Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 8Toán lớp 8 - Sách Kết nối tri thứcBài 17 - Tính chất đường phân giác của tam giácBài tập trung bình
{"common":{"save":0,"post_id":"6584","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"6226","post_id":"6584","mon_id":"1158921","chapter_id":"1158932","question":"<p>T&iacute;nh \u0111\u1ed9 d&agrave;i&nbsp;AE (l&agrave;m tr&ograve;n k\u1ebft qu\u1ea3 \u0111\u1ebfn h&agrave;ng ph\u1ea7n m\u01b0\u1eddi).<\/p><p><span class=\"svgedit\"><svg height=\"220\" width=\"380\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"222\" id=\"canvas_background\" width=\"382\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_6\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><g id=\"svg_9\"> <image height=\"196.99999\" id=\"svg_1\" width=\"335.99999\" x=\"-0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYUAAADiCAYAAAChpdseAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAADKJSURBVHhe7Z0HeFTF14fpoTcpoRMIvYbeS+iRGqmhSOgQqaGF0ImhRWpoIXQSilI+FLAlKFVRgsAfVEAQEKMiRlSMonC+M8PeyQYH0jbJlt\/7PO+jO+xNNvfOnDOzd+5MBgIAAABMICkAAABQICkAAABQICkAAABQICkA4Cjc20dDM2SgDCbdlkSZ\/gGAOJAUAHAQbmz2UAlBWjuIkBbAsyApAOAQ3KDQdk+TgbOrCznLxOBM\/pGxpn8H4ClICgA4AueDyM00QvAJDyNf0\/9n8N5HMaa3ACBAUgDAATg93\/lpEsjgSWF3YiliiikpZPCg0GumNwHAICkAYO\/ERpC\/sykJdAqlG6Io0t\/0FRJuOIP4ICkAYOfEHPIxjQoykMdmkRIY80Th7E8RuLUATCApAGDXxNA+b1Pwf+aroqglbipZ+L6PrACegqQAgD1zLZQ8TIH\/PzeVzW4+44YzMEBSAMCOMX82Yej+Z8N+3DRV3HAGBkgKANgtURRU2wj6vtr7BuZJAzecgQBJAQB7xezrIWe\/CNLeNTBf+gI3nAGDpACAXRJLEX7GswluFHTeVPwfzG9E675iAo4GkgIA9khsRNxTywmscRT7vq9KChl6hVG0qRw4JkgKANghMfuHxgX6JIkbzo4OkgIAdkc0hfXSBfzEiRvOjg2SAgD2hvmzCbW9yH9JEAUlpJ9X3DMLuOHs0CApAGBnRC2Le1JZLWuRIObPLOCGsyODpACAXWH+bELS7g\/E24THtHAecDyQFACwI8xXP03yTKI7YeRpHJvBHTecHRQkBQDsBvNnEzKQZ3hSJ5fGf2YBN5wdEyQFAOyFeBvzD6V990zlScB8mW3ccHZMkBQAsBPiPZuQ3FVPzfdZYHHD2fFAUgDALrhBoZ3igrnPoeQG8\/hfQeGGs+OBpAAAAECBpACAg3Ljxg26fv266RUAT0FSAMABefvtt+XXQ2PGjDGVAPAUJAUAHIyFCxfG3TNgIyMjTf8CAJICAA7FgAEDVDIo4uIi\/9u5c2fTvwKApACAQ\/DLL79Q7dq1VUJo3Ls3jQsLU6+3bt1qeidwdJAUALBzTpw4QVmzZlUJwNPfn\/ZyubBm27ayrEaNGvT777\/L9wPHBkkBADtm3bp1KhkIx2zZohKCMPCTT9S\/zZs3TxwCHBwkBQDslNdee00FfGdXV1pw8mS8hGDYbtQo+Z58+fLR5cuXuQQ4MkgKANgZT548oVatWqmE4NapE2388UdtQhBu+vlnyurkJN87dOhQLgGODJICAHbExYsXqXDhwiohdBo3TpsInnXg0qXqmCNHjnAJcFSQFACwE3bt2qUCu3DIqlXaBPA8S1arJo9r27YtvwKOCpICAHaAv7+\/Sgb5ihalGUePagP\/i5x84ID6GevXr+cS4IggKQBg43Tv3l0F88rNmtHq69e1QT8x1uvaVf6cChUq0L17ydiQAdg8SAoA2Ci3b98mV1dXlRBaeXtrA31SDLp4Uf08Pz8\/LgGOBpICADbI0aNHVfAW9nv9dW2QT46dJ02SP9PJyYnOnTvHJcCRQFIAwMZYajZTyClnTpq4d682uCfXHQ8fUq4CBeTP79+\/P5cARwJJAQAbYvDgwSohlKlVi5acP68N7Cl16Jo16vfs37+fS4CjgKQAgA3w22+\/Ub169VSgbtSzJ23\/4w9tQLeU5U2\/r1mzZvwKOApICgBYOadPn6bcuXOrhNB9+nRtELe0\/u++q37nihUruAQ4AkgKAFgxGzduVIFZOHrTJm0ATy2b9u0rf2+pUqXozp07XALsHSQFAKyU8ePHq2RQtFw5mnf8uDZwp6arrl9Xn2HixIlcAuwdJAUArBCx1IQRjGt16EAh0dHaoJ0Wiv0XjM9y6tQpLgH2DJICAFbElStXqHjx4ioId\/Tx0QbqtHTPkydUsEQJ+Xk8PT25BNgzSAoAWAlvvvmmSgbCwStWaIN0eig25zE+V3h4OJcAewVJAQArYM6cOSro5i1UiPwOH9YG5\/S0SosW8vOJqbHAfkFSACCd6dmzp0oIFZs0oZVXr2qDcnorbnQbn3PRokVcAuwRJAUA0onvv\/+eKleurAJty0GDaO+TJ9qAbC22HjJEflaxkc+1a9e4BNgbSAoApAMffPABZcuWTSWEPgsWaIOwtbnh7l3KmDGj\/MyjR4\/mEmBvICkAkMYsX75cJYMsTk40YfdubQC2VsWKrMbnj4iI4BJgTyApAJCGDBs2TAXU0jVq0KJz57SB19p1Nu3j4OHhwa+APYGkAEAa8Oeff1KjRo1UQmjQowdte\/BAG3BtQTG6Mf6WzZs3cwmwF5AUAEhlzp49S4UKFVJBtNvUqdpAa2vW7thR\/j3Vq1enx48fcwmwB5AUAEhFtpg99CUcuXGjNsDaoos+\/1z9XXPnzuUSYA8gKQCQSvj6+qqgWbhMGZr70Ufa4GrLimU4xN+XJ08eunTpEpcAWwdJAYBUoKPpqxVhzbZtaf1332mDqq275ZdfyClXLvl3ent7cwmwdZAUALAgV69eJRcXF5UQ2o8erQ2m9uSrZlNsDx8+zCXAlkFSAMBCHDhwQAVH4avLlmmDqD1apmZN+Te7u7vzK2DLICkAYAEWLFigkkHuAgVo2ttva4OnvTrt0CH1969du5ZLgK2CpABACulr2rJSWKFhQ1rx5ZfawGnvNvD0lOfA1dWVHj58yCXAFkFSACCZ\/PTTT1TT9LWJsPmAAbT733+1AdMRXHb5sjoX06ZN4xJgiyApAJAMIiMjKW\/evCoI9p43TxsoHc2uU6bI85E1a1b6\/PPPuQTYGkgKACSR1atXq2SQKXNmGhcerg2QjujO2Fi5SZA4N\/369eMSYGsgKQCQBEaOHKkSQsmqVWnh2bPa4OjIjli\/Xp2jffv2cQmwJZAUAEgEjx49ombNmqlgV79bN9oSE6MNipCogmnxvyZNmvArYEsgKQCQAFFRUVSiRAmVELpMnqwNhDDOWR9+qM7XsmXLuATYCkgKALyAHTt2qOAmHLFhgzYIwv\/avH9\/ec5KlixJv\/zyC5cAWwBJAYDnIKZVGsngJQ5ssyMitMEP6g2+cUOdv\/Hjx3MJsAWQFADQ0LlzZxXQqru707rbt7WBD77YnnPmqPN48uRJLgHWDpICAGbc4N5t5cqVVSBrN3KkNtjBxFuodGl5Lnv06MGvgLWDpACAiUOHDpGTk5NKCAODgrRBDibN17ZvV+c0LCyMS4A1g6QAALNw4UIVuHLkzUtTDx7UBjiYPMVXcOLc1qlTh18BawZJATg8\/U2zZITl69WTa\/joAhtMvgtOnVLnODAwkEuAtYKkABwWMU2yfv36Klg18\/KiXY8eaYMaTLlthg+X57lQoUIUHR3NJcAaQVIADsnx48epcOHCKiGIWTK6QAYtZwgngsxZssjzLZYLAdYJkgJwONatW6eSgXDsjh3aIAYtb\/9Fi9R5j4iI4BJgbSApAIfCx8dHBaXilSrR6598og1eMPUsYZry26lTJ34FrA0kBeAQPH78mNq0aaMSQt0uXWjz\/fvaoAVTV9+33lLXITQ0lEuANYGkAOyeixcvUrly5VQg6jxpkjZYwbSzzssvy2tRtWpVfgWsCSQFYNeEh4dTxowZVUIYtnatNkjBtHVxVJS6JrNnz+YSYC0gKQC7xd\/fXwWe\/MWK0awPPtAGKJg+eowfL69N7ty56ebNm1wCrAEkBWCXdO\/eXSWEqi1b0ppvv9UGJph+bo2JkU+Pi2v06quvcgmwBpAUgF1x+\/ZtqlWrlkoI4oEpXUCC1qH3qlXqWh05coRLQHqDpADsBhFU8uXLp4LMgMWLtYEIWpcuderI69W6dWt+BdIbJAVgFyxdulQlA6dcuWjy\/v3aAAStT7\/Dh9W1Cw4O5hKQniApAJtHfB9tBBUXNzd649IlbfCB1mvjXr3k9RNTh0H6gqQAbJYHDx5Q8+bNVUJo0rcvhf31lzboQOt2+Zdfqus4depULgHpBZICsElOnz4tN4Q3AskrM2dqgw20HbtPny6vZZYsWeirr77iEpAeICkAmyMkJEQlA6HPtm3aIANtSzHKy+\/sLK9pnz59uASkB0gKwKYYb3rgSehcvjwF8IhBF2CgbToqNFRd3\/3793OJpYmmsF5xHYrk6Ulhd0w\/zg5BUgA2g4eHh2qYbvz\/offuaQMLtG0rN20qr3Hjxo35laVBUkgIJAVg9Vy5coWqVKmiGqVYHkEXTKB9OCcyUl3roKAgLrEk5knBmaq0dif3dknVlw7b8cZxSArAqtm7dy\/lyJFDBYmhwcHaQALty5amacbFixenR48ecYmlME8K9t3jTy5ICsBqmTNnjkoGeQsXJv\/33tMGEGh\/rrl5U137cePGcYmlQFJICCQFYJWI2SdGUKjcrBkF37ihDR7Qfu0zf76qA1988QWXWAIkhYRAUgBWxd27d6lhw4YqGLgPGaINGNAxLGLaHKlbt278yhIgKSQEkgKwGt5\/\/30qUqSISgheCxdqAwV0HMeFhan6sGvXLi5JKUgKCYGkAKyC5cuXq8afNXt2uY+vLkhAx7Nmu3ayXri5ufGrlIKkkBBICiDdGTZsmEoIZWrWpKUXLmiDA3RMA86cUfUjICCAS1ICkkJCICmAdOPhw4fUtm1b1eAb9exJO7lMFxigY9t+1ChZRwoWLEi\/\/fYblyQX86SQPAPOmH6UnYKkANKFs2fPUvny5VVD6zFjhjYYQCjc+MMP8mtFUVdGjBjBJckFSSEhkBRAmrN582bKnDmzamRjtmzRBgIIzR0YFKTqzKeffsolycE8KSTviebgz0w\/yk5BUgBpiq+vr2rYhcuWpfknT2oDAIQ6S1WrJutOhw4d+FVywD2FhEBSAGlGjx49VEKoxY1afCWga\/gQPk+xzapRh7bwCDPpICkkBJICSHWuXr0qpxMajbnT2LHaBg9hYqzXrZusR2KRxKSDpJAQSAogVRFr4ufPn18lBO9Vq7QNHcLEuuT8eVWfZs6cySVJAUkhIZAUQKqxYMEC1XhzFyxIM44e1TZyCJNq50mTZL3KmTMn3bt3j0sSC5JCQiApgFRh0KBBKiFUbNyYVl27pm3cECbHbQ8eyI6GqF+iriUeJIWEQFIAFuXHH3+kFi1aqIQg1sXXNWoIU+rQNWtUPfv444+5JDEgKSQEkgKwGJGRkVSqVCnVUPu9\/rq2MUNoKcvXry\/rWsuWLflVYkBSSAgkBWARVq1apZJB5ixZaOLevdpGDKElFfepjHq3fv16LkkI86SQ3O042VVRpp9nfyApgBTz2muvqYZZslo1WhIVpW3AEKaGTfv2lXXPxcWFXyWEeVJIgfNPm36e\/YGkAJLN33\/\/TS+\/\/LJqKA169KDtv\/+ubbgQppYrvvpK1cHJkydzyYtAUkgIJAWQLKJ4NFC1alXVSLpPn65tsBCmhV1MU1QzZsxI3333HZeA5IKkAJLM9u3b5fxwIyGM2rRJ21AhTE1DoqNp+Pr1VLtjR1UXhWL0CpIPkgJIEn5+fqrxvVSqFM37+GNtg4UwNVx35w4NWb2aapjtw2HoXKGC+n+xtStIHkgKINH0Nd3QE9Zo04Y2fP+9tuFCaEmDb96kV5cvp2qtWqn6Z1i1ZUt6ddkyCr5xQ75XvBblDRs25FcgOSApgAT55ptvqFGjRqohth8z5j8NF0JLuurqVRq4dClVbtZM1TtD0SERo4W1t2\/\/57i5x46p961cuZJLQFJBUgAv5NChQ1S0aFHV0AavWPGfhgihJVx+5Qp5LVxIFbiXb9Q3Q3HfYPi6dYkanbYeMkQeU6xYMX4FkgqSAngugYGBqlHmzJePpr\/zjrYRQphcgy5epD7z51O5unVVXTOs27kzjdy4kUJ\/+kl77PNce+sWZcyUSf4M8QwNSBpICkCL2AfXaJyu9evTyq+\/1jZACJPq4qgo6jl7NpWpVUvVMaGYTlq\/e3e5PeuWX37RHptYxRIrxs+9fv06l4DEgqQA4nH\/\/n1q166dalDNBwygPU+eaBsehIk18NNPqceMGfKJd6NuCbNkzUqNevaksTt3WvzBx2Km2Uhdu3blVyCxICkAxfHjx8nV1VU1WDGs1zU2CBPjglOnqOvUqVS8YkVVp4TZcuakpv360YTduyksNlZ7rCUcv2uX+p1vv\/02l4DEgKQAJGvXrqUsWbLIBiSG8RO4QekaGoQvUjy30nniRCparpwKyMIcefNSi4EDyfett2jXP\/9oj00NjQfbatWqxa9AYkBSAOTr66sab\/FKlWjR559rGxiEOmdHRMh9twuVLq3qkVBsgtPa25umHjyoPS4tfP2TT9TnWbx4MZeAhEBScGAeP35Mnp6eqtHU69pV7mila1wQmuv\/7rvUfvRoKlC8uKo\/wnxFilDb4cNp+uHD2uPSw46mVXzFXuFPnjzhEvAikBQclAsXLlCdOnVUY+46ebK2QUFoKKYkt+GAn7dwYVVvhAU5MYgHGv3fe097XHorprRmz5VLftZhw4ZxCXgRSAoOSHh4OBUoUEA16pEhIdrGBOGUgwep1eDBlMusvggLlSlDncaNk18d6Y6zNgctW6Y+++XLl7kEPA8kBQdj7ty5qnGIof+cY8e0jQg6puIm8KS33pJTkXPkyaPqirBo+fLUedIkm10E0Xguon379vwKPA8kBQdiMPf4jAYuFhdb\/9132sYDHcudsbFytpnYwSxbjhyqjgjFxINuU6dSwKlT2mNtySkHDqi\/68033+QSoANJwQG4deuW3NjcaBBtR4zQNhroOG7\/7Tcau2OHfHBM7Klt1A1hqWrVyNPfnwLPntUea8s2NE2sqMTJDuhBUrBzjhw5QqXNpgoOeuMNbWOB9q9YOkIsIVG\/WzdVHwzL1q5NvebMkUtQ6I61F5deuKD+5vnz53MJeBYkBTtmmdnNtey5c9O0Q4e0DQXar2LmjVhUro7ZXtqG5evVoz4LFshF6XTH2qtdp0x52iayZ6fY2FguAeYgKdgpY8eOVY3fpU4dWv7ll9oGAu1Psbz0sLVrqVaHDqoOGFZo1EguTy2WqdYd6wiKr86MabUDBgzgEmAOkoKd8eDBA+rcubMKAmKNmd3\/\/qttHNB+FMtFe69aRdXbtFHX3lBsVDMwKIhWXbumPdYRHbZunTo\/586d4xJggKRgR5w6dYqqV6+uKrv4jljXIKB9uPqbb+RWlFVbtFDX3LBa69ZyQ6Q1N29qj4VEFU27Cbbg8wfiQFKwEzZu3Ei5TE9tCseFhWkbArRtxb4WA5YsoUpNmqhrbVizXTsaGhwsN7fXHQvjK5bqMM7dzp07uQQIkBTsgBkzZqjK7ezqSgvtcCqhI7vs8mW5aYxrgwbqOhu6depEI9avp5DoaO2x8MWKh\/TEeSxTpgy\/AgIkBRvHy8tLBQgxw2RLTIy28kPbcukXX1DvefPkJAHj+hrW69KFRm3aRJt+\/ll7LEy8K69eVedVdK4AkoLNItZvady4sarQL0+cqK300HYUS5a\/MmsWla5RQ11XYaZMmaiBpyf5bNtGW3\/9VXssTL5ia1DjXMdwp8rRQVKwQfbu3UvOzs6qIg9fv15b2aH1K9b77+7nRyWqVFHXU5jFyYka9+4t7w3t+OMP7bHQMor1ngqXKSPPe8+ePbnEsUFSsDEWLlyoAodYu95WVqmEcc4\/eZK6TJ6s9hA2dMqVi5p5edHEPXso\/K+\/tMfC1FE86W1ch9OnT3OJ44KkYEOMHDlSVdwqzZvT2tu3tRUcWp9zjx2jlydMoCIuLuoaCnPmy0ctBw2iyfv20e7Hj7XHwrSxuru7vCb169fnV44LkoINcPfuXbncrxFI3IcO1VZqaF3O+uADuevXSyVLqmsnzPPSS\/IaTsWyI1alWBLcuEahoaFc4pggKVg57733HlWsWFFVVjFHXVehoXU44+hRascjuvxm93yE4rUo9ztyRHsctA7FznLiehUtWpRfOSZIClbMmjVrKGvWrLKSZsueXe6CpavIMH2d9vbbsuefp1CheIlAjBA6+PjQzPff1x4Hrc91t29TZlOb8\/X15RLHA0nBSpk8ebIKLmLHKPEAk64Sw7R3z5MnNHn\/fmr56quUM39+dZ2EhcuWJY\/x42lOZKT2WGj9egUGquv5ww8\/cIljgaRgZTx8+JBeeeUVVSkb9+pF4X\/\/ra28MO0Mf\/SIJu7dS83691ebwBuKp8jFbKL5J05oj4W2pzFFWCwu6WggKVgRn376KdWtW1cFm1dmztRWWJg27uQEPT48nJr07k1ZnZzUdRGKoNF9+nR6\/cwZ7bHQtp2we7e61seOHeMSxwFJwUrYvn07FSxYQFXE1\/i1rrLC1HXbgwfy3IttGzNlzqyuh1A8aSwS9cLPPtMeC+3LuqYl6GvwdXckkBSsgHnz5sUFn8w5qNn83bSFy3UVFVrezffv0+hNm6he165x18Gki5sb9Z47l5acP689FtqvYo9qox6ISR+OApJCOuPt7a0qXuWapam86f\/zt\/alcZewuF1qufHHH2nEhg3k5uGhzr+ha\/361DcggN743\/+0x0LHsdO4cbJO5MuXj185BkgK6cTXX39NrVq1UoFIVD5ZEaMPk2drY467CzVcFYVRg4Vc\/913NJR7fGLfAeO8G1Zs0oT6L15MK776SnssdEw33bsnnzoXdcTHx4dL7B8khXTgwIEDVLZsWRWQxMYo8SrjP9HkN8ud8pv+PX+XIFocY\/bvMNGu+fZbGrxypdyJzDjfhlVatKBBb7xBq69f1x4LoXDw8uWqzty6dYtL7BskhTRmuVkFE8sdzPzgA21F3EuxtDzESyWGDI18yO+m7n3wWUWQHxQUJNeHMs61oVjfxpuThNjTWHcshDqNfS3atm3Lr+wbJIU0ZJzp+0mh+LoiMfvnBm83SwzOXjQOiUGr+Nqn\/6JFVNFsjwnDWu3b07A1a2jD3bvaYyFMyKn\/93+qPh09epRL7BckhTTgxx9\/pC5duqhK1WrwYG3F0xtLAfPNAl2jAAr4Xfc+x\/ONS5fkDeHy9erFnR+TYhe6ESEh8oay7lgIk6p4kFTUrQoVKvAr+wVJIZWJiIiQ85yNYCUeoddVuBd7g8YNjFtgLf\/AMArWvs\/+FVNDe82dS2Vr11bnw7B+t240evNmOcVUdyyEKTHo4kVV15YtW8Yl9gmSQioilt\/NnTu3rERikS3fffu0lS1R\/n6a+jaKC4BuITf077NDxcNinv7+VKp6dfX3y3OaJQs1fOUV+bDZtt9+0x4LoSXtNnWqrHtOTk78yj5BUkgl\/DmIGcFLBDPRy9BVsqQY9lkAVTT9zAwZPGncHf377MGAM2eo27RpVLxyZXUehVmzZ6cmffrI5Sd2\/vmn9lgIU0uxNWr+YsVkXRw2bBiX2B9IChbm77\/\/pv79+6sgJpZLCIuN1VawpCvuL7ipn51\/SgSFad9nm84\/fpy6+PqSc\/ny6m8UZufRVvMBA2jSm2\/SrkePtMdCmFaKPdGNuimeN7I3kBQsyLlz56hJkyaqwogN2XWVKkXeO0wdnI2A6UGjrmneY0OKJabFUtPGxumGuQoUkDfkpxw4QHufPNEeC2F6WblZM1lPm\/F\/7Q0kBQuxZ88eKmYaVgrFRuC6ymQJg0PilmbI72d7owWx6UyHMWOoYIkS6u8Q5i1cmNrwkFxsWqM7DkJrUdRho94ePHiQS+wHJAULsHjxYlVBCpUuTQGnTmkrksW8t4\/cTb8vg7M\/zY7VvMfKFNtQth0xgvIVLarOlbAAJ9J2o0bJbSx1x0ForbYYNEjW4VKlSvEr+wFJIYWM4oBmBLgabdtS6E8\/aSuQZY2l2X5xU1S7vG+pexaWVTzw03rIEMpdsKD6rMJC3IjEhvazPvxQexyEtuCqa9dUnQ4MDOQS+wBJIZl888031KFDB1UpxF68uoqTWoZF+setjRQYpX1PWrv78WM57Vb0oHLkzavOjbBIuXL08sSJNPejj7THQmiL9pozR9Xxf\/75h0tsHySFZCAec69UqZKqDGItHV2FSVVjI6iL6fdn6JF+D7OF\/\/UXTdyzh5r160dOOXOqcyIsVrEidZ0yhRacPKk9FkJbV3SEinKHR9T3gQMHcontg6SQRNauXUvZsmWTlSBX\/vw04913tZUl9Y0hv9FGAPanAO17UkcxV3tcWJh87D+L6VwYlqxalXr4+VHgp59qj4XQ3vTZtk3V\/4sXL3KJbYOkkASmcK\/XuPiuDRrQ6m++0VaStDI4xN30eVL\/Qbatv\/5KPlu3UoMePShjxozqPAjL1KxJPWfNosXnzmmPhdDeNfboqFevHr+ybZAUEsH9+\/epl2kxLGELHibqKkaae8J4ato9VZ5X2PTzzzQqNJTqmi3mZ1iubl3qPX8+Lb1wQXsshI6kePDSaBu7d+\/mEtsFSSEBTp48KbO\/ccH7LFigrRTp4s0wamj6XH3PaP49GYZER8snNmt37Kj+ZsMKDRtSv8BAWnb5svZYCB1ZMeVatJPChQvzK9sFSeEF7Nixg1566SV5oTNmykQT9+7VVoZ0M+YwdTAF7JQkhXV37tCQ4GA5pdZIAIaVmjalAUuW0MqrV7XHQgifKrZ7zZYjh2w3c+bM4RLbBEnhOSzgEYERGEtUrkxLv\/hCWxHS19PU1\/QZk5oUxAY\/YpvBaq1aqL\/TsGrLlvTqsmUUfMNxVmKF0BKKjZ6MdvTHH39wie2BpPAM\/\/77Lw0ZMkRdWLFG\/46HD7UVIP01koIbDTyv+\/f4iodtBi5dqtZtiW82Kuk5jVbdvq09FkKYOI0l3sV9SFsEScGMCxcuUGuzDd7FHHvdRbcejaTw\/NlHy69cIa+FC+X9gLgE8FRx32D4unUUuLaH6UE4Z6oeeNquVl6FMK0VXzMbbezs2bNcYlsgKZgQi1q5uLioiylm3eguuHVpJAXfeOsfib0b+syfL2cIGX+PYd3OnWnUxo0Ueu+e2c8hCg439oJ2pmYhV5AYIEyB9bp2le2tOo8abA0kBWbFihUqaIqVO+cdP6690NanKSm0C6VpUVHUc\/ZsKlOrlvpbhOKZgvrdu9OYrVtpS0yM5mcYxlLALGOvBk4M4bifAGFyFbsFGm1w27ZtXGI7OHxSGD9+vLp41Vq3po0\/\/KC9yNZo4NlNVClXWcpTqoL6G4RZsmalRj170tidO2n7779rj9Uab8vPxtT3M+tcaA9CW1DsEyLaUp48efiV7eCwSeHWrVvUrVs3FUjbjRypvbDW5oJTp6jr1KlyXSHjswuz5cxJTfv1owm7d6dsp7fzQXFbfjYKoIDfNe+BECbo5vv31QrB06ZN4xLbwCGTQmRkJNWsWVMFVDH9UndRrcV5H39MnSdOVAtvGYqVSMXT1b5vvUW7\/\/1Xe2zSjaXFgY3V73CZhRvPECZXsVim0ZZ+\/vlnLrF+HC4pbNq0SQ7nxEXKzv+d\/s472ouZ3s6OiKBOY8fKTXuMSiUUPY\/W3t5yrwLdcRbx9wjqorb8xNdIEKbE8vXry7bUtWtXfmX9OFRSmDVrlgquYmaOmLevu4jppf+771L70aPlbmTG5xTmK1KE2g4fTn6HD2uPSw2DN8dt+ZmhU2i6Lc0Noa077dAh1ZZOnDjBJdaNQySFX3\/9lQYMGKAuTDMvL+3FSw\/FSKUNB3yxP7Hx+YRiFlT7MWPI\/733tMeluvFGC85Wu7sbhLZgk969ZVtydXXlV9aN3SeFzz77jJo2baqCba+5c7UXLS2dcvAgtRo8mHIVKKA+l7BwmTLUadw4+dWR7ri0dvESY4oqi9EChMn2jf\/9T7WlDRs2cIn1YtdJYe\/evVSCe9zGxRgfHq69YKntrn\/+oUlvvUXNebQi7mMYn0dYtHx56jxpknU+G3E+iFzUZ02d5bkhdBS7T58u21LWrFn5lfVit0lhyZIlKvAWq1AhzTeAEdNCJ+zaRU379qVs2bOrzyIsXqkSdZs2jQJOn9Yeaz3eoFHt4j63yzLr2AsaQlt058OH9FLJkrItTZgwgUusE7tMCqNHj1aBrE7nzkl7gCsFit8zdscO+eBY5ixZ1GcQlqpWjTz9\/Wnh2bPaY63VxcvMvkJqh6+QIEyJI0JCVHu6e\/cul1gfdpUUvvrqK+rUqZM66eJrGd2FsaRbfvmFxmzZIldTNX6vYdnatanXnDm0JMqGe9hnAkxrIgm9yDda8x4IYaKt0uLpcvXt27fnV9aH3SSFd999lypXrqwC8ogNG7QXxBKG\/vQTjdy4keq8\/LL6fYbl69WjvgsWUNClS9pjbU6zjXyEnic074EQJtpZH3yg2tOHH37IJdaFXSSFdevWkZOTkzzJ+YsWpTnHjmkvRkrc8P33NGztWqrVoYO6oIYVGjUir0WLaPmXX2qPtW3j31doGB6teQ+EMCm2fPVV2Z5KlSrFryxH7J0o2rfZl4a2c6cqakp5BnKu7k7u3r4Uuj+Kov8xvfk52HxSmDp1qvrDxbBsw9272ouQHNfevk3eq1ZR9TZt1O8wFBvVDAwKsroH4CxvLM2eYva3z7f2m+MQWr+rv\/mGMmXKJNvUKo4xKSXm0j4K6BW39P8LdXYn3\/ArFGM69llsNil8zz333qYHQoRthg3TnvykGswXS6yFVNX0vZ+5YhXVwStWyK0sdcfaq4sDnePOA5IChBax97x5ql0ln1i6snmo2dRx1rUxDZ0SxKOCCIqIFO6j0CW+5FXdrB2zLt776Ibpp5hjk0nh1KlTVN+0nohwwNKl2pOeWFd+\/bXcnL5SkybxTpqwZrt2NDQ4WG7KrTvWEQwJ94w7J0gKEFrEPU+eyOnyol2JGZNJJ5ailnmQs9E2MzQmnxeMAATRkQHkYfa1UmNuz7GmfzOIlxROz49784t1ocbtPMlnSRidvvPsj0xddu7cSYVNS0Jky5Ej2QvDLbt8mfq9\/jq5NmjwzN+Wgdw6dZI3qm1pb4XUFEkBwtTxte3bVdu6cUPXb38+sWcCqLHRLp09KOh84mJxvOMyuFHAmfjHJTMpmOtM7rMiXpidLEVAQID6vWK654qvvtKe6Oe59MIFOWRzqVPH7PM\/tV6XLjR60yba9PPP2mMdWSQFCFPPWu3by7bVsmVLfpVYoihIbYjlTD6HkhaBo5bFLY8vlrAxT0fPTQoujdzJvd1zfOa7KaFuGGIp\/vjjDxo6dKj6XWJxqT2PH2tP8LMu+vxzemXWLCpdo0a8z5spc2Zq4MmjnW3baOuvv2qPhU81Twp4qhlCy7rg5EnVvt555x0uSZjYSP+4r42eCeqJ4t4+8qnuTkOnBFPYkfhfOT03KQScMRU+j39iKCreDY7\/DkMswcWLF8nd3V19LhHgdSfW3Nc\/+YS6+\/lRiSpV1HHCLE5O1JgTyriwMNrx8KH2WPhfg7fHJYVmezElFUJL227UKNm+ihQpwq8SIoYOj46La57h0aZyy5D8pGAiynwlzSkRFh0tHDp0iMqZ7TYmlpDQnVChyLZdJ09WN24MnXLlkktlT9y7l8L\/\/lt7LHyxAapeOFPfz\/TvgRAmXzGVPnvu3LKdLV26lEtexGnyVzHOnUKvmYotRIqTAl0LJXfjA7ZLxjDmOaxcuZIyZswof67YhjJQs2bQ3I8+opcnTKAiLvHn5+bMl08+HDJ5\/\/5Ef80En2cM+aleiQ\/58ThT\/z4IYUoUMyCNGPZCboaRp+l9GTL4c4qwLClPCnfMPmDtIIoyFacEsYKg8Tlqd+wY7zt\/8Yh4x9deU6sNGuZ56SVyHzpU7nJkfqJhSo2igbVN57lXGIVo3wMhtISlTXvHe3t786vncCZuwo2lYq45KU8K54PIzfiAow+naBbSt99+S927d1efwWP8eHmiZhw9Kr9zy+8c\/wa3eN1u5EiaceTIf04utJBmax\/hJjOEqeukN99U8e3KlStcosE8KXBHzbJ3FFKcFGIpYooRqJ3JPzL5dxSOHTtGtWrVUr9f7FUsev55ChVSZUIxQujo40MzecSgO6nQwnIFfLpKqhsNPK\/5dwihRTVWXG7UqBG\/0mCVSSE2hqK\/PEzB3nFzXVMyJXXz5s2UL18++XOyOjlR9ly51M8VFi5bljwmTEiVhe7giw0OMc384mHqYs2\/Qwgt66Jz51Ts27dvH5c8w2cBcdNR0\/Lro8TrQp5LTif7a6OePXtqfmYGcnZ1pS6TJ9P8Eye0Jw6mhdE0rtfT64GvjiBMO1+eOFG2u7x58\/KrZ4jeR14qVvpShIWfBEh5UnD1IJ9VEQkux\/os9+\/fp4EDB8b7WYXKlKFm\/fvT8PXrZTKYf\/KknGoacOqU3Lry9TNnKPCTTyjw00\/lDmYLP\/tMPpwmttpcHBVFS86fp6VffCGfXA66eJHeuHRJbpgtlrRYfuWKXNpaPAW94uuvaeXVq3KF01XXr8sVC4Nv3JCKxe7Wfvstrb11i9bdvk3r79yR6x6JKWMh339PIdHRcvmLjT\/+KPdV2HTvnnwKejP\/PWLDnS0xMfLG+LYHD2jbb7\/J3dh2\/PGHfC5i559\/ym06w\/76S06P3fXokdy\/efe\/\/8pZUmItFF0FSTfvhFFDeW08sD8zhGmoiCV5Tcv5LFiwgEvMiaIgY\/JHBjcKOm8qThKxFOFXxbSc9mm6Ydarf25SeOETza2rmC3CZNJ1KIXdNP2gBPicA3mzZs3iHw\/lFNyMmTLJp63Fdp6Zs2alLNmyyYfusmbPLtd6ypYzp3z2QsxpFubIk4dycm9CTMPNlT8\/5S5QgHIXLChnY4n7MaJi5StShPIVLSpvzBcoVowKFC9OBUuUkPdnXipVigqVLk2FOSGLr+nE9N4i5cpR0fLlqUjRp\/OmMxUoQcUqVpR7S5eoXJlKVqlCJatWlVuMlqpeXT4tXqZmTSpTq5ZcfsTFzU0uJVKubl256VD5+vXlGlMVGjaUe09UbNyYKjZpQpWaNpVLkFdu3lwue161ZUtptVatqHrr1lTd3Z1qtGlDNdu2lQsTiuUAxH4WYkaaWJ\/KzcNDbnRUt3NnqtulC9Xr2lV+H1u\/e3dq0KMHNfT0pIavvCK3R23Uq5d8cLFJnz7UpG9fatqvHzUTenlRc+6ItBgwgFpwJ6XloEFyOnOrwYOptbc3tR4yRN7bEqvwthk+nNqOGCEnN4iJD+K+V4cxY6iDj4+cEddx7FjqNG6cnCAhvu4UvT2x+19nX1856u06ZQp1nTqVurHdp02TG7n38PMjzxkz5Fatr8ycST1nzaKes2fLHft6z50rl2XpM3++3Lipb0CAXK\/LKzCQvBYupP6LFtGAxYvlVMaBS5fSoKAgGvTGG3KV38HLl8sVfb1XrqQhq1bRkNWr5cKOw9askfuCDF+3Tna+xBpfI0NC5KZRo0JD5VIvozdvlrsJ+mzdKp\/4F+vziGeExu7cKR\/8HB8eTuN37aIJu3fTxD175DNA4gap71tvke++fXIq+JQDB2jKwYNybTIxI3Da22\/T9HfeIb\/Dh8nvyBE5ecT\/3XfJ\/733aOb778tZhbM+\/JBmR0TQnMhI+VWxmHI+7+OPad7x47KTKDqIC8w6iOIh1ZR2EMVimEYHcbV5B5E7h2tMnUOxhP46U+dwPXcOxd4qonMYYtY5DDXrHG426xxuNescbjfrHO406xyGm3UOd5t1DsV1M2LDX\/xec07Pj5t047E5OQ8CnKYAtTCec7zbBSm60Rzz5WEK6GI2I8iZhzK\/m\/7xObzFFacVN3qxzkcLDgTNOSCIBNGUA0QTDhSNOWCIGywNOYA04EAiVkOtx4GlLgeYOhxo3Djg1ObAI25K1+RAJKzBQak6B6dqHKSqcrCqwkFL7MJWiYNYRQ5mFSpUIFdXVyrPgU48DOfCga8sB8AyHAhLc0AUG12U5AApLMHBsjgHzWIcPJ05iBblYCqeMhSL8BXiIPsSB9uCHHQLcPDNz0FY3AsRQ7w8HJxzc5DOxQE7JwduYQ4O4tk5mIsNgLJxcM8qgrwI9hz0xVrqxnMYEEL4Ir248xKPM2b3FZKxzEW8ZTKcA+I965CipCD55woFd4o7zm2JpW972C9PuEfwmHsG\/3IP4R\/uKTziHsPf3HMQvYJY7kn8yT2Kh9yzEGs\/CX\/n3sZv3Ot4wL2PX7kXEsO9kV+4VyK+ivuZeyn3uLfyE\/dafuTeyw\/ci4nm3ozYd0JsEP4d93LucG\/nNvd6bnHvRyimAN\/kHpFYnfEb7iFd557SNe4xXeWe09fcgxJ7Xn\/JPSoxNe4y97D+xz2tS9zjEkuPXOAe2BfcEzvPPbIo7pkJz3EvTYwCP+Ne21nuvX3KvbhPuDd3hnt1p7l3J5Y8P8m9vRPc6zvOvb+PuRf4EfcGxcyzSO4dRnAvUWxP+AH3GoXvcw\/yPe5Jiq1Wj3LP8gj3MA9zT1OsD\/M29zzFE+\/\/xz3Rg9wjPcA90\/3cQxU35kTH403uue7lHuwe7snu5h6tcBf3bsO5lxvGvV2x2u4O7v1u517wNrH+FfeKt3DvWEx62MS95VDuNW\/k3nMI96I3cG96PfeqxQ5\/a7mXvYZ728Jg7nmv5h642CRFPGy5gnvmy7mHvox76m9wjz2Ie+7i6dQl3JNfzD36RdyzX8g9\/EDu6b\/OPX6xwKP4amA+jwTm8YhAOJdHB3N4lDCbRwuzeNQwk0cP\/jyKmMGjCT8eVUzn0cU0HmWIzaWm8MhjMo9AfHkkMolHJBN5ZCKe8RnPI5VxPGIRjuXRy2s8ivHh0cwYHtWIJZpH8ShnJI92RvCoZziPfobxKEisLTaER0VifvxgHiW9yqOlQTxqEl\/xDuBRVH8eTQlFcOrHI6y+PNrqw6MusadJLx6FiXuDr\/CozJNHZz14lCamlnfjUVtXHr114VFcZx7NvcyjOg8e3Yl91DvyaE\/YgUd+Yq\/idjwSbMsjwjY8MhTL2rTmkWJSO48JdSCT2nl8UQcyuZ1HXQcysZ1H0dbiuEGhKu46k9fepMxBMj82AzVeFj9mpzwpMLHv+6rjUuNuOAAAgPjEnvCPe0bM2YtCv0zMHedYjvNmK6Rqvt2xSFKI91RzhvhDEQAAAKnBMwFebrITRTHPm\/QTc4XCxsZ\/v24RUyQFAACwWWIows880LPOVcjLfDvO\/aHkP9oj3kb+MoEc0t+JwNdHAABg40RHBpGna1z8fpHOrX0p7AVfNVkgKcS\/aYEbzQAAkA78E0NXIsMoeMrQ\/zw2IB4xGDollPadj05w5YkUJYXYOxEU1Mt82WoPi6\/tDQAAIO14blJ44cNrbOP\/DFWcySvcUrspAAAASA+emxSSpLM7+YZfSfaCeAAAAKyDZCcFOZKQ62ZEUTSyAQAA2AXxkgIAAABHhuj\/ASh6tc7yWJOgAAAAAElFTkSuQmCC\" y=\"2.00001\"><\/image> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_2\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"161.95453\" xml:space=\"preserve\" y=\"210.49999\">7 cm<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_3\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"67.95453\" xml:space=\"preserve\" y=\"90.49999\">4,5 cm<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_4\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(61.41809844970703 317.46804809570307,86.15657806396486) matrix(0.9861128330230713,0,0,0.9257160425186157,4.90153890063084,8.236956948054285) \" x=\"280.95465\" xml:space=\"preserve\" y=\"92.53705\">3,5 cm<\/text> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_5\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"null\" stroke-linejoin=\"null\" stroke-opacity=\"null\" stroke-width=\"2\" x1=\"263.95453\" x2=\"355.95453\" y1=\"29.49999\" y2=\"187.49999\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_7\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(154.58767700195312 266.7743530273438,34.36740875244141) matrix(1.0499913692474365,0,0,1.150530219078064,-13.654887427022913,-7.709344324967333) \" x=\"261.07814\" xml:space=\"preserve\" y=\"44.82543\">v<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_8\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-35 352.7743835449219,181.36732482910153) matrix(1.0499913692474365,0,0,1.150530219078064,-13.654887427022913,-7.709344324967333) \" x=\"342.98357\" xml:space=\"preserve\" y=\"172.59261\">v<\/text> <\/g> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> AE &asymp; 1,4 cm","<strong>B.<\/strong> AE &asymp; 1,3 cm","<strong>C.<\/strong> AE &asymp; 1,5 cm","<strong>D.<\/strong> AE &asymp; 2,4 cm"],"correct":"1","level":"2","hint":"","answer":"<p>V&igrave; BE l&agrave; \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c c\u1ee7a g&oacute;c ABC v&agrave; E&isin;AC n&ecirc;n theo t&iacute;nh ch\u1ea5t \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c trong tam gi&aacute;c, ta c&oacute;:&nbsp;<\/p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<span class=\"math-tex\">$\\dfrac{AE}{CE}=\\dfrac{AB}{CB}$<\/span>&nbsp;<\/p><p>thay s\u1ed1&nbsp;<span class=\"math-tex\">$\\dfrac{AE}{CE}=\\dfrac{4,5}{7}$<\/span>&nbsp;<\/p><p>suy ra&nbsp;<span class=\"math-tex\">$\\dfrac{AE}{4,5}=\\dfrac{CE}{7}$<\/span>&nbsp;<\/p><p>Theo t&iacute;nh ch\u1ea5t c\u1ee7a d&atilde;y t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta c&oacute;:<\/p><p><span class=\"math-tex\">$\\dfrac{AE}{4,5}=\\dfrac{CE}{7}=\\dfrac{AE+CE}{4,5+7}=\\dfrac{AC}{11,5}=\\dfrac{3,5}{11,5}$<\/span><\/p><p>Do \u0111&oacute;&nbsp;<span class=\"math-tex\">$\\dfrac{AE}{4,5}=\\dfrac{3,5}{11,5}$<\/span>&nbsp;suy ra&nbsp;<span class=\"math-tex\">$ AE=\\dfrac{4,5\\space.\\space 3,5}{11,5}\\approx1,4$<\/span>&nbsp;(cm)<\/p><p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong> AE &asymp; 1,4 cm<\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2023-08-06 02:53:05","option_type":"txt","len":2},{"id":"6228","post_id":"6584","mon_id":"1158921","chapter_id":"1158932","question":"<p>Cho tam gi&aacute;c ABC c&oacute; AB = 2AC v&agrave; AD l&agrave; \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c c\u1ee7a g&oacute;c&nbsp;BAC (D&isin;BC). T&iacute;nh t\u1ec9 s\u1ed1&nbsp;<span class=\"math-tex\">$\\dfrac{CD}{BD}$<\/span>.<\/p><p><span class=\"svgedit\"><svg height=\"170\" width=\"280\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"172\" id=\"canvas_background\" width=\"282\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><g id=\"svg_8\"> <path d=\"m78.42476,25.54005l170.99999,112l-232.99999,2z\" fill=\"#d4aaff\" id=\"svg_1\" stroke=\"#000\" stroke-width=\"1.5\"><\/path> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_3\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"0.95453\" xml:space=\"preserve\" y=\"150.88635\">A<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_4\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"58.95453\" xml:space=\"preserve\" y=\"23.88636\">C<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_5\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"251.95452\" xml:space=\"preserve\" y=\"156.88635\">B<\/text> <line fill=\"none\" id=\"svg_6\" stroke=\"#000\" stroke-linecap=\"null\" stroke-linejoin=\"null\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"16.95453\" x2=\"137.95452\" y1=\"138.88635\" y2=\"65.88636\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_7\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"141.95453\" xml:space=\"preserve\" y=\"63.88636\">D<\/text> <\/g> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_9\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-33.9047737121582 44.95452880859378,106.52273559570314) \" x=\"40.95453\" xml:space=\"preserve\" y=\"114.88635\">)<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_10\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" style=\"cursor: move;\" text-anchor=\"start\" transform=\"rotate(-30.77054786682129 54.954528808593714,125.52272033691403) \" x=\"50.95453\" xml:space=\"preserve\" y=\"133.88635\">)<\/text> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{CD}{BD}=\\dfrac{1}{3}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\dfrac{CD}{BD}=\\dfrac{1}{2}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\dfrac{CD}{BD}=\\dfrac{2}{1}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\dfrac{CD}{BD}=\\dfrac{2}{3}$<\/span>"],"correct":"2","level":"2","hint":"","answer":"<p>V&igrave;&nbsp;AD l&agrave; \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c c\u1ee7a g&oacute;c&nbsp;BAC v&agrave; D&isin;BC n&ecirc;n&nbsp;theo t&iacute;nh ch\u1ea5t \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c trong tam gi&aacute;c, ta c&oacute;:&nbsp;<\/p><p><span class=\"math-tex\">$\\dfrac{CD}{BD}=\\dfrac{CA}{BA}=\\dfrac{CA}{2.CA}=\\dfrac{1}{2}$<\/span><\/p><p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;<span class=\"math-tex\">$\\dfrac{CD}{BD}=\\dfrac{1}{2}$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2023-08-06 03:00:42","option_type":"math","len":0},{"id":"6229","post_id":"6584","mon_id":"1158921","chapter_id":"1158932","question":"<p>Cho tam gi&aacute;c ABC c&oacute; AD l&agrave; \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c c\u1ee7a g&oacute;c BAC (D&isin;BC). T&iacute;nh t\u1ec9 s\u1ed1&nbsp;<span class=\"math-tex\">$\\dfrac{AC}{AB}$<\/span>.<\/p><p><span class=\"svgedit\"><svg height=\"220\" width=\"250\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"222\" id=\"canvas_background\" width=\"252\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><g id=\"svg_7\"> <image height=\"183.00001\" id=\"svg_1\" stroke=\"null\" width=\"258\" x=\"0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAakAAAEjCAYAAACIB\/7lAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAADFeSURBVHhe7Z0LmE3V+8e35JJLFDLuRi65VKaiUYkGlVtKv1GU0CCM3Iaikfq7hcY1FCaXMkJR0SAZippEjSJTUqNSDVGuNZXL+q93rXPsM2evmTnXOXvv8\/08z+ep5137mDl7r\/W+s89Zey2NAQAAACYFRQoAAIBpQZEKJMfWsDhNY5rDqGkZjgYAAAC+gCIVQLIWd7hUoIRNkxjKFAAA+A6KVMDIYsntZHGKqBvJIkShimCJW3Mc7QAAALwFRSpQ7EliUY47qPgVKSzB8f9anzXshOMQAAAA3oEiFSDSx0fIoqR1ZSmHc1jaKEeR0jqw5IOOgwAAAHgFilQgyEljiRGOotQ+mWVRaGui4yM\/TKAAAABfQZEKACfWxTvumjTWYTGVKI5r4YpIZGn4agoAALwGRcpvTrA1fRzFyO2jvYxpUZeKV8JmVCkAAPAWFCl\/OZjMOjgKkWGShMtkCkygAAAA70GR8hPXZ6Pi1rqXIX1aOiZQAACA96BI+UUGS2rqLEIJyu+dXIsYJlAAAIB3oEj5g8vHeRFj0pjyWyfXpZIwgQIAALwCRcpncljaGOezUVEsaY8jbMB1YoXqI0EAAAB5gSLlKzlp+qoSBazRl7M54VKR0mJTWLYjDgAAIH9QpHzkxNo4vfB4JSZQAACAp6BI+UQ2S4lVFSDPxAQKAADwDBQpX3B9NqppD5Y4LYklFeSYHvozU5hAAQAAHoEi5QMZM\/SVJC4tg1Qgrs9MYQIFAAB4AoqU17g+G+Xd90u5NkV0LEQLAAAgb1CkvMR1dXOvZ+odTmFdna\/VYjCBAgAACgBFyitcn43SWNcV3k4mz\/3MFCZQAABA\/qBIeYPr6hFaHFtzzBH3AtdtPTCBAgAA8gdFygtyPRvl66rmrvtMcTGBAgAA8gZFymOyWHJ7vbjEr\/O1uOT+yNB9AkVGBj4CBAAAJyhSJiE1NZX16NFDFK7nn3\/eEQUAgPAGRcoknD9\/npUoUeLSHVb37t3Z0aNHHa0AABCeoEiZiDp16ugfA3JvuukmtmPHDkcrAACEHyhSJqJ48eKiOEVEaKxsWVmoypQpw5KTkx1HAABAeIEiZRI2b94silLRorI4JSdrrFkz\/a5q1KhRjiMBACB8QJEyCf379xfF6KabZFFKSNDYqVMae\/RRvVB16dKFHTp0yPEKAACwPyhSJqFChQqiEM2ZIwtSZCRdGunEiXqhuu6669j7778vXgMAAHYHRcoE0OQIKkDXXy+LUoUKsiB9+KFeqN56S35XRfHLLruMF7M59FIAALA1KFImYNiwYaL4JCbKgtS\/vyxGQ4boRYr8+muNtW6t31XFx8ezCxcu8DYAALAnKFImoHr16qLo7Nwpi9GmTbIIVa+eu0iR589rbMAAvVC1a9eO7d+\/n7cBAID9oMwHQsjnn38uik29ermLkfOjvS1bcsedzpqlF6qaNWuyt99+m8cBAMBeUMYDIWTMmDGi0IwYkbsIDRokCxD91zXu6saNGrv2Wr1YTZkyhccBAMA+ULYDIaR+\/fqiwGzblrsApaXJwlO5cu64u4cOaaxjR71Q9enTh506dYq3AQCA9aFMB0JEZmamKCw1ahiLD0lxaqc7JlW7q\/RclbNQ3X777Wz37t08DgAA1oYyHAgR48ePF0Ulr4\/0hg6VRadfP3W7u4sWaaxECfmaihUrspSUFB4HAADrQtkNhIgbb7xRFJS87pS2b5cFh56bUrWr3LFDYzfcoN9VjRs3jscBAMCaUGYDIYCWN5J3PMZC42qdOrLYrFunblf5++8a69ZNL1QPPfQQO3LkCG8DAABrQVkNhICkpCRRQPr0MRYZV0eOlIWmd291e36OG6cXqqioKPbRRx\/xOAAAWAfKZiAEREdHi+Lx9tvG4uJqerosMldeqW4vyBUrNHb11fLfKFWqFFu4cCGPAwCANaBMBgoZ2nGXigbtGUUrSLgXFnfr15dFZs0adXtBZmRo7Lbb9LuqkSNH8jgAAJgfymKgkJk3b54oFt27GwuKyjFjZHF55BF1uyf+\/bf8aNFZqDp37syysrJ4GwAAmBfKYKCQiYmJEYWCPopzLyYqd++WheWKKzR27pz6GE+dOlUvVA0aNGAbN27kcQAAMCeUuUAhcvLkSVEgihXT2JkzxiKSl40by8KycqW63RvffVd\/UJicNWsWjwMAgPmgrAUKkSVLlojC8MADxuKRn86ZejS1XNXurQcO0ArqeqEaNGgQu3jxIm8DAADzQBkLFCIdO3YURWHxYmPhyM8vv5TF5PLL5fdLqmN88ckn9ULVpk0b9vXXX\/M4AACYA8pUoJDIycm5VBCOHTMWjIJs2lS+dvlydbuvzp2rF6oaNWqwNWvW8DgAAIQeylKgkFi5cqUoBPfeaywUnjh+vCwkXbuq2\/2R9q267jq9WE2ePJnHAQAgtFCGAoVEbGysKADz5hmLhCfu368XkVOn1Mf44y+\/aOz++\/Wf0bt3b3b69GneBgAAoYGyEygEaFJCkSJFRPI\/fNhYIDy1WTNZQJYsUbcHwtGj9ULVokULtmvXLh4HAIDCh7ISKATeffddkfRbtzYWBW984QVZPDp3VrcHyqVLNVa6tPxZFSpUYK+\/\/jqPAwBA4UIZCRQCjz32mEj406cbC4I3fvedfpdz\/Lj6mED56acau\/lm\/eeNHTuWxwEAoPCgbAQKgdKlS4tET0XGvRh4q3MdvoUL1e2B9MQJuRyTs1B169aNZWdn8zYAAAg+lIlAkPnggw9Ego+ONhYBX0xKkgXD11mCvjhhgl6obmx8LZvyyvs8DgAAwYUyEAgyTzzxhEjukyYZk78vHjqkF4zsbPUxwfDNNzVWubLjZ19WjI2du4DHAQAgeFD2AUGmYsWKIrHv3WtM\/L7aqpUsFr5OZ\/fVfZ9rrGZxvUiOGDGCxwEAIDhQ5gFB5OOPPxbJ\/MYbjQnfH2fPlkWiTRt1e7DMWix\/binH6hdkp06d2MGDB3k7AAAEFso8IIgMHz5cJPKxY40J3x\/pWStnkfDnuSuvzNFYYoT8mUl7NDZjhv471KtXj6WmpvLjAAAgcFD2AUGE1sKjJL5rl1vCD4B0F0X\/9qxZ6vZAm+EsSu35HZUjtmGDxurU0YvVzJkzeRwAAAIDZRoQJDIyMkTibtAgd7IPlPPny8Jw553q9oB6UGMdHIUobm3utqws3tZBL1QDBgzgcQAA8B\/KMiBIPPPMMyJpjxyZO6kHyiNH9MJAhUJ1TKBM5ndP4mc15XdUinZyxAj996Hdh\/fu3cvjAADgO5RdQJCg7dkpYX\/0kTGhB0p6Vop+Bj07pWoPhOmO1dfJ+HXqY5wuWCB3HaZjq1Wrxt58800eBwAA36DMAoJAZmamSNS1axsTeSBdtEgWBFqFQtXur1krNBbhKFBarP5dVH5SUb7+esdruJMmTeJxAADwHsoqIAhMnDhRJOjBg41JPJD+8YdeDGhLeNUxvpqrQEVoLOWQ+jiVR49qLJYXNefvRmsXnjlzhrcBAIDnUEYBQaBp06YiOb\/\/vjGBB1paEZ1+Fq2Qrmr3xazXXAoUt8dq9XEF+eyz+r8RHR3Ndu7cyeMAAOAZlElAgPnhhx9EUq5SxZi0gyHtLUU\/j\/aaUrV7axovLK4FqsMMjeUojvPUlBSNlS8v\/62rrrqKLVu2jMcBAKBgKIuAADN9+nSRkOPijAk7GJ4+rReUr79WH+OR2Rqb6Lgrcxoz2b8C5fTzz+UCu85\/NzExkccBACB\/KIOAAHPbbbeJRPzOO8ZkHSy7dpXJf\/x4jaV\/qj4mPzNX8ILkWE3CadziwBQop2fP0pb0+r\/\/v\/\/9jx05coS3AQCAGsoeIID88ssvIgFfdZXGLl40JupguXy5TPzXlOH\/5YVKdYzKrA0a69FELxzCuhqbu1t9fCCcMkX\/WTfccAPbunUrjwMAgBHKGiCAzJ8\/XyTfRzpqLNmHOxqfPKGxJU\/qif+O5xXHuHpMY6lzNNaBFyPna5zGDOd3VfzfU74ugNJdZvXq8meWKFGCvfzyyzwOAAC5oYwBAkibNm1E4l35ksa68v9G3MXvSvjdygm3JB0QczSWxovNpY\/pSsr\/0oy6XMed01j2Nxpbs1hjcS7fC7kaGcvb97m9Lsh++62+\/iBJi\/ECAIArlC1AgDh+\/LhItqVKaeyvP3jSd7m7oY\/Q4qdpLN2LZ43yMnsPL3wDeWFx\/tvciM68OC2Q\/1+vlsaS+M9K6MMLmPtHea7y3ymOvsMqrFXU8zA+Xv+dOnTowL7\/\/nseBwAAmSVAgFi6dKlItA8+qCfg7E95seB3U5cKA8mLQ1deZJLXaiwzm99l8Tsi5\/EGz\/B2XthSV8ii09BtcgM9ZJvA2+hO7Ry\/Y7riChm\/t4LbcdyG\/PeIG6X\/XOXPC5Ev8TtP5+9Zt25d9t577\/E4ACDcoQwBAgRt\/kdJdulSYxLO3soLhHuxcpcXr5h2UkMxUtiV3y1luX1\/9Mgjsm30CF64eJswvyJoIj\/4QK4Y73x\/NJUfABDeUHYAAYCW\/KHEWrSoXKrIPQE7PfGN\/KjOkyKkMqIJv3NazIteHoVnLb9LouPq11e3m13awLFLF\/39PvHEEzwOAAhXKDOAALBq1SqRVGlfJffEm5dUsFLmaCw+VmMtFDPtSPqIjj4anLtCY5nH1P+Ou1deKV+bnq5ut4JPPaWfg9atW7OvvvqKxwEA4QZlBBAAunXrJhLqyy8bE25h63xgNlj7WBWWi\/kdI01CofdStWpVtnr1ah4HAIQTlA2An\/z333\/ssssuE8n011+NybawXb9eJvbISHW7laS7wZtu0u+qJkyYwOMAgHCBMgHwk\/Xr14sEGhNjTLKhsoJjdl8wN1wsLP\/8U2M9euiFqmfPnuzs2bO8DQBgdygLAD\/p1auXSJ4zZxoTbKjs108m9KFD1e1WlNYldBaq5s2bs08++YTHAQB2hkY\/8JMyZcqIxPn998bEGio3bZLJvEYNdbtVXb1aY5UqyfdWvnx58WwaAMC+0MgHfrBlyxaRMIO1fbs\/RjimuW\/Zom63ql99pbGWLfW7qjFjxvA4AMCO0KgHfjBw4ECRKAO5K26gHDRIJnH6r6rdyv77r\/6RJvnggw+yo0eP8jYAgJ2gEQ\/8oFKlSiJJ+rXZYJCkOyj63eiOStVuB6dP1wtVkyZN2ObNm3kcAGAXaKQDH9mxY4dIjjffbEyeZtG5HcbGjep2O5iaKqfb0\/ssVqyY2C4FAGAPaJQDHxkxYoRIjOPGGROnWaTZffQ70kdjqna7SJNW7r1Xv6saOnQojwMArA6NcOAjNWvWFAlxdxB3sfVXek6Kfkd6bkrVbjeHDdMLVfv27dkPP\/zA4wAAq0IjG\/jArl27RCJs0sSYKM2m86MwWolC1W43X3lFY5dfLt9znTp12Lp163gcAGBFaFQDH0hMTBRJkBZCdU+SZpPW8KPfldb0U7Xb0Q8\/lH9A0Psmk5KSeBwAYDVoRAMfuO6660Ty27HDmCDNJq1\/R78rrY6uarer2dka+9\/\/9ELVr18\/HgcAWAkazcBL9u7dK5JevXrGxGhWaX8p+p1pvylVu51NTNQLVatWrcT1AwBYAxrFwEsmTZokEt6QIcaEaFZHj5ZJ+tFH1e129\/XXNVaunDwHERERbOXKlTwOADA7NIKBl0RFRYlkR9uduydDs0ozEOl3vuIKjZ07pz7G7tI5uPVW\/a5q\/PjxPA4AMDM0eoEXHDhwQCQ4Ky7c2rixTM6rVqnbw8EzZzTWq5deqB555BH2119\/8TYAgBmhkQu8YMaMGSK5WfHh2GeflYn5oYfU7eEkrbXoLFTNmjVj6enpPA4AMBs0YoEX3H777SKxrVtnTHxmd88emZSLFdPY33+rjwknaRJJ1arynFx55ZVs8eLFPA4AMBM0WoGH\/PjjjyKhXXONMeFZxaZNZVJevlzdHm5mZsodlemckKNHj+ZxAIBZoJEKPOTll18WiaxnT2Oys4rO3W27dlW3h6MXL+rbmpAPPPAA+\/3333kbACDU0CgFHtK2bVuRxGh3WPdEZxVpSxFnMj59Wn1MuDpnjn5uGjVqxD744AMeBwCEEhqdwAOys7NF8qJnbXJyjAnOSt5yi0zES5ao28PZzZvlQ9p0fi6\/\/HI2d+5cHgcAhAoamcADli1bJhJXbKwxsVlN58y2zp3V7eHuTz\/Jc0PniBwyZAiPAwBCAY1K4AGdO3cWCeu114xJzWoeOKAn4D\/+UB8DNTZqlH6e7rnnHpaVlcXjAIDChEYjKIATJ06IRFWypMb\/35jMrGiLFjL5LlqkbofSV1+Vq3TQuapduzZ7++23eRwAUFjQSAQFsGrVKpGk7rvPmMSsalKSTLy0m62qHep+8onGoqL0u6pp06bxOACgMKBRCArgoYceEslpwQJjArOqWVl60j1yRH0M1D1+XGPdu+vnrG\/fvjwOAAg2NAJBPvz999+saNGirEgRjf32mzF5Wdk775QJd\/58dTs0+vzzeqFq2bIl27dvH48DAIIFjTyQD++8845ISHffbUxYVnf2bJls27ZVt0O1K1dqrGJFee6uueYatnz5ch4HAAQDGnUgH3r37i2SESV092RldQ8f1u8K6P9Vx0C1X36psTvu0M\/f888\/z+MAgEBDIw7kwYULF1jZsmVFEqLvcNwTlR1s00YmWTsW4WBLD3X37asXqh49eoiPhwEAgYNGG8iDjRs3iuTTqpUxQdnFefNkgrXzewy2zpmS5M0338w+\/fRTHgcABAIaZSAPBg0aJBLP1KnGxGQXs7P1BGvXu8XCcP16jdWqJc9jmTJl2MKFC3kcAOAvNMJAHtCX4pR0aDsH96RkJ+lZKXqfdEegaoeeefAgrUyhF\/2nnnqKxwEA\/kCjCyjYtm2bSDTR0cZkZDcXLpRJ9bbb1O3QO4cO1QvV\/fffz44dO8bjAABfoFEFFCQkJIgkQ8\/FuCchu0kPqjqT6nffqY+B3vnyyxorWlSe04YNG7ItW7bwOADAW2hEAQW0ThslmC++MCYgO+pc9ZtWSFe1Q+\/dupX2pZLn9bLLLmMvvfQSjwMAvIFGE3AjPT1dJBZar8098dhV2luK3nOzZup26Ju0Sgntgkznlhw8eDCPAwA8hUYScGPs2LEioYwebUw6dvXUKT2R7t+vPgb67jPP6Oe3Xbt27NChQzwOACgIGkHADfoOgZIJrX7tnmzs7AMPyCQ6YYK6Hfon7UV25ZXyHNeqVUssuQUAyB8aPcCFL774QiQR+i7BPcnY3eXLZQJt2lTdDv33s8801ry5flc1depUHgcA5AWNHODC5MmTRfKgacTuCcbu\/v23xi6\/XCZPWptOdQz0X\/potWdPvVA9\/vjjPA4AUEGjBrhw0003icSRlmZMLuFgt24ycY4bp26HgXPSJL1Q3X777ezrr7\/mcQCAKzRagIP9+\/eLhFGnjjGhhIurVsmk2aSJuh0G1jVrNFalijznlSpVYikpKTwOAHBCIwU4mDlzpkgWAwYYk0m4eO6cxq64QibN3bvVx8DASrMp77pLv6t67rnneBwAQNAoAQ7uuOMOkSTee8+YSMLJRx6RyXLMGHU7DLznz2ts4EC9UD388MMsJyeHtwEQ3tAIAZzvv\/9eJIdq1YwJJNykj6DoXDRooG6HwXPWLL1QRUVFsZ07d\/I4AOELjQzAmT9\/vkgMffoYE0c4WrasTJTp6ep2GDw3bdJY3bry\/JcuXZotWLCAxwEIT2hUAA6tAkBJ4a23jEkjHO3dWybJkSPV7TC4\/vijxjp10u+qRo0axeMAhB80IsKew4cPi0RQsaLG\/v3XmDDC0XXrZHIM55mOZpD+SHAWqvvuu48dP36cxwEIH2gkhD2vvvqqSAI9ehiTRDh79dUyOW7frm6HhWNyssZKlJDXokGDBiwtLY3HAQgPaBSEPV26dBEJgJYFck8Q4Wy\/fjIxhuPqG2Zzxw6N3XijvB5FihRhM2bM4HEA7A+NgLDm999\/FwOfJgrQcjXuySGc3bhRJsUaNdTtsHA9dkxjDz0krwk5aNAgHgfA3lDvD2voCX8a8LTnj3tSgBqrXFkmxHBdJsqMPvecXqjatm3LfvzxRx4HwJ5Qrw9r6KFJGuyLFhmTAaS\/1p1\/tavbYWh84w2NVaggr02NGjXYu+++y+MA2A\/q8WHL6dOnWbFixbgaO3LEmAigxrZskYkwIkLdDkNnRgYtTKvfVY0fP57HAbAX1NvDlrfeeksM7o4djQkA6lavLpMgPWSqaoehk7ZXefxxvVD17t2bxwGwD9TTw5Y+ffqIgf3SS8bBD3WHDJEJsH9\/dTsMvdOm6YXqtttuEyv6A2AHqIeHJf\/++y+78sorxaCmp\/vdBz3U\/fBDmfzoYWdVOzSH9AB2zZryWlWoUIGtWLGCxwGwNtS7w5L169eLwdy2rXGwQ6ORkTL5rV+vbofm8MABjd19t35XNXbsWB4HwLpQzw5L4uPjxSCmj0ncBzo0mpAgkx4W4LWGzo9oyW7durF\/\/vmHxwGwHtSjw5LKlSuLAfztt8YBDo1+8olMeOXKqduh+Zw3j1ankNetadOm7LPPPuNxAKwF9eaw44MPPhADt2VL48CGeVu\/vkx4a9eq26H5pIewGzaU1+2KK65gCxcu5HEArAP15LBj5MiRYtBOmGAc1DBvR4+Wye7RR9Xt0Jz+8ovGHnhAXjsyISGBxwGwBtSLw47IyEgxWPfsMQ5omLe7dskkV6qU3O5cdQw0r2PG6IWqU6dO2PYDWALqvWHF9u3bxSBt3tw4iGHBNmokk9zq1ep2aG6XLtVYmTLyGtavX59t3bqVxwEwL9RzwwqakksDNDHROIBhwT77rExwtBq3qh2a3507NXbLLfpd1cyZM3kcAHNCvTasaNSokRiYn35qHLywYOkjUjp\/tN5hTo76GGh+T56U3y06C9XAgQN5HADzQT02bKApuDQgb7jBOGih5zo330tJUbdD6zhxol6oYmJi2E8\/\/cTjAJgH6qlhw4QJE8RgHDnSOFih544fL5Ma9uCyh2++KVe5p2tavXp1tm7dOh4HwBxQLw0bbrnlFjEQt20zDlTouV9\/rf\/1ffq0+hhoLfft01irVvp1pT\/oADAD1EPDgi+\/\/FIMvgYNjAMUeq\/zi3eaLaZqh9bz3DmNPfGEXqh69erF4wCEFuqdYcGLL74oBt6TTxoHJ\/TeyZNlIrvvPnU7tK4zZ+qFKjo6mmVmZvI4AKGBemVY0LJlSzHoNmwwDkrovbTmoTOR\/fGH+hhoXTdu1Ni118rre\/XVV7M33niDxwEofKhH2p5vv\/1WDLbatY2DEfpuixYyiS1apG6H1jYrS+5a7fxjZPTo0TwOQOFCvdH2zJkzRwwy7CwbWF98USav9u3V7dAejhihF6rY2FixYSgAhQX1Qttz9913iwGG1bsD6w8\/6Mnr6FH1MdAeLlyoseLF5bW+4YYb2K5du3gcgOBDPdDWHDp0SAysKlXk7CX3wQf98847ZeKaP1\/dDu3j9u3yQXi63iVLlmSLFi3icQCCC\/U+W7NgwQIxqB57zDjooP\/OmiWTFrbhDw\/pjrlbN3nNycGDB\/M4AMGDep6tuf\/++8VgwhI+wfHnn\/WERfsWqY6B9nPcOP26d+zYkf3xxx88DkDgoR5nW3777TcxiK66SmNnzhgHGgyMbdrIZDV7trod2lP6w4\/GFl37unXrsm3btvE4AIGFepttWbp0qRhA2FYiuM6bJxMVLaujaof29Ysv9EcRyFmzZvE4AIGDeppt6d69uxg4r75qHFwwcGZn60nq0CH1MdC+nj2rsT599D7w+OOP8zgAgYF6mS35888\/WfHixVmpUkXY778bBxYMrPfcIxPU9Onqdmh\/p07VC9Vdd93Ffv75Zx4HwD+od9mSlStXisFy\/\/3GwQQDLz1HQ+f7ttvU7TA8fOcdjdWoIftC1apV2fr163kcAN+hnmVL6CMHGih4fqdwPH5c\/yv6u+\/Ux8DwkNZ1pEcSnP1h4sSJPA6Ab1Cvsh1\/\/fUXK1euHCtaVE6Rdh9EMDh26iST0pQp6nYYXg4erBeqnj178hgA3kO9yXa8\/fbbYmBgTbnCdfFimZCaN1e3w\/Bz7ly9UN16663sm2++4XEAPId6ku0YOHCgGBS0L477oIHB8+RJPSHt368+BoafH3ygseuuk\/2ifPny4vtiADyFepGtOH\/+PIuIiBAD4sAB44CBwfWBB2QymjBB3Q7D08OH5SQm5x8xY8aM4XEACoZ6kK3YsGGDGAQxMcaBAoPv66\/LJBQVpW6H4e3TT+uF6sEHH2T\/\/fcfjwOQN9RzbMXw4cPFAHjhBeMAgcH3r780MWGFrsFXX6mPgeHtkiUaK11a9pHrr7+e7d69m8cBUEO9xlbUqVMHCTLEOlfJpkVIVe0Qpqdr7OabZT+hh+6Tk5N5HAAj1GNsw9atW0WnxwOloXXlSpl8mjRRt0NI\/vmnxh55RPYV8sknn+RxAHJDvcU2jB49WnT25583DghYeP73H22KJxPP55+rj4HQ6fjxeqFq3769WNIMACfUS2xD48aNRUf\/7DPjQICFq\/Mv5DFj1O0Qurp6tcauuUb2mWuvvZZ9+OGHPA6A7CG24JNPPhEdnD7ndh8AsPBds0YmnAYN1O0Qurt3r8buvFO\/q5o9ezaPg3CHeocteO6550THxl\/u5rFsWZlsPv1U3Q6hu\/\/+q7H+\/fVChW0\/APUMW9CsWTPRqT\/80NjxYWjs1UsmmlGj1O0Q5iVt+eIsVK1atWKHDx\/mcRCOUI+wPJ9\/\/rnozJhNZi7ffVcmmTp11O0Q5mdqquw71IeqVKnC3nvvPR4H4Qb1BsszefJk0ZFHjDB2dBhar75aJpnt29XtEObnDz\/IhaKpD5GTJk3icRBOUE+wPHfeeafowJs2GTs5DK19+8rkMmyYuh1CTxw+XC9U3bp14zEQLlAPsDT79u0THbdePWPHhqF3wwaZWGrWVLdD6KkLFmisWDHZn+g7aGz7ER7Q1bc0M2bMEJ120CBjp4bmsHJlmVjS0tTtEHoqTYy6\/nrZn2hj01WrVvE4sDN05S3NPffcIzrsO+8YOzQ0hwMHyqQSH69uh9AbjxzRWGys7FPkM888w+PArtBVtywHDx4UnbRGDY1duGDszNAc0qZ3dJ2qVFG3Q+iLY8fqhapjx47s3LlzPA7sBl1tyzJv3jzRQePijB0Ymsvq1WUyef99dTuEvrh8Oe32K\/sWLYtGj6MAe0FX2rJ06dJFdM5Vq4ydF5rLIUNkIqHVBFTtEPrq7t0ai46W\/atYscvZq6++yuPALtBVtiQ\/\/\/yz6JS0KOXZs8aOC80lfeFN16tiRXU7hP545ozGeveWfYwcMmQIjwM7QFfYktAmadQZH33U2GGhOa1dWyaQ995Tt0Por7Qjt7NQtW3blp04cYLHgZWhK2tJHnroIdERX3vN2FGhOU1IkMmjTx91O4SB8O23NVatmuxrkZGR7KOPPuJxYFXoqlqOo0ePshIlSrBy5Yqw48eNnRSa008+kYmjXDl1O4SBMjNTY23a6HdVc+bM4XFgReiKWo7ly5eLjkfPSrh3TmhuaWUQunb0166qHcJAefGifDbPWaji4uJ4HFgNupqW47HHHhOdbtEiY8eE5vbpp2XC6NlT3Q5hoJ0zRy9UtM7nL7\/8wuPAKtBVtBSnTp1i5cuXZyVLFuGdzdghobmlrf0pWZQqpbHz59XHQBhoN2\/WWP36su9VrlyZpaam8jiwAnQFLcWbb74pOtp99xk7IrSGjRrJZLF6tbodwmD4888yb1DfI2mLH2B+6OpZin79+okO9tJLxk4IraFzOZuHH1a3QxhMn3pKL1Q0SxiYG7pqluGff\/5hVatWZUWKaOzgQWPng9YwI0MmiOLFNX5N1cdAGExffVV+5Ez98JZbbmHffvstjwMzQlfMMqxbt050qrvvNnY6aC1vvFEmiJQUdTuEwZYeibjpJtkPy5Yty1avXs3jwGzQ1bIMgwcPFh0qKcnY4aC1\/L\/\/k8nhwQfV7RAWhn\/8obHu3WVfJBMTE3kcmAm6Upbh2muvFR1p3z5jZ4PWkq4hXUv66JbWXVMdA2Fh6fyjiezUqRM7f\/48jwMzQFfIErz\/\/vuiA7VqZexg0JrecotMCsuWqdshLExpN4VKlWSfbNSoEfviiy94HIQaujqWYOTIkaLzTJpk7FzQmk6eLBMCHieAZvHLLzXWsqXsl0WLFmWLFy\/mcRBK6MpYgiZNmoiOQ3vHuHcsaE2\/\/VYmA\/LPP9XHQFjY0ozTvn31vjl06FAeB6GCrorpoVWMqbPQxmbuHQpaW+dmdcnJ6nYIQyVN0HIWqtatW7OTJ0\/yOChs6GqYHppxQx1l3DhjR4LWdto0mQTat1e3QxhKae8z5z5otWrVYtu3b+dxUJjQlTA9zZo1E51kxw5jJ4LW9ocf9L9Wjx5VHwNhKKWFA+69V++nL730Eo+DwoKugqnZuXOn6BhRUcbOA+2h84vql19Wt0NoBocN0wtV3759eQwUBnT2Tc348eNFp6D1ttw7DbSHM2fKgd+unbodQrNIf0hdfrnsr\/QJz6+\/\/srjIJjQmTc1d9xxh+gQW7YYOwy0hz\/9pP+Fiu1XoNndtk1jjRvL\/lqpUiW2YcMGHgfBgs66admzZ4\/oCLS1g3tHgfYyJkYOetqgTtUOoZn87Te5pJfzj6sXXniBx0EwoDNuWqZOnSo6wNChxk4C7eXcuXKwt26tbofQjCYm6oXq4Ycf5jEQaOhMm5a2bduKi5+aauwc0F7SX6bOwf7jj+pjIDSjr72msXLlZN+l5ZQOHDjA4yBQ0Fk2JZmZmeKi16lj7BTQnt5zjxzo06er2yE0q7t2aezWW2X\/LV26tNhBHAQGOsOmZPbs2eKCDxhg7BDQni5YIAf57ber2yE0s6dOaeyxx2QfJseOHcvjwF\/o7JqSjh07igu9dq2xM0B7euyYPsCx8zK0qs6Fk8nOnTuzCxcu8DjwFTqrpiMrK0tc4GrVNPb338ZOAO1rp05ycE+Zom6H0AquWaOxqlVlX65fvz7LyMjgceALdEZNxyuvvCIubp8+xosP7e3ixXJgN2+ubofQKu7frz9aUaRIEbZkyRIeB95CZ9N0dO3aVVzYN94wXnhob0+elIOazMxUHwOhVbxwQWMDB+p9etiwYTwOvIHOpKmgZUZKlizJKlbEHkPh6v33ywE9caK6HUKrOXu2XqjuuusudurUKR4HnkBn0FTQLTFdyB49jBcahof03An1ASwqDO3kpk0aq1dP9u2aNWuyHTt28DgoCDp7pqJHjx7iIi5ZYrzIMDw8e5a27paD+auv1MdAaEXpQfXOnfW7qrlz5\/I4yA86c6bh+PHj7KqrrmJlyxYRKxC4X2AYPsbGykH83HPqdgit7MiReqHq168fj4G8oDNmGt544w1x0bp2NV5UGF7SpBnqC9dfr26H0OomJ2usZEnZz5s3b87\/MP+Nx4E7dLZMQ58+fcQFe+UV4wWF4eW\/\/+oD+PPP1cdAaHU\/\/lhjTZvKfl6xYkW2ceNGHgeu0JkyBWfPnmXVqlVjxYppLCvLeDFh+EmTZ2jwPvOMuh1CO0grrTz8sOzr5JQpU3gcOKGzZArWrl0rLlDHjsaLCMPTt96Sg\/a669TtENpJ+v7VWai6d+\/OY4Cgs2MKBgwYIC4OPU\/gfvFgeHrxosbKlpWDdudO9TEQ2kn6LpaeEaU+37hxY\/bdd9\/xeHhDZybknDt3jtWpU0dcmG++MV44GL726iUH7KhR6nYI7eaePXInAOr3pUqVYm+99RaPhy90VkJOamqquCBt2xovGAxv331XDtZrr1W3Q2hHaWHtuDjZ98lnn32Wx8MTOiMhZ+jQoeJCTJtmvFgQXnWVHKg7dqjbIbSrL76oF6r77ruPXbx4kcfDCzoTIYe2XKaLQLe57hcJwr595SAdNkzdDqGdXbdOY7VqyTFQq1Ytnif38Hj4QGchpGzZskWc\/JYtjRcHQnLDBjlAa9ZUt0Nod7\/7TmN3363fVS1dupTHwwM6AyHl6aefFid9wgTjhYHQ6TXXyMG5dau6HcJwcMgQvVANHz6cxwqZcydY5tYUljSwK4uJjrz0u2haJGvRriuLn5bC0g6ecBwcGOidh5SoqCjxJjHFGObngAFyMAwerG6HMFycP19jl10mx0NMTAw7ffo0jweZc9ksbU4ci4lwFqX8jYxNYmnZjtf6Cb3rkPHxxx+LN4RdWGFBbt4sO3+VKup2CMPJtDSNNWokxwQtpxTUbT+OpbHEuyIuFSBNi2ANO8ezxDkpLHVrGkvjpq6YyxIHdmCRl47hRsSwiZ\/mOP4R36F3HDLGjRsn3kxiovEiQOhutWqy87\/\/vrodwnDy11\/lYtzOojBv3jweDzCHUll8tP4zIjpPzP8O6UQmS3myxaXjtYgeLOWQo81H6N2GjOjoaPFGPvrIeAEgdPfJJ2XHf+IJdTuE4eiYMXoR6d+\/P48FiiyW0lO\/g2rxZCqPeELu12mxKcyfT\/7oXYaE3bt3izdwww3Gkw6hym3bZKevVEndDmG4umyZvoTYrbfeyrKz\/f9C6MS6eBbhLDTRSSzDEfeIY\/wO7NL3VxEscavvH\/vROwwJkyZNEm+ANv9yP+EQ5mXt2rLjv\/eeuh3CcJUmnzVrJsdHmTJl2KZNm3jcV7JYcnu9yCRs9r7IZEyLYS1i41ni4jUs43CAilT6eOcvVZD6dMN0H39469atxb9FX4i7n2wI83LECNkHH39c3Q5hOHvypMZ69tRz9dSpU3ncB\/YksSjHv6FFTGTpjnAooHd2Cc+LlKsRLObZNObNzPi9e\/eK1zZoYDzJEOYnbRJHfad8eXU7hFBjEyfqObpHjx485h1Zr3W99HptVBrzf46e79A7uoRrkYqMjmEx7fKwiet0RGmL8ekev5Hp06eL19AX4e4nF8KCrFdP9rl33lG3Qwjlfmz0yAaNFdr24+DBgzzuGenP6rm962ueTZcIFvRuLuFapCZ+6gjmxbkTLGNxnMu8+CiP58Tfc8894jXr1xtPLIQF+fTTss\/RxxqqdgihdN8+jbVuLcdLiRIl2Jo1a3i8ILJZSqwzr2ssfl1gV5DwFnonl\/CqSDnImCZXjBB6cFtIm3jRsfQF+D\/\/GE8qhAX52Weyv5UurbELF9THQAil587pK7aQ9Hxq\/uQuUp7WgmBB7+ISvhQpdjCZxTheo7VLLnAe\/dy5c8Wx\/fsbTyaEntqwoexzb76pbocQ5nbmTD2\/d+nShcfywm5F6nAK6+p4jda04Ln0tCcKHYvkAv2RVimhfvTww+p2CKHRjRs1VreuHDu1a9dmX375JY+7k83WuMwQtPzHfbmmKg5MzXeW308\/\/cRKliwpvsw7dcp4AiH01IwM2eeKF8fHxhB646FDGuvYUc\/1y5Yt4\/HcZEzWJ8fFLLTqxAlBDksb5XwzBT9VvGjRInHsY48ZTxyE3kqrlVB\/WrFC3Q4hzNuEBD3fjxgxgsd0aLUJZ1tBNx95cjCZdY2Wz9Om7vF9BQz6bS\/hcZHKOcGyv0llc\/voCwl6MgU9NjZWHLt8uVziBkJ\/7N1bY5GRGuvVS90OIczfhQtp1p\/M4W3atOGxbTJZu36NE5HI0jx9vsiF7BUuz1r5sX5fnkXKcyNZ12npBVbaI0eOsPLlyyleDyGE0AxGRtZmGzZs4BnbdfKEL8siuS6rpLGuK4JwJ+WxdTuw+DlpLPuc4x\/Jg9dee039egghhKZyzpw5LGdzgssCsxNZhhd1KtdrI+JZ6jFHgw\/kWaTyXXHirob6L+C0bpzf+4YAAAAwC1m5pqK3GOPh8neHUlgPlx18O\/g58cK376QcnPgmlU3s7LJEUkQCSzvjaAQAAGBt3AqO2PQwn0XFs7dOZB1cj++ZUuCzswXhV5ESnMtkc10+e4ya5tWuIwAAAExMzjfJuQoVGdnedfv4VJYyJ4HFRUfmOiaicxLLCMBNi\/9FikOfP1765Tx4oBcAAICFoG3hh8cYv+ZR6tlkOk8JSJHKNV1RC+3eIwAAAIJDzuEMtmZxIouPjWEtHCtXCCMaspjYeJa0Io1l+jFJQgWKFAAAANOCj\/sAAACYlgAUqdwPbWHiBAAAgEDhV5HKOZzGkmJdZ3R0YMmeb\/4IQN7k+gi5AOu2YDHt4ljCnBSWns\/0WACA9cizSOX7MC8315dmwgjWY0VoV8sFNsKbIuVmZOxclhGoqUUAgJCSZ5HyyogYlrAis8AFZgHwmFxFKpK1UPyh5LSh2zMcwrpxbA1WQAHA8vhcpMSdVp8Elrw2g2WjOoFA4+2M0TNZLH1xAotxLVjR\/HVYAQUAS5OrSAFgGnx9rMFtGZeoZwveQgYAYF5QpIA58bVIcXJ2JOq7RWMyDwCWBkUKmBM\/ihRjJ9iaPs7X8rupGXgsAgCrgiIFzIlfRcrtAfN2yX6vxAwACA0oUsCc+Fmk2IlUFn\/p9fEsFVPSAbAkKFLAnPhbpFgGm3hpAkUUS9rjCAMALAWKFDAnfhep7Fy7inq1YDIAwDSgSAFzgiIFAOCgSAFzgiIFAOCgSAFzgiIFAOCgSAFz4neRSmcTL70+Bg\/0AmBRUKSAOfG3SB1yfX0CS8PaSABYEhQpYE78LFIn1sY5XsuNTWHZjjgAwFqgSAFz4leRyv19VIfFWG8CAKuCIgXMiR9FKvcCs3FszTFHAwDAcqBIAXPia5Fy26qjBRaXBcDSoEgBc+Jlkco5lslS58QZNj3MwIQJACwNihQwJ7mKVH7bx7dgkZeOczE6nqVi+3gALA+KFDAnuYqUN0awmOEpLBOrngNgC1CkgDnxokhFRvM7qj4JbO6KNJaJSRIA2AoUKQAAAKYFRQoAAIBpQZECAABgWlCkAAAAmBTG\/h\/mapbzqZ7kZAAAAABJRU5ErkJggg==\" y=\"0.49999\"><\/image> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"17\" id=\"svg_2\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"36.95453\" xml:space=\"preserve\" y=\"150.49999\">12 cm<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"17\" id=\"svg_3\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"84.95453\" xml:space=\"preserve\" y=\"214.49999\">28 cm<\/text> <line fill=\"none\" id=\"svg_4\" stroke=\"#000\" stroke-dasharray=\"5,5\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"16.95453\" x2=\"238.95453\" y1=\"189.49999\" y2=\"189\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"17\" id=\"svg_5\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(90 21.318161010742163,189.68182373046878) \" x=\"16.95453\" xml:space=\"preserve\" y=\"195.49999\">v<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"17\" id=\"svg_6\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-90 233.31816101074222,188.68179321289065) \" x=\"228.95453\" xml:space=\"preserve\" y=\"194.49999\">v<\/text> <\/g> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{AC}{AB}=\\dfrac{4}{7}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\dfrac{AC}{AB}=\\dfrac{3}{7}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\dfrac{AC}{AB}=\\dfrac{3}{4}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\dfrac{AC}{AB}=\\dfrac{4}{3}$<\/span>"],"correct":"4","level":"2","hint":"","answer":"<p>Ta c&oacute;: CD = BC&nbsp;&ndash; BD = 28 &ndash; 12 = 16 (cm)<\/p><p>V&igrave;&nbsp;AD l&agrave; \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c c\u1ee7a g&oacute;c&nbsp;BAC v&agrave; D&isin;BC n&ecirc;n&nbsp;theo t&iacute;nh ch\u1ea5t \u0111\u01b0\u1eddng ph&acirc;n gi&aacute;c trong tam gi&aacute;c, ta c&oacute;:&nbsp;<\/p><p><span class=\"math-tex\">$\\dfrac{AC}{AB}=\\dfrac{CD}{BD}=\\dfrac{16}{12}=\\dfrac{4}{3}$<\/span><\/p><p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>D.<\/strong>&nbsp;<span class=\"math-tex\">$\\dfrac{AC}{AB}=\\dfrac{4}{3}$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2023-08-06 03:05:35","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.