{"common":{"save":0,"post_id":"988","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"1631","post_id":"988","mon_id":"0","chapter_id":"0","question":"L\u1ef1a ch\u1ecdn \u0111\u00fang hay sai","options":{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00fang hay sai","title_trans":"","temp":"true_false","correct":[["t","t","t","t","f"]],"list":[{"point":10,"image":"","ques":"","col_name":["","\u0110\u00fang","Sai"],"arr_ques":["N\u1ebfu hai tam gi\u00e1c b\u1eb1ng nhau th\u00ec hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c n\u00e0y b\u1eb1ng hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c kia.","N\u1ebfu hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c n\u00e0y b\u1eb1ng hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c kia th\u00ec hai tam gi\u00e1c \u0111\u00f3 b\u1eb1ng nhau.","N\u1ebfu hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c n\u00e0y b\u1eb1ng hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c kia th\u00ec hai c\u1ea1nh c\u00f2n l\u1ea1i c\u0169ng b\u1eb1ng nhau.","N\u1ebfu hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c n\u00e0y b\u1eb1ng hai c\u1ea1nh v\u00e0 g\u00f3c xen gi\u1eefa c\u1ee7a tam gi\u00e1c kia th\u00ec hai c\u1eb7p g\u00f3c c\u00f2n l\u1ea1i c\u0169ng t\u01b0\u01a1ng \u1ee9ng b\u1eb1ng nhau.","N\u1ebfu hai tam gi\u00e1c c\u00f3 hai c\u1eb7p g\u00f3c t\u01b0\u01a1ng \u1ee9ng b\u1eb1ng nhau th\u00ec hai tam gi\u00e1c c\u0169ng c\u00f3 hai c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng b\u1eb1ng nhau. "],"explain":["<span class='basic_left'> 1 - \u0110\u00fang. V\u00ec theo \u0111\u1ecbnh ngh\u0129a hai tam gi\u00e1c b\u1eb1ng nhau. <\/span>","<span class='basic_left'>2 - \u0110\u00fang v\u00ec theo t\u00ednh ch\u1ea5t c\u1ea1nh-g\u00f3c-c\u1ea1nh.<\/span>","<span class='basic_left'>3 - \u0110\u00fang v\u00ec theo t\u00ednh ch\u1ea5t c\u1ea1nh-g\u00f3c-c\u1ea1nh ta c\u00f3 hai tam gi\u00e1c b\u1eb1ng nhau n\u00ean hai c\u1ea1nh c\u00f2n l\u1ea1i b\u1eb1ng nhau.<\/span>","<span class='basic_left'>4 - \u0110\u00fang v\u00ec theo t\u00ednh ch\u1ea5t c\u1ea1nh-g\u00f3c-c\u1ea1nh ta c\u00f3 hai tam gi\u00e1c b\u1eb1ng nhau n\u00ean hai c\u1eb7p g\u00f3c t\u01b0\u01a1ng \u1ee9ng c\u00f2n l\u1ea1i b\u1eb1ng nhau.<\/span>","<span class='basic_left'>5 - Sai, v\u00ed d\u1ee5 hai tam gi\u00e1c $ABC$ v\u00e0 $A'B'C'$ c\u00f3 $\\widehat{B} = \\widehat{B'}, \\widehat{B'} = \\widehat{C} $ nh\u01b0ng kh\u00f4ng c\u00f3 hai c\u1eb7p c\u1ea1nh n\u00e0o b\u1eb1ng nhau. <center><img src='img\/H7B11-41.png' \/><\/center> <\/span> "]}]}]},"correct":"","level":"3","hint":"","answer":"","type":"json","extra_type":"","time":"0","user_id":"0","test":"0","date":"2019-09-30 09:23:01"},{"id":"1632","post_id":"988","mon_id":"0","chapter_id":"0","question":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","options":{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":" T\u00ecm c\u00e2u tr\u1ea3 l\u1eddi sai. <br\/> <span class='basic_left'>Cho tam gi\u00e1c $ABC (AB < AC)$ tr\u00ean c\u1ea1nh $AC$ l\u1ea5y E sao cho $AE = AB.$ Ta c\u00f3: $DB = DE$ (D $\\in $ BC) khi: <\/span> ","select":[" A. $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c $\\widehat{A} $"," B. $AD$ l\u00e0 \u0111\u01b0\u1eddng trung tr\u1ef1c c\u1ee7a \u0111o\u1ea1n th\u1eb3ng $BE$. "," C. D l\u00e0 trung \u0111i\u1ec3m c\u1ee7a \u0111o\u1ea1n th\u1eb3ng $BC$. ","D. $\\triangle ABD = \\triangle AED $ "],"explain":" <img src='img\/H7B11-12A.png' \/> <img src='img\/H7B11-12B.png' \/> <img src='img\/H7B11-12C.png' \/> <img src='img\/H7B11-12D.png' \/> <span class='basic_left'> A. \u0110\u00fang. V\u00ec: + $AB=AE$ (gi\u1ea3 thi\u1ebft) <br\/> + $\\widehat{BAD}=\\widehat{EAD}$ <br\/> + $AD$ c\u1ea1nh chung <br\/> $\\Rightarrow \\triangle ABD = \\triangle AED $ (c.g.c) suy ra $DB = DE$ <br\/> B. \u0110\u00fang. G\u1ecdi K l\u00e0 giao \u0111i\u1ec3m c\u1ee7a trung tr\u1ef1c $AD$ v\u1edbi $BE$ <br\/> $\\Rightarrow BK=EK$ v\u00e0 $AD\\bot BE=K$ <br\/> V\u00ec: + $BK=EK$ (ch\u1ee9ng minh tr\u00ean) <br\/> + $\\widehat{BKD}=\\widehat{EKD}=90^o$ <br\/> + $KD$ l\u00e0 c\u1ea1nh chung <br\/> $\\Rightarrow \\triangle BKD = \\triangle EKD $ (c.g.c) suy ra $DB = DE$ <br\/> C. Sai. Kh\u00f4ng \u0111\u1ee7 \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 $DB = DE$ <br\/> D. \u0110\u00fang. V\u00ec $\\triangle ABD = \\triangle AED \\Rightarrow DB = DE$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) <\/span> <br\/><br\/><span class='basic_pink'>C\u00e2u tr\u1ea3 l\u1eddi sai l\u00e0 C. <\/span> <\/span>","column":1}]}]},"correct":"","level":"3","hint":"","answer":"","type":"json","extra_type":"","time":"0","user_id":"0","test":"0","date":"2019-09-30 09:23:01"},{"id":"1633","post_id":"988","mon_id":"0","chapter_id":"0","question":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","options":{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":" Cho tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $A, M$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BC$. Ta c\u00f3: ","select":[" A. $AC = \\dfrac{1}{2} BC $"," B. $AM > \\dfrac{1}{2} BC $"," C. $AM < \\dfrac{1}{2} BC $ ","D. $AM = \\dfrac{1}{2} BC $ "],"explain":" <center><img src='img\/H7B11-15.png' \/><\/center> <span class='basic_left'>Tr\u00ean tia \u0111\u1ed1i c\u1ee7a tia MA l\u1ea5y D sao cho $MD = MA = \\dfrac{DA}{2} $ <br\/> X\u00e9t $\\triangle AMB $ v\u00e0 $\\triangle DMC $ c\u00f3: <br\/> + $MA = MD$ (theo c\u00e1ch v\u1ebd \u0111i\u1ec3m D) <br\/> + $\\widehat{AMB} = \\widehat{DMC} $ (hai g\u00f3c \u0111\u1ed1i \u0111\u1ec9nh) <br\/> + $MB = MC$ (v\u00ec M l\u00e0 trung \u0111i\u1ec3m c\u1ee7a BC) <br\/> Do \u0111\u00f3 $\\triangle AMB = \\triangle DMC $ <br\/> $\\Rightarrow AB = DC, \\widehat{MAB} = \\widehat{MDC} $ <br\/> M\u00e0 $\\widehat{MAB}$ v\u00e0 $\\widehat{MDC}$ so le trong n\u00ean $AB \/\/ CD$ <br\/> V\u00ec $AB \\perp AC $ ($\\triangle ABC$ vu\u00f4ng t\u1ea1i A) $\\Rightarrow CD \\perp AC \\Rightarrow \\widehat{ACD} = 90^{o} $ <br\/> X\u00e9t $\\triangle ABC $ v\u00e0 $\\triangle CDA $ c\u00f3: <br\/> + $AB = DC$ (ch\u1ee9ng minh tr\u00ean) <br\/> + $\\widehat{BAC} = \\widehat{DCA} (= 90^{o}) $ <br\/> + $AC$ c\u1ea1nh chung <br\/> Do \u0111\u00f3 $\\triangle ABC = \\triangle CDA (c.g.c) $ <br\/> $\\Rightarrow BC = DA $ <br\/> Do \u0111\u00f3: $AM = \\dfrac{1}{2} BC $ (v\u00ec $MA = \\dfrac{DA}{2} $)<br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0 D. <\/span>","column":2}]}]},"correct":"","level":"3","hint":"","answer":"","type":"json","extra_type":"","time":"0","user_id":"0","test":"0","date":"2019-09-30 09:23:01"}]}