY5syZYpde+21\/vtR5nHllVd60pZVJxY4cDjZJBvihWOmmBLB5T2SeP0KH7Z8yKZlLThkFm0QK1bX+bvhtjLzv+JXqoR4cRM1adLEWrZsaW+++WYya9a8eXO\/sSmrAD7JCC1xYjgZPsHOPPNMzzEVIlyU3FTk3bD\/XMhlb2rEie0+zz33nD8meX7ooYe6i+TGRLDZ48aFn20qK14stPTs2dNdI6TiRe6RxZN8kEvxYuUbkdnYQa6W6zKF65U0RgofXPycI0aMSGbE+qgS4kUYib0um+tCvDLjfcInVrNwV5sScmo\/\/fRT8mjjYBUVB4XDytyLeOGFF5ZyiYgYbpIQI9dUVrzI5RAupiu8qXidffbZWSsH2RC5Ei9yUKQd9t1333INVlzXBT9fixYtbOLEicmMWB8FL17cpIRTM2fOTGbWzWmnneY3\/8Y8d2OhYv3vf\/+7bbPNNhs9cIksYZcXktrUfWWuNlIbxad2Cvkjtv9kfmJXBsI53BEheWaebEMDt0hIw8rm2iDxzM2duZ0lknhlG5woOyHYv5iZFhHrpqDFi+V+PvnTBPX6YJc95QckPDd1p4gNOS8WIt5\/\/\/1SIQSwSkj1\/9\/+9rd1ihOrUqeeemqp8DlXVMZ5sVBCuMvKKflK6s1Y2k\/FK10FzbWIVRXxwm3huvi7pVDSg6gVawX9hihY8WKlhRun7Cc7b2666TgTEsP77LOPbyfKdCqEYJt6C1BZWFTAoXFzZ652sv8Q50ih6qOPPprM\/gpiwgIFyfnMThjcoLnIIVVGvPi9cF2pSDEovt1vv\/0kXv8PSXr+Hgg77yXJ+QMPPNBzmCn83fORHqiqFKR4ETKxqkaYURbyKGmCnjc882tqwCiD+PHHH33u+OOP9xUdKtoLCTbTVqtWzS677LJSdV4kav\/617\/6J3Ca30PEKOvgYufrOnXqlLqgEYKBAwf+j4vLBpXNeZWFXGQqXsUeNpIL5IOKLXCsIpMyIGrgugc+tCkPWldYLgpQvLDI1CqRNyo7yAdRHoCTIsSiQp3CTpwYboa8TZqspzyCG53nFRok53GQmZ0eECeWyGvUqOF5LcolWI3i05hQkTwen9Js+Rk6dKj\/nfg+Sf5crU7lSrxwnNnacrQhClW8+NClZo\/84f777+8LT\/yduWZ32GEH7z2Xj9RAVabgxIt6p2233dYLLbfbbju\/WckBkQviRiac5EYnr8WbzptPt1BuBor9qFBPk8qFKFwpqfuiHxNdFugskd5gaWdM3Ak1UfwtDjjgAK\/KT1cb098xl8vq2RIvRAvBor6OQltuzi222MJFWTkvUVEKOmEfHRL7bNshX8eugbRYsVDItvPaFEi84iLxEuuFmz\/NK1ZFJF5xkXiJ0Ei84iLxEqGReMVF4iVCI\/GKi8RLhEbiFReJlwiNxCsuEi8RGolXXCReIjQSr7hIvERoJF5xkXiJ0Ei84iLxEqGReMVF4iVCI\/GKyzrFi77jmYcHbMygqVplT3oWIptIvOKyTvG69957vWvn2g4RWNegPXFFzgcUIldIvOKisFGERuIVF4mXCI3EKy4SLxEaiVdcJF4iNBKvuEi8RGhS8eKknqOPPtoParnuuus0AgyJlwgN4sXJ3jVr1rQ999zTmjdv7i5Mo+oPiZcIDeLFMWIIl8Qr1igq8Ro7dqxfwBxMK4qDNGxs2bKlXXHFFTZ79mw\/bk2j6o+iES8uXs4MTM8+vPzyy\/24MREbJezjUjTideKJJ\/pR6suXL\/fTqNk9cMcdd\/jXIi4Sr7gUjXhx\/P+8efPshx9+sHfeecdP3x4+fLgfmy\/iIvGKS1Em7Nm3SdjIidAiNhKvuBSkeFGLc+yxx9pRRx3lm71vvvnmrFx0r732mrVr187at29vL7\/8slxXESDxikvBidchhxxip59+us2ZM8fF5sYbb7RddtnF5z744IPkWZWDsBFxJAf2ySefJLMiIhKvuBSUeI0cOdIeffRR++KLL5KZX+jatattv\/32Nm7cOPvxxx+T2fLx+uuve7+xFAoXqbhGJEVcJF5xKSjxOvPMM30bB\/VY33zzTTJrduedd9pOO+3keaqKOKX77rvPdtttN+vfv\/8aAZN4FQcSr7gUlHh169bN\/vCHP9g999xTKh81YcIEq127doVDx88\/\/9wee+wx++ijj\/wx\/23WrJn17NnTFi1a5HMiJhKvuBRczgsnVDZsxDFVq1bN+vbtW8p5LVmyxBo1amQlJSW23377+YWKO9t222197uyzz14jWF26dLEtttjC5xkk7rXaGB+JV1wKTrzWBkJD2PfMM8+s6ZGPcLEKSe0WDB482PewXXLJJT7H17g4\/o0oXiRecSl48SKJz2oj5RMff\/xxMmt+Ib711lvJI\/NVyRo1atitt97qh4dQy3X33XfrYi1yJF5xKWjxolRi7733\/h\/hAvJgmXNcoNRvvfnmm8mMEFVHvCZPnux5WD6oGzRo4C18OnfubDNmzEieUfiwi4WDeNLUDIPHTz\/9dPKM7FKw4kVuq2PHjt50rKxwlWX16tXWtGlTv0iXLl2azApRNcSLThesfPfq1SuZMW8aQLrkgAMOsGeffTaZzS3cOxXNA5PGYQHstNNOS2bM9xGTxqlfv76NHz8+mc0eBSlerDSSs+JiSxP0CBRvctlkPvCpVa9ePQ8xVTUvMqkK4kUp0MCBA5NHv\/Lwww+7c7nqqquSmdwyc+ZMGzJkiP\/Nyssbb7xhJ5xwgpc6cT+mULdJvvqCCy5IZrJHQYoXK4ZPPvlkqY4PCxcutNtvv93\/WxYuyrp16\/qWnxRyXrzGl19+mcyIYqQqiBc\/19Zbb+1h4vz585NZ89ZNDRs29A4o+QgfWem\/5ZZbKiRe3JfUaXbo0KFUjSaGYssttywO8eKNfOihh1yIMscDDzxg999\/v4eQ5ML4ROLTihouLs4mTZrY9OnTk1cxO\/zww7XSKKqEeL3wwgu+j\/eaa66xVatWJbPmO0q4zsmFTZs2LZn9BQTi1Vdf9X+bRiMsYLHqzr+rCJURr7WBoLE7hgLzm266KZnNHgUlXnfddZf\/opkJv8wxbNgwW7lypV122WXen2vu3Lm+cRsRO\/TQQ+2ll17y12nRooWLGSInipuqIF7rYsSIEb4trk2bNvb+++8ns2bXX3+93w8k92vVqmXdu3d3h3PwwQfbueee65FLRQQs2+KFmTjjjDNyIlxQMOL11VdfeezPH35dAzGizgu3hUWljosYm\/nbbrttjfBhXdP6L1HcVFXxoriaG3+fffaxxx9\/PJn9RbhIjKfgyM455xx3bYSZ\/BsWr3Bk5YX7CMGkcUFFScNH7sO99tqr1M+ebQoy5yVEtqiK4kXDTETkoIMO8rrFtBkB8wMGDCglXqRTaKxJVAKs8LHyVxFoXkCDzsz6ycpAJIQbJJHPa2cbiZcITT7Ei0YCJ598spf28N8NDZ43atSoUvmtTLjpW7dubf369fM0ybr47rvvfOsc7uyJJ55IZtfPp59+6lEKqRWiFoSPRQFqyyhpqFOnjteYEY7inJijXIMWUuw5zkzGbwyIK6HvKaeckvV9xBIvEZp8iNeHH35oEydOtKlTp27U4LmZq4qZkCei3ouVddIj6wMxoDvKMcccY++++24yu2FwZmUXxBh0Xxk6dKg98sgja8bo0aNdGCkKr4j4UKPGiV2IY7ZrvSReIjRVKWykjpHFJ3JXKbgz8ldrK1SlfOLII4\/0hH02mDVrlm+z429WHshDI3QU2lKilAmLAKyk0liBkDebSLxEaKqKeJGgx20RgmZC1TvtnDiyjz27uJ\/UkXH+KOEf5REpfE03lbSBQXngb8XKYHnFi8U2wtd0sSyzPlPOS4gKUhXEizwS4Rmiw8964YUX2sUXX+xba0h2s3rHdiHCTRLgxx13nFfDc4guJUKpKFD3RW6Kf1sRKlMqwb7GPn36ePlSJuS8tttuOzvppJOU8xKiPFQF8eIsBVzLugbJboqzn3\/+eU\/2UzaE07n66qvt\/PPP94T7RRdd5LWNbKurKJURL34+fobq1av7FiPcF7Vm7M+kFrMir7khJF4iNFVBvAgZ15ZATwfJeMokgLxYjx49fMUQEA0E7C9\/+YsfolwZslGkyoIEh+j86U9\/crdFoj9XSLxEaKqCeBUK1GKxBW9t+4cLEYmXCI3Ea+OhBmzx4sXJo8JH4iVCI\/GKi8RLhEbiFReJlwiNxCsuEi8RGolXXCReeeLnn3+2n376yTsEsOxNBTQba2lvzRYQ2ldTrEh9DJXUVC2zKXfFihXeDZaGc1RWMzj1m+QqHQRok81yOTflsmXLvCKbvWskXikKZBmevXcc1ssq0oIFC3xfHS2D6BFFz3IGy\/G0QqEYkq4CHGRCa1+KDlmFol0KS+ks1SMIbCWhUJItKuzHo0CS9iwslU+ZMsVbATOoDKe4kiXzV155xZf+2XhMUSPbXqhdYjsMldgUW1IbRBNJDm2ggpxuuFSds7+O9ioMKs5pLzxmzBgv7mRrCi2TaWL54IMPrmlcyWvzWhKvmJTQxIxBCw7aYXBcGE0B6a1F3QhbFqgpoTUHNSCclcgWAlpwsA+KjZwUpbEtgYvjhhtu8J5DjEGDBvleLQ7RoBCPvU0U19F7iAI7enNfeeWVXinMDnqK72g0yOGynBhEhTFVu1QMUwDXu3dvH1Qgs3mVi5L2stS50CaE+hf2eVGoR1M2+hxxCjeVy2xgpasj1cr0POIQWk7gpvUug4MDKKbr1KmTFwWmu\/+pVWHLAycTUXBHE0Sqno8\/\/nhr27atVzvTLI4uAFQ3s0mWPV4M9nS1atXKbxyN\/A\/eK64viVdMSsq+4RoaUQYfZHzoSrxiIvFaz8A14Z5wUbgq3BUuC7eF68KB8emOI8OZ4dDSnk64N1wcbg5nh8vD7eH6cH+4QBwhzhCHiFPEMeIecZG4SVwlNx5OE8eJ+8SF4kZxpjhUnCqOFeeKg8XN4mpxt7hc3C7OFweME8YR445xyjhmnDMOGieNq8Zdc8PjtnHdOHCcOI4cZ45Dx6nT24kOArRRIUQjVCNsI3xLW6kQ1hHiEeoR9hH+EQYSEhLOESISKhIyEjoSRhJOElYSXhJmEnISehKCEo4SlhKiEqoSshK6EsISzhLWEt4S5hLuElYr5xWXkvQiI4eQXmjpRUbOIb3QMi8ycglcaJkXGTmN9EJLLzJyIOmFll5kXEyZFxoXGbkVcizkWsi5kH8hD0NOhtwMORryNeRtyN+QxyGfQ16HHA+5Hi5Kcj\/kgMgHkRciP0SuiJwR+SPySOSTyCuRXyLXRM6J3BM5KHJR5KTIT4kYSLziooS9CI3EKy4SLxEaiVdcJF4iNBKvuEi8RGgkXnGReInQSLziIvESoZF4xUXiJUIj8YqLxEuERuIVF4mXCI3EKy4SryCw84FtQmwzOuKII3zjOrsUih2JV1wkXkFgnyFbsYAtUuzDpCsH+\/uKGYlXXCReAaBHFxvF2aid3pxs3GZjOPtIixmJV1wkXkFgQz2b3VPoQEGXCja5FzMSr7hIvDYB3FD0mqpVq5Y3O6S1C10tsgWhIs0SaWmTHla6qRk1atSaY+nzicQrLhKvPIOoVKtWzfty0d6H\/lhNmzb1TrO09skG9OSiv1ehJOxpk3TwwQd7D7F8I\/GKi8Qrj9DjbP\/99\/cGf\/QQA\/qM0Tp6jz328B5plYVmhDQ6pCFfRUH06NNGr7TKQk81mhTut99+Ei+RVSReeYQOo3vuuacLFR1DU+iAuu222\/rqIA0VKwo5Ljq7pkl6uqjSSLK80IiSsgsaSFYWuq4SIku8RLaReOUZBIyShtR5AS2jq1ev7qJRUUjY04oZx5QO2j7Tzba8ZEu86KhLl15ybxIvkW0kXpsYQjRyXjgmWmCXhb74JSUl\/l++j2M74IAD7Le\/\/a3ntajp4siyFi1a+PMyB6JYkdXGbIgXrbfpbY+A0ate4iWyjcRrE8IZASSyqYhnxbEsHJzBOQHAIRnks6jfwrlxeEadOnX8wItskw3x4sANzjTgTACJl8gFEq9NAAeNsLpI7qtx48a+Olh2pZEDUTiwhJsfCAnJl7FKyQ3I6UCcQsQhJtmmsuLFz0QYy6EpIPESuUDiVQ5IplNDxSnWGzs2VL+F42IrDyEeJymlkCvKfMzRZRy\/hpvJNZURL05noqaL06RSJF4iF0i8ygHnKO67777lGpwuzjFs64ObukaNGr6pmmPd1kZ6BmQ2K+Y7d+5s22yzje22227uAuvVq2cNGjSwRo0a2Q477GC\/+c1vfJTNpfE7rQtEi6PuMhckJF4iF0i88gjnTuKcypZD4FRq1qxpzZo1W6vbIVHP9zhMlnMoc01FnRe5OEJgRILDbQmN+ZlZWEC8WFTgdTmwljM384HEKy4SrzzC6di\/+93vPOnOKmFKKl7c4FSjl4V81z777OP\/TVmyZInnzljVyzYVFS8ODuaQ4nRQY0arHtrz7Ljjjv77p2UcEi9RWSReeYTVQirsOXk8kzRsbNWqlSe7qbqnYJU2N5zyjXtp0qSJC0FKx44dvQA0F2RjtTGToUOHungpbBTZROKVR8j9EDItWrQomTF3IF26dLHmzZuvcV2I3IEHHmiPPfaYh2E8RthYwYM+ffr4pm7KEXJBrsQL5zVv3rxS+bBcI\/GKi8Qrz9x22222yy67ePjYsGFDL39o3759qZVFtvfgtNIEOYKHAPz5z39eM5cr1wXZEi9+5oMOOsgXAQiLt9tuO9t8881dRPKFxCsuEq9NBBuWqT4nGb9q1apktjDItvPalEi84iLxEv8DpR2sjJJvq+pIvOIi8RKhkXjFReIlQiPxiovES4RG4hUXiZcIjcQrLhIvERqJV1wkXiI0Eq+4SLxEaCRecZF4idBIvOIi8RKhkXjFReIlQiPxiovES4RG4hWXKiVe9EenDTI9r8oz6I8lihOJV1yqlHjRG50+723atNnoQa8sOo6K4kTiFReFjSI0Eq+4SLxEaCRecZF4idBIvOIi8RKhkXjFReIlQiPxiovES4RG4hUXiZcIjcQrLhIvERqJV1wkXiI0Eq+4SLxEaCRecZF4idBIvOIi8QrAxIkTrX\/\/\/tajRw+\/Sa+88kr76KOPku8WNxKvuEi8AjB58mSbP3++f\/3OO+9YixYtrF+\/fvb555\/7XDEj8YqLxKuKM2HCBGvXrp2NHTs2mTG79NJLrVOnTjZnzpxkpniReMVF4lXFoVfZAw88UEqounbtan379rWPP\/44mSleJF5xkXjlGfJT9BirVq2aNW3a1KZMmWI\/\/vhj8t3KM2vWLHdiY8aMSWaKG4lXXCReeeT444+33Xff3QYPHmxvvPGGDRo0yFq2bGn33HOPffXVV8mzKs4XX3xhxx13nHXo0MGmTZtm3377bfKd4kXiFReJV5545JFH7LzzzrM77rjDli1b5nOLFy928TrqqKO8XXVlOeuss+z+++\/3r5999ll78803\/etiRuIVF4lXnrjhhhusevXq3poa15Vy4oknWklJyRrRqSi4OMaSJUv88YgRIzwkLXYkXnGReOUR3FemG+LrQw45xHbeeWcbP358Mlt+HnroIbv33nvt5Zdf9vHEE0\/Y8OHD\/bCSYkfiFReJ1ybk0UcftTp16tjpp5++pk4r5fXXX7ebbrrJv3fttdfaBx98YE8\/\/bTtvffeVrt2bRs1apStWLHC67oOO+wwd2+Z47LLLrPPPvssebXiReIVF4nXJoDi0VtvvdVq1qxprVu3LhVGAiuFCBRuCi655BK7\/fbbXezef\/99T\/gfffTR7rKWL1\/uK5gIHSUSjRs3tq222sruvvtu\/7fFjsQrLhKvPIPgHHHEEVa\/fn1r27at3XXXXf9Tj9W+fXu7+eabbdWqVf545MiR1qRJEw87Kavo2LGjbwUi4S\/Wj8QrLhKvjYSLHpdDqLYxA2HhkNz18cILL7iIZbovzpjs2bOnvfTSS\/4Yzj\/\/fBcvhE+UD4lXXCReG8E333zjZQ777rtvuQYriF9\/\/XXyKmvnwgsvtC233NJff22bqT\/88EMvp6B26+23305mxcYi8YqLxCtPvPfeezZ16tT\/SaLfcsstvtrYrFkzmzlzZjL7K6+88oo1bNjQrr76ai9CFeVD4hUXiVceWLRo0ZoVwSFDhpQKJzckXtRr1a1b1x588MFkxryWa+nSpfbdd98lM2JdSLziIvHKE1S\/16tXz\/NcmZQNG6m+HzhwoHeJIOSk5IGwkRXFlKFDh7ojExtG4hUXiVeeoGiUrUFpBTyQnKdIlbKINEFPI0FEjk4RTz75pDuzk046ybf7wLhx4\/x7ma8j1o3EKy4SrzzCxmxCRzpKIFqsNFKbRaFpyquvvmqNGjXy51HLxZ5HulBsttlmPkcZhRL3G4\/EKy4Sr00AZRQk7+fNm2erV69OZkUukHjFReIlQiPxiovES4RG4hUXiZcIjcQrLhIvERqJV1wkXiI0Eq+4SLxEaCRecZF4idBIvOIi8RKhkXjFReIlQiPxiovES4RG4hUXiZcIjcQrLhKvPPLzzz\/bTz\/95H3of\/jhB\/v++++9Jxf7G+lXzwnXdG2lFQ49vzhFe+XKld5W+ssvv\/RmhBzewaCp4aeffuqtqT\/55BPvg8+NSUsden3RdYI9lPQSo9UOHVk5gWjhwoW2YMECP62IvZUc6EGjRAZHpbFJnI3fdLzgaDbaU8+dO9dPM2KT+Jw5c2z27NkuCrNmzfIeZDNmzLDp06f7pnJO6mbfJmdGTp482cekSZO8pc+ECRO8lQ\/trOmi8eKLL3qLoOeff96ee+4575zBEXB0znjmmWf8tKSnnnrKu2vQIogj3R5\/\/HEfjz32mB9IwmElo0eP9v7+Dz\/8sB8DR+8zOm\/QyfbGG2\/0je0Sr3iUcIQWBzwwaHxH6xZOnuFgiDvvvNPbuHByzW233eYn3tCihcMhOK1m2LBhfnHQX4ome5xqwwXCAavXX3+9Dw5CpT\/Vdddd50d4DRgwwPr372\/XXHONdwe96qqrvA3MFVdcYf369bPLL7\/ce1j17dvXLr30Uj85p0+fPnbxxRfbRRddZL179\/ZBH6xevXr5p+oFF1zgfd7p\/c7BFN27d\/f+WOeee66dc8451q1bNzv77LO9pxZdHM4880w744wz\/KLmaLHOnTv7OO200+zUU0+1Tp062SmnnGInn3yyH3ZBSxraMNPRoV27dn5Q7AknnOBdIjhEgyP2OUyWXvTHHnusHXPMMd4RgsFp2K1atfKbRyP\/gyaPzZs3968lXrEoKftma2hEGjRy5LQmvpZ4xULitYGBa8I94aJwVLgrXBZuC9eF+8KF4chwZjg0nBqODfeGi8PN4epwd7g9XB\/uDxeIG8QZ4hBxijhGnCMuEjeJq8Rd4jJxm7hPXChuFFeKO8Wp4lhxrjhYnCyuFneLy8Xt4npxwDhhHDHumJsZt4xzxkHjpHHUOGtcNm4b1437xoXjyHHmOHScOq6dsyXvu+8+D9EI1QjZCN8I4wjnCOsI7wjzCPsI\/wgDCQcJCwkRCRUJGQkdCSEJJwkrCS8JMwk3CT0JQQlHCUsJTwlTCVkJXQlhCWUJaQlvCXMJd3lt5bxiUpJeaJkXGTkFLrTMi4wcRHqhpRcZ+Yr0QksvMnIb6YWWeZGRE+FCy7zIyJ9kXmjkWMi1kHMh90IOhpwMuRlyNORqyNmQvyGPQz6HvA75HXI9XJjkfsgBkQsiL0R+iFwROSNyR+SQyCeRVyK\/RJ6JfBO5J3JQ5KLISZGbElUfJezjooS9CI3EKy4SLxEaiVdcJF4iNBKvuEi8RGgkXnGReInQSLziIvESoZF4xUXiJUIj8YqLxEuERuIVF4mXCI3EKy4SLxEaiVdcJF4iNBKvuEi8RGgkXnGReIm8woZ6eqvRoSIfSLziIvESeYXWOw0aNPBWOvlA4hUXiZfIG7RSos9Z48aNvV1zPpB4xUXiJfICPdfoHUdzxiZNmngPuXwg8YqLxEvkBbq1IliEjRIvkQ0kXiLn0HGXLr10uZV4iWwh8RI5hfbc9MunhThIvES2kHiJnIJY4bpSJF4iW0i8RM7g9B9OHuIglRSJl8gWEi+REzjBiePdOD4tE4mXyBYSL5ETOP9x5513ti222MKqVatmu+66q9WtW9cOPPBAF6905FrEJF5xkXiJvCLnJbKFxEvkFYmXyBYSL5EXOPmco\/5btmzpoSRiMmzYMHvvvfeSZ+QGiVdcJF4iL0yaNMnGjBnjK5DpQExefPHF5Bm5QeIVF4mXCI3EKy4SLxEaiVdcJF4iNBKvuEi8RGgkXnGReInQSLziIvESoZF4xUXiJUIj8YqLxEuERuIVFbP\/AzSeciUS2lBvAAAAAElFTkSuQmCC\" y=\"2\"><\/image> <\/g> <\/svg><\/span><\/p><p>Chia \u0111a th\u1ee9c&nbsp;<span class=\"math-tex\">$2x^3-3x^2+4$<\/span>&nbsp;cho \u0111a th\u1ee9c&nbsp;<span class=\"math-tex\">$-x^2$<\/span>&nbsp;<span style=\"color:#16a085;\">\u0111\u01b0\u1ee3c th\u01b0\u01a1ng l&agrave;&nbsp;<span class=\"math-tex\">$-2x+3$<\/span><\/span>&nbsp;v&agrave; d\u01b0 l&agrave; 4.<\/p><p>\u0110&aacute;p &aacute;n \u0111&uacute;ng l&agrave;&nbsp;<span style=\"color:#16a085;\"><strong>D.&nbsp;<\/strong><span class=\"math-tex\">$-2x+3$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"1","date":"2022-06-02 03:20:28","option_type":"math","len":0},{"id":"8589","post_id":"5817","mon_id":"1158532","chapter_id":"1158660","question":"<p>T&igrave;m th\u01b0\u01a1ng trong ph&eacute;p chia&nbsp;<span class=\"math-tex\">$(x^4-x-8):(x^2-1)$<\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$x^2-1$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$x^2+1$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$-x-7$<\/span>","<strong>D. <\/strong><span class=\"math-tex\">$-x^2+1$<\/span>"],"correct":"2","level":"3","hint":"","answer":"<p>Ta c&oacute;:<\/p><p><span class=\"svgedit\"><svg height=\"200\" width=\"290\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"202\" id=\"canvas_background\" width=\"292\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"198\" id=\"svg_1\" width=\"286\" x=\"0\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAR4AAADGCAYAAAAE0+8gAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACHRSURBVHhe7Z0JkFTV9f+t1K+SlFaZlFk1MSCGyGbCZmSTRWRJMCCy77sIbggEEBBEEJDFAAoICMgmouyrIMgua2QHQUBQICAoBESQxfuvz\/n3I+M44uuZOzOvZ76fqlv0e93M9HTf933nnHvOuTc4IUQo\/v3vf7t\/\/vOf7h\/\/+If717\/+5f7zn\/\/EnhHxIuERIiQSHn9IeIQIiYTHHxIeIUIi4fGHhEeIkEh4\/CHhESIkEh5\/SHiECImExx8SHiFCIuHxh4RHiJBIePwh4REiJBIef0h4hAiJhMcfEh4hQiLh8YeER4iQSHj8IeERIiQSHn9IeIQIiYTHHwkvPNOnT3d9+vRxH3\/8ceyMEOmDhMcfCS08x44dc61bt3bt2rWT8Ih0R8Ljj4QWni5durjy5ctLeESGECXh2b9\/v2vatKkrUKCAGzp0qDty5EjsmcQgYYVnzpw5bunSpa5Zs2YSHpEhREV4du7c6erUqWM33pUrV7rKlSu7Rx991B09ejT2iuiTkMJz6tQpE5vt27e7p556SsIjrsvhw4fdRx995M6fPx87kzqiIjwzZsxwo0ePvvb3rFmzxkRo7ty5dpwIJKTwPPfcc27Hjh3um2++kfCI76VDhw7uhhtucLfddpv71a9+ZY8rVqzo1q5dG3tFfERFePr27WtWzoYNG+wY4XnggQdc586d7TgRSDjhWbx4sQnPgQMH7FjCI1ICC6Bo0aJu3rx5sTPOnTt3zrVt29b17NkzVdZPVIPLhB0ef\/xxt2zZstiZ6JNwwlO6dGl344032l0sf\/78rlSpUq5s2bI2tmzZEnuVyO60b9\/eDRo0KHb0P5YsWeI6duzo3n333diZ8ERReA4dOmRiys337NmzsbOZw7p16yzmymfzQyRscDlAFo9ICYTnySeftJSLpOBmkfe1YsWK2JnwRFF4+vXr56pVq2bxzszg\/ffft8+ZFbZixYqZQZBwwsMXu379epssly9ftnP4r5iQnLty5YqdA6yb2bNnu\/r165vwzJo1y50+fTr2rMhITp48ad\/T5s2br911L1y4YHG45cuXZ8pqy9SpU13BggVd3bp13bZt22JnnVk7iNJnn30WOxOeqAnPuHHjXJs2bTJNdIDvdu\/evXZtvvLKK4knPCVKlHBVq1Y1ASlXrpx7\/fXX3V\/+8hc7x1IhrtQHH3wQe7WzCT1gwACL97z44otuypQpdgGIjGXkyJHujjvusO+B74wLe8iQIZZfhdnN99etW7cMFx\/mSpUqVSygXKRIEbdw4UJbCeK9HT9+PPaq+IiS8CD0CA\/5PEDsc+bMmfY4s0g44alXr56Za59++qkdjx071t177712t+KDve+++1yFChXchx9+aM+LaICY1KhRw40ZMyZ2xrlWrVpZHG7VqlUW2EWARo0a5S5evBh7RcaxevVqc0NuuukmE6CaNWt+y\/qJl6gID3k8vI8gtslgtW78+PGxV2QOCSc8BIjxFQN69eplH2RgQiI4rEiIaPHss8+6F1544Voc5cSJE6527dq2jB1YOJjhyeMsGcXWrVttLlFWU6hQIRMfbmJvvfVWqtzy9BSegwcPWpyE98gghDB\/\/nzXoEEDO77lllvss8aFZTk9Z86c9ppOnTq5rl27uh49eqQqYO6ThBMeAsNJlzebNGniWrZsaV+G8MOCBQvcI4884h566CEb1atXT3EEzzNwm4jTfB\/cEJKKCu4NlumwYcPcpUuXYmevD2KFq\/xD74sRvAYrC9fpelA8\/MQTT5hLDhs3brQL9eabb3b58uVLlVuSnsLz\/PPPm5DDvn37ronlhAkTbCWOUAR\/z3\/\/+197TRRJyBhPAP43+RcvvfSSgsUeIdsboUBIwg6slXiWaImzcVGSVxIP3GAQrZTeQ0qD114vTrNr1y4LunLRJmfixInurrvuct27d4\/bik4v4UFYBg8ebH8b8G+tWrVcw4YN7bPhxowbFfU8nYQWHszLP\/7xjxY8E4kFFzMXC6tbAbjQGR2bmzx5sll37733XuzM\/+BmhjXBggWlFPGQXsJDYDipBUf91f33328WzpkzZ2Jn0wYxNq4pguthx8svvxxXlnfCCQ9faPABk1VKzAf\/PIA\/aM+ePe7q1auxMyIKIChkkONW8S+BXDJogwualH5WHkmRyEiI4TRv3twtWrQodubbsAI3fPjw2FF40tPVSsq0adPsGuDi9wXfEd8HYhJ2jBgx4lux1x8ioYRn0qRJLkeOHPam8cdZ3cqVK9e1ybp7925b5Uq0sv\/sAN9VyZIlzQXgO8qdO7dr1KiRfWeA1dG\/f3\/35Zdf2nFGQY4XwsPvxsVMComDLVq0sIs7XjJKeBAcVgOx\/hOJhBKe1157zawc7kJMVPzb4sWL2xIhsR5yegLfV0QHYj8IDwFb\/iUmR0yFi5KVI24e5M9k1koLd\/dKlSpZLhj5RQjOgw8+aCtEWGGpISOEh8RGXCx+B78PiGcRN4vH+sgMEs7VevPNN13v3r3dJ598YsckApKYRmayLx9X+Ad3mMmG20LbCSBPBiuWHJrMrh3C0sKy4eaVJ08e17hx41RXpkN6CM9XX31lBa3kPhGTCuI7lAIFK1jEgBD15NZb1Eg44REiEUgP4dm0aZO5p\/w8VhGJT7GsjhdA6AFLkrgZ6QBRhKTfICv873\/\/u1mUefPmtUTSgQMH2t+UEhIeIUKSXq4WMTIu2jJlylxLRWBlEDc26rEeXFrCJCkNxEjCI0QayYgYT3ZBwiNESCQ8\/pDwCBESCY8\/JDxChETC4w8JjxAhkfD4Q8IjREgkPP6Q8AgREgmPPyQ8QoREwuMPCY8QIZHw+CNF4aF+RC0ohPg2Eh5\/pCg8NEm6\/fbb3S9\/+cvQg\/aVn3\/+eewnCJH1kPD4I0Xh+frrr21fciHE\/5Dw+EMxHiFCIuHxh4RHiJBIePwh4REiJIHw0GGRbXbom0M3Q434h4RHiJAgPG3btrXtcfLnz2+bTmL9aMQ\/JDxChAThoSUpoiPhSduQ8AgRksDVolsgO3+ysSCtPzXiHxIeIUKi4LI\/JDxChETC4w8JjxAhkfD4I0sIDxu20dWeze2zMmxzctNNN9kWIgy2mc3oXTqzMxIefyS88LDp2QsvvOCeeeaZLC08J06csF05g00Ply5d6urVq5dpO3VmRyQ8\/kh44WndurVt+ZrVLR52aWSPpUBo2OqWLXkHDx58bcdJkb5IePyR0MLD1sds+8pFmdWFh32z2WUysHgOHDjgKlSoYHvPU9Qr0p8oCk+\/fv3M7Wbr4ESygBNWeLjYxo8f7w4dOpRtYjxJefvtt619ybp162JnRHoTNeFBdGrUqOF27dple9c\/9thj7m9\/+5tbsmRJ7BXRJWGFp2PHjm779u32OLsJD1ZP5cqVLa4lcz\/jiJrwzJs3z\/ZWP3z4sB3zL2EH5sXly5ftXFRJSOEhsLpmzRp37tw5O85uwlO7dm3Xrl27a26XyBiiKDzNmjVzM2bMsOODBw+6Fi1auEceeSTyTfkSUnhYxapSpYr761\/\/6u688073i1\/8wt16662Wyo7ZmZWZPn26mzJlijt27FjsjMgooh5c3rRpk+vUqZObPHly7Ex0SejgckB2sXjeeOMNN3XqVLd8+fJrg2V2kTFEWXiuXLniJkyYYK7W1q1bY2czh40bN5ph0KZNm9iZ7xI54enevbv1cO7atas7fvy4LRs3atTI5cyZ0w0fPtydPn069sr\/D0l0hQsXdgULFrSWBaz2JBKszDFZCBTOmjXLhGT37t02sen3snr1amu+P3HiRGvHECQPMnLlyuUWL14c+0kivYmy8Cxbtsz179\/f3mNqIWa6du3a2FF8IDYNGzZ0pUqVcvfee6\/76U9\/mjjCU6JECYvMHzlyxPXo0cNyVPBhidIPHTrUFSpUyK1fvz726sRnxIgRJqjjxo1ze\/bssRUJhJRl8jFjxtjfXrZs2VRPBuGXqAoP7wsXnJgfAWYs4f3798eeDQ8rpaSmpBXmbsIIDzkqrFQFFgsX5e9\/\/3v7lwQ5gmZNmjRJ1QcaVapXr+5mzpwZO3KuS5curlixYpabtHPnTletWjVbtdDuHdEgisLDMjqiQ4sOwM3C+jl79qwdx8OcOXNMNNJKQgkPTZU2bNgQO3LmahE0xtVIRC5cuHDdJU2sGCw6LJ0AhBVzFVdLRI+MFB7mANZ9UIt38eJFSw6cP3++ud6A6OCOYxUH4+6777ZeQakhW1o8yalbt64rXbq03fkzGyZBpUqVvrOX2PUGq20s+4fdJoh4Frk5rNidOnUqdlZEiYwSni1btlguToECBVy5cuXMoqHzIb2eCUEQ6+SGRUywVq1aNho0aGAJpby\/d955J\/aT4oPVsIEDB8aOUk\/CCs8XX3xhS+UEi4n3JCI\/ZPEkhzgWMa7Zs2fHzoiokRHC8+qrr1o8Ewgx8Psoh2DxYeXKla5mzZrWaD5InvXJ2LFjU20tJSVhhQc3JG\/evPYHBEmCLJWTo3P+\/Hk7zmpwp2FCJQ0k44qpJCI6pLfw4DoRZwms\/DNnzljcE0uHuA3wHBZRekA8FUsrrSSM8OC\/8maDTFyUN1++fBadJz8B2CJ537599jgrwCQm74JsU4LHmMtJ4ztMamI+CxcutGOR+aS38JAqgrUfwHwnlSSox0orXGdYSggMXR3odpAjRw7r8fSTn\/zE\/ehHP3J58uSxhZwOHTq4nj17ul69elmOHDdBrPIwCx0JIzyYkblz53bTpk0z1ceHvf\/++69F6gmyITxZKUGQL6VkyZJW+oHQMsGYDEHyFyY1r0GYRDTIqBhPwKpVq+w6aN++vbnuvti7d6+tIgcDKwtR6d27t8WSkj4XDK7BIKj9QySM8GBGBslxBFhReirPUdo\/\/OEP7pZbbslS+TtA4iB3F\/5mzOkPP\/zQ1a9f3\/34xz+2c8WLF5ebFTEyWni4EZcpU8ZyuwJOnjyZbtnqBLGxhtIKP4f8tMgLjxCJQHoLDxZFUquCIDPxnaAIFLA+KBFKD8gpGzlyZOwo9bBA8qc\/\/UnCI4QP0lt4uOgRGoqAifWRUkLcL0iqJc4zadIkex\/pAcvzo0aNih2lHgmPEB5JT+EhsNy3b19LCGTZnMb+BJUJNxCKGD16tGW6p2dtHoJBfCY1kPaCS0iZD++T5F\/CJ5RAkXtE4mNSJDxChCS9LZ6jR4+6YcOGWa1eEGthFYoVTwov03uFMy0lEwhP0q4JyQcB7aRIeIQISXoLT2Yzd+5cW2HNCCQ8QoQkqwsPe5qTzpIRSHiECElWF56MRMIjREgkPP6Q8AgREgmPPyQ8QoREwuMPCY8QIZHw+EPCk4DQXOzq1atWuU\/Pn0uXLtnOqlQfU0xI2j3tQ+heR1sR2mDS24U2C0EFNFXGDJqOUf9DU31qgGhIxgXF9jnklZCfwWpH0M+XnVsp1qV4lYxaWtGyEkJ9HbkaDOrOaFRF9i3ZtrRy2LFjh+WkbNu2zQphae1AETAX8+bNm21rFhqG04WSujzq1Ni2mTYhFNIy6EZJ4SQJditWrLD8ENrEkmBH0zU69FHsSJIdzbAWLVpkuS8LFiywBDb2oWLJmHwVkuUYZOtSKkBZAjVGdOGjLIE6Kerp2NWD3T342fwsCY8fUi08TBi+JLqWkcbNLgi0eWBQS0KRJ03MyQtgf28Sk8i+JCWbZkekh5MkRSU67RbJeiR5ivqUIUOG2BdLv2HK8RmDBg2ynjUDBgywSnU66lPVTrYnXfv69Olj1bU0MgpK+SnrJ2uSbFB2r+jWrZu1VKXnCP2NGZ07d7a9iJhQFGvSDoBq4Keffto2zaNa98knn7SdIMgmJROTBmWkg9PxjYpyNlBr1aqVa9mypQ3aCjRv3tyyOJs2bWrtLRo3bmwV6KTA0y2OglD2uiYtvk6dOrZJH4liVKWTsfrwww9bBig9ehj0X65atapNeo2MH3xXzC8Jjx9SJTzcJbiAkn85GhpZdXAT4oYp4fGDhCeDBtYKVgvWC9YMVg3WDVYO1g6WD3dVLCEsIj5frCSsJawmrCesKCwqrCusLKwtrC6sLywxLDIsMyw0LDWsNqw3rDisOS4aLDwsPaw+rD+sQCxCLEMsRCxFLEYsR6xIrEmsSqxLrEwsTixPLFAsUaxSLFQsVSxWLFcsWKxZrFouVqxcrF0sXyxgLGEsYixjLGQsZixniiODTQtxdXB5sKpxgXCFmHe4R7hKuEy4TrhRuEC4VbhXuFm4W7heuGC4YrhkuGa4abhruG24cLhyuHW4d7h5uHu4fbiAuIK4hLiGuIi4oorx+CNNrhYTAj84mCTBBMFnDiZJMEHwsYNJknSC4DszSZJOEHz4YJIEEwSfP5gkwQThPSSdJEwQYgnEFIgtEGMg3kDcgRgEsQhiEsQniFMQryBuQfyCOAYxDWIbTChiHcQ8iH8QByEeQmyEGAnxEuImxE+IoxBPIbZCjIVYCzEXYi\/EYMI2exfRR8LjDwWXhQiJhMcfEh4hQiLh8YeER4iQSHj8IeFJQAi45s+f33oz05OaQG7S3QlE+iDh8YeEJwFhdYngOxCYZycCVol87kQgvouExx8SngSD7GOWv1lNDDbmZ+mbpfOk+7AL\/0h4\/CHhSTBIFSBnh7SEYItksrLJByLVQKQfEh5\/SHiyAJRokMCHNSS+Czla5G+ldftrCY8\/JDwJDoJDhrOsne9CVjTbrPzmN7+xXQ8IxlesWPFb+9PHg4THHxKeBIYscXYcJVNcfBvKMUqUKPGd5uWUjlA2QgZ6vEh4\/CHhSVBoSUH9FrEeoEQkvba2TURY+WOlLznUZCE81HvFi4THHxKeBIRYDi4WF1EABZqpdSGyIhTH4oIm38+Jz4gi2UCw40HC4w8JT4TAiiEnhyruICeHIloq0MnXofgUy4aL6tZbb7WYRTCoZs+s5XSKZak+p1g4SGSkGRkFuxT9Unib0VCEjBtKNwAKiQMoWMYSosFZvEh4\/CHhiQi0yvj5z39uVfy0zKAVBT1gaIlBKwpaZyBCCA\/N02hfwSBrmYuJ6v7McLXoPlC4cGFXtGhRV7lyZXvviNCDDz5o+Ua0\/qC1B10CMhJEgd+LKOfKlcssQlp48NnReSA1SHj8IeGJAFgFWDoICGA5lClTxnrl0LKDfjslS5a8lq0cFWgjgtAk3faWXkG33XablXXw9xQpUsQ692XGUj+9dOhxdOONN6Z5RQskPP6Q8EQAGndhzQTQWIsaLC5ewAWjtxAuTZTAoqFRWOBKYXFhmdF4DFECYizB44wGK4vkSlrOFipUyMTnz3\/+szUi06pW5iLhiQDchZPGHJjcuC7EdXyBK0bGc9DDmX7OKY3geQbdDJPGR5KDoCS9gHlthQoVzK0hHhUGLCFcoB96X4yk7y2wDr8PVq14HZ0NgUA83R1vvvlmly9fvlSlIEh4\/CHhiRh0MOSCIeZDcNYXXOB0YORnhh3Ek+JxkWhdykUZ71I1HSERrZTeQ0oDAbjeRU9XSNxTXFW6RSaFTQnuuusus4TitSAlPP6Q8EQMLnbiOwSO6fObSHAxs7pGW9oA2tZmdGA5WDKnxW5yWHWjXzUrhbS9jQcJjz8kPBGAu3ggMqwSEYcg45YezkCwmX7TWENRAkEh\/oRbxb80s6fhfHBBU8bBihzvPSPh97FlESuEKRE0rE9uDf0QEh5\/SHgyGWINBQoUsNYWNJZn94ZKlSrZSlcAuzlgOUQNguKstrGbA0KZO3duK0kIgslYFmQQ4\/pkJLiUVOuz00ZycWBjAHbYYDOCeJHw+EPCk8nQVyfYVoaYBNYPwVYmNlXnOXLksLhE1KwdegFxEZIrgwDxninKrFKliitfvrwVZ7KUnnS1LiNBfFhhu+eee2zLHHYuIbeIXCm23EkNEh5\/SHgiAFm2WAZcpEFzL7bfYfsftuUJu0KU0WDZIDYk5XGhA7kznMNii9eV8Q1ijUVZrlw5lydPHiuhUB5PNJDwCBESCY8\/JDxChETC4w8JjxAhkfD4Q8IjREgkPP6Q8AgREgmPPyQ8QoREwuMPCY8QIZHw+EPCI0RIJDz+kPAIERIJjz8kPEKERMLjDwmPECGR8PhDwiNESCQ8\/pDwCBESCY8\/JDxChETC4w8JjxAhkfD4Q8IjREgkPP6Q8AgREgmPPyQ8QoREwuOPbCs87KnELglbt26Na2R2O0+ReUh4\/JFthYetV2hSXrNmzdCDXRPY90pkTyQ8\/pCrJURIJDz+kPAIERIJjz8kPEKERMLjDwmPECGR8PhDwiNESCQ8\/pDwJDB16tRxN9xwg\/vtb3\/revXq5Y4cORJ7RqQHEh5\/SHgSlKlTp7pRo0a5Tz75xG3evNndd999rnPnzu7YsWOxVwjfSHj8IeFJUJ566in3wgsvXBOaoUOHurZt27oPPvjAjoV\/JDz+kPAkKH379nWTJ092Z86cseMxY8a4Jk2auPfff9+OhX8kPP6Q8GQRnnjiCff888\/L1UrG2bNn3Zdffhk7ShsSHn9IeLIACxYscLVr13ZLliyJnRGwatUqV65cOdemTRuLhaUVCY8\/JDwJzrp161yJEiUs2Cyc++ijj1zXrl1ds2bN3LPPPuuKFy8u4YkgEp4E5osvvnCvvPKK27Rpkx2\/++67bt++ffY4u\/LZZ5\/Z5wKLFy+W8EQUCU+C8tVXX7kJEya4bdu2xc449+abb37rOLsj4YkuEp6I8fHHH7vVq1dbryDEBQ4fPmyrVevXr792Nx84cKD73e9+ZwmEwXjooYckPEmQ8EQXCU+EoN9P7ty5LUj84osvum7durkOHTq48uXLu2eeecYVLVrUXCsEaPr06fa4T58+7rnnnrs2duzYEftpQsITXSQ8EWHWrFmuWLFibu7cuXa8c+dOV6ZMGVeoUCGzgHr27OkKFy7s3nnnHXte\/DASnugi4YkI3bt3dytWrIgdObd06VJXpEgR99Zbb9kxbhdumFqvhkfCE10kPBFh7dq17tNPP40dOTdu3DhXqVIlE6CsCpnX9erVs9hU9erVv3fwfDAGDx4cWkQkPNFFwhNRnn76ade0adMsHbOhmn779u32N4YdZGZfvnw59hOuj4Qnukh4IggXScWKFS1YTF5KAI99pf9nByQ80UXCExG4mwciQwlEwYIF3aRJk67d3Un\/nz17tmqx4kDCE10kPBGAbOOyZctavdXu3btd+\/bt3c9+9jP39ttvx17h3OjRo63vjgiPhCe6SHgiAIHlRx991Pb5Il9n4cKF5mrlypXLlSpVyt1xxx1uypQp7uuvv479D3E9sBhbtmxpOVEkVpJoefvtt7u8efNadndqkfD4Q8ITEchMfumllyx5kFYOwGMuFCyiS5cu2TmReUh4\/CHhESIkEh5\/SHiECImExx8SHiFCIuHxh4RHiJBIePwh4REiJBIef0h4hAiJhMcf2Vp4vvnmG3f16lV35coVyxBmyZpcmYsXL7oLFy5YRfj58+etTOHcuXM2WOqmQpxtZU6fPm2NuT7\/\/HN36tQpd\/LkScs+PnHihDt+\/LhNTDKNjx49anVJFIGSyEZjr0OHDlm1OePgwYPuwIEDbv\/+\/dYzmOXzvXv3WjOwPXv2WFLhrl27rFUGGc7UN9Hwa+vWrW7Lli22lxYXBQmGtEFlbNy40W3YsMF699CXmeV68oXWrFljbTbIhF65cqVVxC9fvty99957btmyZVaUSgtVlvJJwKMNx6JFi2yQX0SOzPz58928efOshcecOXMso5q2HjNnznQzZsywXkEkP1JZP23aNEsJoCf0G2+8YflIFIeSlT1x4kQbdFJ8\/fXX3fjx4604duzYse61116zLXtInGTjwldffdWNHDnSjRgxwg0fPtx6Eb388stu2LBhtqfYkCFDTAxISWBQTDpo0CBrmDZgwADrb9S\/f3\/Xr18\/2xqIPcnoZdS7d2\/bnYOdWClRof1Ijx49rF8zHQPoiUQPZwb1c\/Xr15fweCDVwsPFxqThS+rSpYvtYtmpUye7I3Ts2NEaWJGBy5fVrl0724COBDm2YXn88cfdY489ZhvQMcgsJYGudevW1gyrVatWlgDWokUL17x5c2vcTcEk+0Y1btzYNWrUyDVs2NA1aNDAJgIVznXr1rUtfcn+ZdSqVcvVrFnT1ahRwz388MPXqpyrVavmqlatapNHQyOeUbp0aeuRxGMJT9pItfBw10QUkn85GhpZdQQ3Mh5LeNJGqoUHNwQLJvmXE5WBVYN1g6WDxcOEYeJgCWEZYSFhKWExYTlhQWFNYVVhXWFlIaxYXlhgWGJYZFhmWGlYbFhuWHB8Dlh1WHdYeVh7WH1Yf1iCWISUQmCuY7pjxmMpYtZj3mPmY\/Jj+uMC4ArgEuAe4CbgLuA24D4w4XErcC9wM3A3cDtwQXBFcElwTXBRcFdwW3BfcGNwZ7BScXNwd3B7cH9whXCJcI1wkXCVcJlwn3CjcKdwq3CvcLVwuXC9cMNwx3DNcNFw1XDZcN1w43DnuEHh3uHm4fLh+uEC4griEuIe4iriMuI64kLiSuJW4l7iZuJu4nbiguKK4pLimuKi4rLiuuLC4sri0uLaIgq4u7i9uL+4wVjpuMa4yLjKuMy4z7jSuNTMaVxs3G3cbtxv3HDccVCMxx9pjvEwCYJJEkwQ4hPBJAkmCLGMYJIknSDEQPgCk04Q4iXBJAkmCLGVYJIEE4RYTNJJwgQhbiNEeiDh8Ue2Di4LEQ8SHn9IeIQIiYTHHxIeIUIi4fGHhEeIkEh4\/CHhESIkEh5\/SHiECImExx8SHpHlIDWD\/CjypSj9IK8opUFqRzxIePwh4RFZDurZSCCl3\/L3DRJBJTyZh4RHZDnIoiYTHKsnpUGmOJnU8SLh8YeER2Q5KAOhpCM5lEVQahLsRx8vEh5\/SHhEloP6MdqAJIe2HdSkUauVGiQ8\/pDwiDRBUSjFsrQcobAWF4bC0AceeMD93\/\/9nxXiUsuX2VCISpEsBaipRcLjDwmPSDVUrhMz4YIEKuWp5KfKngucKvtf\/\/rXVjGfmSAQVPlj8aQFCY8\/JDwi1dC5j9YZAbTZqFy5srXUANpv0K7Dx\/bBaQGBpN0IbTfSgoTHHxKebArtQ2hlgqsUz6CNSQD9dGh5EkDfIPoe0U41LLRLwTVL6Xd936BnD61SwkA7FcSCnB7arqQFCY8\/JDzZFC4aGorR3CzsoOkZTbxSgv5IQRM1+jGFhSZitMxN6fd936ApGv2ewkBDsvLly1sf5rQi4fGHhEd4geBthQoVrHNisPd7FKA7Y548eczlSysSHn9IeIQXaKVaokQJi\/ME0M6UpW06TWYWBL9z5cpl7V\/TioTHHxIekSpoccvuIGxBg4VDP+l77rnHtr4JoPczrlRmQZtc+mPnzJnTkgrTioTHHxIekSpwYXLkyGHCQwN4msvTWB\/LB2gOT1N4emZnFtRi0cz\/zjvvtIb2aUXC4w8Jj0gVNPnnAqTgkp0zWDGiFOHuu++2YC7L7KnNEPYFoscOH+w2QpA5rUh4\/CHhESIkEh5\/SHiECImExx8SHiFCIuHxh4RHiJBIePwh4REiJBIeXzj3\/wC6Sx8dyvU1VgAAAABJRU5ErkJggg==\" y=\"1.99999\"><\/image> <\/g> <\/svg><\/span><\/p><p>Th\u01b0\u01a1ng trong ph&eacute;p chia&nbsp;<span class=\"math-tex\">$(x^4-x-8):(x^2-1)$<\/span>&nbsp;l&agrave;&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;<span class=\"math-tex\">$x^2+1$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"1","date":"2022-06-02 03:39:46","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.