{"common":{"save":0,"post_id":"6561","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"6018","post_id":"6561","mon_id":"1158921","chapter_id":"1158929","question":"<p>T\u1ee9 giác ABCD có BA = BC, DA = DC và <span class=\"math-tex\">$\\widehat{B}=80^0,\\widehat{D}=120^0$<\/span>. Tính các góc A và góc C.<\/p><p><span class=\"svgedit\"><svg height=\"210\" width=\"242\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g><title><\/title><rect fill=\"#fff\" height=\"212\" id=\"canvas_background\" width=\"244\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g><title><\/title><image height=\"210\" id=\"svg_1\" stroke=\"null\" width=\"242\" x=\"0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUcAAAEJCAYAAAAHG+V3AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACJlSURBVHhe7d0JeFTVGQbgIBRwqVAEO1BRo7QsUkjAgpE9ioWAFiObLFKIUgKEpUFAUxYxgmBYVASECAWasBlkiywhCNUGgRKWssgiiKBRKKasQQH\/5r+cO7lnMklmJndm7vK9z3Oe0jlnApO59\/PO3HP+E5KRsYkuX77kdbty5YpPzd3PKrlddvuzSm6X3fyskpv7n1Vyc\/ezSm54bYWbdV8bP8\/9zyu+uftZnjR3P6vkhtfGLWTz5k0EAAAyhCMAgBsIRwAANxCOAABuIBwBANxAOAIAuIFwBABwA+Hod7mU1jeEQkJEC0uibNEDAMaFcPS3Y8kUpQaj0sIpaY\/oAwDDQjj62Ym5kbdC0RFKoY5bAel4JZPyRD8AGBPC0a+yKSlMXDHGplDKy+LPITGUdk4MAQBDQjj60\/ZEcihhGELRqTmUtylehGMIRc0\/IQYBgBEhHP0mjzJfcYgwjKLkY\/xQJiWIj9a4MQNgbCGbNiEc\/SI3nQaJq8SQ9sl06zpRG5gOStiCbx4BjArh6Ce5K2NECLp8hN6TROFqaL6MGzMARoVw9IsTlNxeBGChmy+amzS4MQNgWAhHf9DObeybRrniYZVzek9+w40ZAGNCOPpB9pRwZ\/jFb3LzwVkbnrgxA2BICEfdaT42OxIo0+2XitolhbgxA2BECEed5W1JcM5tDJ9S9DWh9oaNu4\/eABBcCEdd5VGmcxVMCWuo8zIpXg3HkGhKOS0eBwBDQDjq6VwaxTgDz7uGGzMAxoJw1FFOarTb4POo4cYMgKEgHHWjndsYTj1eSaKkKSW1BOrhnPOIGzMARoJw1It25YtzuWDJtHMecWMGwDgQjjrRzm306vtDqRiuKFABAEEXkpGBcCw1bbUdr+8851BKF\/W5IRQ5FzdmAIwAJct0oJ3bGNIlJT\/uvCPNecSNGQBDQDiWmryBVsxKH7411JY3w40ZAENAOJaWNLfR1yo72jqP+Q03ZgCCDuFYSifmRxWEWmy6z6EmfTTHjRmAoEM4AgC4gXAEAHAD4QgA4AbCEQDADYQjAIAbCEcAADcQjgY2depUysu7NSH8xo0byv8CQGAgHA1q8uTJypzHSpUq0ejRo6lr167Uu3dv2rt3rxgBAP6EcDSgXbt2FUwsz29hYWHS\/+\/bty8dOHBAjAYAf0BVHgNq1qyZMwjvueceio2NpTJlykgBye3FF1+kL774QjwLAPSEeo4GM2bMGCkAFy9erDx+5swZGj58uNSntgEDBtCxY1hvCKAnhKOBbNmyRQo9\/vjs6tSpUxQXFyeNU9vgwYPp5MmTYiQAlAbC0UAaNGjgDLoHH3yQLl68KHoK+\/LLL2ngwIFSOKpt6NChdPo09noFKA2Eo0EMGzZMCrhVq1aJnuIdOXKE+vfvLz1XbfHx8fTtt9+KkQDgDYSjAaxZs0YKtSFDhogezx06dIj69esn\/RxuZcuWpVGjRtHZs2fFSADwBMIxyC5dukQPPfSQM8zq169PP\/\/8s+j13v79+6lPnz5SQHKrUKECvfrqq3T+\/HkxEgCKg3AMspgYzf4x+S0zM1P0lM6ePXuoZ8+e0s\/mduedd9LYsWPpwoULYiQAuINwDKKUlBQpuBISEkSPfnhCeffu3aW\/h9vdd99Nr732Gl25ckWMBAAthGOQ5OTkULVq1ZxhFRERIXr8Y\/v27dS5c2cpILlVqVKF3njjDbp27ZoYCQAM4Rgk3bp1k0Jqx44dose\/PvvsM+rUqZP0d3PjoOb13ChwAXALwjEI5syZIwXTpEmTRE\/gbN26lZ5++mnp38GtevXqlJSUJEYB2BfCMcCOHj1KFStWdIbRU089JXqCY\/PmzdS+fXspILnVrFmTZsyYIUYB2A\/CMcCiogq2ci1XrpwyP9EINm7cSG3btpUCkhuv1Jk5c6YYBWAfqMoTQPxxVRs8Rgyd9PR0ioyMlP6d3GrVqkWzZ88WowCsD\/UcAyQ7O1sKm+joaNFjTLxqp2XLltK\/mVudOnVo3rx5YhSAdSEcA6RFixbOgKlcubJpCkOsXLlSqi+ptkceeYTmz58vRgFYD8IxAMaNGycFy8KFC0WPeSxfvpyaNm0qvQ5uDRs2pEWLFolRANaBcPSzbdu2SWHC657NbMmSJdS4cWPpNXFr1KgRpaamilEA5odw9LPw8HBngPD0mNzcXNFjblyh3HVvG25NmjShZcuWiVEA5oVw9COup6gNjrS0NNFjHQsWLFAqCWlfJ7fHH3\/ckq8X7APh6Cfr1q2TwoK3MLCy5ORk5U629jVz4xtRq1evFqMAzAPh6AdXr15V5gWqAVGvXj3brFnmpZG\/\/e1vpYDk1qZNG+U\/GABmgXD0A9dtC+y4Cum9996j0NBQ6ffAjVfhbNiwQYwCMC6Eo86WLl0qhcHo0aNFjz29\/fbbdP\/990u\/E27t2rWjjIwMMQrAeBCOOvr+++\/J4XA4A4Dv3MItU6dOpRo1akgBya1jx470ySefiFEAxoFw1NHzzz8vnfhcYBYK3Lx5k6ZMmUL33nuv9HvixjUmP\/30UzESIPgQjjrh9cbak52ra4N7P\/74I02cOJHuuece6XfG7bnnnqOsrCwxEiB4ULJMB7zBPm9cpZ7gTzzxhOiB4vBd\/QkTJlClSpWkgOTGldJ37twpRgIEHsJRB9qK2mXKlKH\/\/Oc\/ogc8cfHiRWX9ufY\/MGrr0aOHUtEIINAQjqU0bdo06WR+5513RA9464cfflB2YNRWSlfbCy+8QPv27RMjAfwP4VgKe\/fulU5gvqkApXfu3DllChRXStf+frn169ePDh48KEZ67tKlS8p3nQCeQjiWQuvWrZ0nLe8D\/dVXX4ke0ANvXztixAgpHNX20ksv0RdffCFGFo\/XefNzMK8SvIFw9BHfSNCerCj86j9nzpyhYcOGSb9vtcXGxtLx48fFSPdiYmKUsWPGjBGPAJQM4egD3vtZe4L26tVL9IA\/8ZV5XFyc9LtXGz9e1JU7FxfmMa1atRKPAJQM4egDbbFXXvVx\/vx50QOBwFeKfMWovgfaxleYrltQnDx5UunjmQSu3zseOXKEhg8frtwMAtBCOHrp5Zdflk7GFStWiB4INA42\/u5R+36ojb+r5O8sVWqlIPV7R16y2L17d+d4npQOoIVw9ML69eudJxM3vnqB4OO713wXW\/vecOO73aNGjVLufqvfOz777LOFdlXkx3jfbgAthKOH+ONY7dq1nScU\/xlTQ4yF50HyfEht8HGrUKGCslui9rGyZcvSoEGDaP\/+\/eLZADKEo4dcv+Piq0gwJl5R07NnT+n90jaeaP7f\/\/5XjAZwD+HoAd6WVHtyjRw5UvSAEW3durVQhSRt42WKPBXrypUr4hkAhYVkZCAci8NXGNo6hI8++qjoAaPiyeHq+8XfJ86YMUOp9qM+prYqVaooN2Lw9Qi4g5JlJeA5jNoTiuc4gvENHDiw0PeJ\/HFa+16qjetLcp1JrjcJoEI4FoNXvWhPIv4oBualne8YFRUlvbfc+BMCVywHYAjHIvCJxOul1ROH11GD+WnnO27evFnZy0Z9j9VWs2ZNZe8bsDeEYxH+9Kc\/SScMymVZg7t11rwbIu+KqH2\/ufHuiTNnzhSjwG4Qjm7wVYP2JJk+fbroAbMrbp0176vN+2tr33tuvAc578cN9oJwdMFVvPk7KfXE4CrfYB3FrbNWrV69mlq0aOE8BtRWp04dSk5OFqPA6hCOLnj\/F\/Vk4PlwvD8MWAtfHfK2DCWtjklLS3PWgtS2+vXr04IFC8QosCpLhyMXF+jbt6+yttYTiYmJ0kmAqwRgvAiA9yDXHhvcGjZsSIsXLxajwGosHY7qAc1bgJYUdLwdqPbA542dALRSU1OpUaNG0nHCjUvYLVmyRIwCq7B0OPKm+toKLM888wwdPnxY9Mq0VwYOh4POnj0regBkixYtUq4a1eNFbU2bNlWuMsEabPGdY1JSklKFRT2IJ0+eLHpu4c2ctAf50qVLRQ9A0fh7R9dqP9z4e8qVK1eKUWBWtrkhc\/ToUWWdrfYA5qWAXHhDe2D3799fPAPAM\/PmzVPuZGuPI278qYXvfIM52SYcVfxfe15Lqx7A\/H2k+mdePZGXlydGAnhn9uzZypxI9XhSG98dT09PF6PALGxZlYf3C3FXXh8HMOiBV9U8+OCDhY4vXoWDiuPmYdt6jjyHzfXg5VL7nk77ASgJl0rjddqux1n79u2Vdd1gbLYMx9zcXOmg\/fWvf+38c9WqVemDDz4QIwFKjyv9VK9e3XmMqa1jx45KYV4wJluGo+s+I9u2bVPmOWqXjHHhCS6aCqCHGzduKLMkqlWrJh173Dp16oQ6oQZku3D8+9\/\/Lh2Y48ePFz23vPXWW3TbbbdhEjj4Ba\/nfuONN5Qq5NrjkFvnzp2VublgDLYKx6+\/\/poqV67sPBh5qoU7PO3HdWN4AD3x\/jVcPFlbM1Rt3bp1o127domRECy2Csfo6GjpIORd6gCC6cKFCzR27Fi64447pGOTG++giGM0eGwTjjy9Qnvg8aoZAKPg6WWvvvqqsse29jjlxt+RY3\/twLNFOB48eFBaPtihQwfRA2AsvKZ\/1KhR0vGqNp5qdujQITES\/M0W4agtgX\/77bfTsWPHRA+AMeXk5FB8fLwUjmrjJa5HjhwRI8FfLB+OkyZNkg6s999\/X\/QAGB\/fGBw6dKh0DKstNjYWxZj9yNLhuGPHDulg4ruAAGbE2zsMHjxYOp7VFhcXR6dOnRIjQS+WDseIiAjnAcSTb\/mjCoCZHT9+nAYMGCCFo9qGDx9OZ86cESOhtCwbjnznT3vgcBVnAKvg1VvuiqfwxmEjRoyg7777TowEX1myKg8v6tceMC+++KLoAbCWAwcOKPskaY93buXKlVOKOKOQiu8sV8\/x559\/VnaHUw+Shx56iC5fvix6Aaxp37591Lt3bykguVWsWJESEhKUYivml0WJLq+vyFYrgiK7DKKk1CzK8bFEq+XCcciQIdIvac2aNaIHwPp2796t1AXQngPceJth3o720qVLYqQZeRGO2uaIpIRN3v\/HwVLhuGrVKumXMmzYMNEDYC87d+6krl27SucDt0qVKtHrr79OV69eFSPNRBuOoRTRNpIii2h1HfLrDgmJoMTt3l1CWiYceY3qAw884Pxl8O5wAHbHpfhcawpw4+1BJk6cSD\/99JMYaQbacEzM\/38lOJdNyX1DC153WP5zvMhHy4Sj65fSvKE\/ANzyz3\/+U6lRqj1HuPF+SlOmTFG+qzc+L8NRkU1JYQWvN36T5+loiXBcvHix88VzGzNmjOgBAC2+aODaAtrzhVuNGjVo2rRpYpRR+RKORCfmRjpfZ+TcE+LRkpk+HL\/55htpB8FmzZqJHgAoSkZGBv3xj390njdqu\/\/+++ntt98Wo4zGt3DMSS34WiF8mucl4Ewfjlw9WX3h3FAkFMBz69evpyeffFI6h7iFhobSe++9J0YZhW\/hmD0t3Pm6Bq3x\/K61qcNx1qxZzhfNjb87AQDvrVu3jlq3bi2dT9x4L3fjFGvxIRwvZVK8eufakUCZdrghw8unypcv73wT27VrJ3oAwFc8Ha558+bO80ptderUoeTkZDEqWDwPx7zcHDr08UyKeUwdb6OpPByG6hvHIYmdAgH08+GHH0qFW9TGq894k7rg0IajF61WNCV9apNJ4PzxWfvi+eM1AOhv2bJl9Ic\/\/EE637iFhYUps0QCy7dwDG0\/iGZu8b4il+nCkW+4aF94ly5dRA8A+EtKSgo1atRIOve4NW7cmJYsWSJG+Zs2HItfIRNZ3yH9O7mF9k2hE9fFj\/KA6UqW8VQd9cXyFB6eygMAgbFo0SJq0KCBFDrcmjZtSitWrBCj\/MXLGzLXc+nQx4kUpVlK6Hg5kzz95lETjl5csjrq5qdzNA0ak0zphwNX7YMnd2v\/HYG\/rAcANn\/+fKpXr550PnLji5eVK1eKUXrzMhxVh2dSlPN54ZS0RzxeAt\/C0aU52sRT2knxY\/yEZ\/Zr\/05eLggAwTV37lyqXbu2dG5ya9mypR8qYvkYjvnXipkvF\/zbPJ0IXkQ4OqhuGzef40WLqFXwFzmbI9LrW+Xe0F7Kc4EJLjQBAMYwe\/Zsevjhh+VMyG+RkZH08ccfi1Gl5Ws4yqtkQiZ49swiwjGaUk6Lh4uSx5\/nkyhaG5SOHpTihytILj3m\/DvyG8\/FAgDjeffdd6XqWGrj7ZE3btwoRvnKLOGoys1\/nnOiZX7rkkKeL+0uGV+aO392fuNitgBgbNOnT6f77rtPOnd5jmTp6kj6Go66fqz2IhzZyRSKdj7XQQlb9Pl4zdsb8DYH6oviX645SisBwP\/+9z8KDw+nKlWqKOfv559\/Lnp85WM4HkvW84aMl+GYL3tKweLukNh00uMeNm+M5fyZ+Y03zgIA4+PvGbl4BZ+3v\/jFL2jQoEGipzS8Dcc8ytni8tVf+2SPP9nqFo6czpHO58d7tcDbHd5K1fmC8htvtQoAxuc65U6\/81ebUSVMAm8bQaGav19pXt4T0S8cpYq7nl+6usOb7\/Mm\/OqL4jWeAGBsR44coSeeeMJ53nLj+pBr164VI0pLm1HeNZ5umHLYy8IT+oVjDqX1LvjHeFM3zVW3bt2cP4fbjh07RA8AGNGCBQvojjvukM7b7t270\/nz58UIPXgTjreuLGNeTqa0PTker4rR0jEc83\/ChIJ\/XHSq9wu9GdeOK3iBITRp0iTRAwBGc\/36derfv790znIzbjVxzxkqHI8dO0a3336782fw3CgAMCbetItnkKjnKzeu4MPbwlpBSEaGccIxKirK+fxy5crRwYMHRQ8AGMmbb77pPFfVNnToUNFrDZqSZcENx6SkJOdzuc2cOVP0AIBRcBUs1y1euTrW0qVLxQjr0DEccyilS8EvzJv9YbOzs53P48abkAOAsXBJMu0sEm4dO3akU6dOiRHWomM4ZlGC8\/mRlHxMPOwBruCh\/rIrV65MX3\/9tegBACMYPny48xxV28SJE0WvNekXjnuSKFx9vsPzpT3jx493\/rK5BW9\/CgBwtXv3bnrsscekc5TrOHIJQavTKRzzKGtCwfJBxyueVdvdtm2b8znc+vTpI3oAINj4e3\/t+cktJiaGrl27JkZYmz7hKBWe8Hx1DC9KV3\/pNWvWpNzcwFUVBwD3uGBEjx49nOcmtwoVKtAHH3wgRthD6cPRpWSZw8OiE\/Hx8c7ncEtLSxM9ABAs69evdxaMUFubNm3o0KFDYoR9+B6Ol05QVmpioWK3aR6Eanp6esFz8ps+FTsAoDT8VzDCnIoIx+K3Sair2c3L2RxR+R+nS\/6mMS8vj2rVquV8Hn+5y0uQACA4iioYsW7dOjHCnooIR+9aaJckyvRwzrfrOsyC5YsAEGiBKRhhTj6Fo6N+\/hVkl0GUMD+Nsk97PtmbZ9Frf87o0aNFDwAE0o0bNyxbMEIvmnD0vzlz5lDDhg2VN6FJkybiUQAIpKIKRuzatUuMABbQcGT9+vWjxo0b04YNG8QjABAodigYoRdNVR7\/Onr0KD3++OPON6ROnTqWKW0EYHR2KhihF009R\/\/jtZjaN6d8+fJ4cwD8rKiCEahhULyAhiPjMORQ1L5RVl\/ADhAsf\/3rX6VzDeeb5wIejoy\/+OWP1do3jLdhBQB9cBlAuxaM0EtQwpHxPKoOHTpIb15kZCSdOXNGjAAAXxRVMOLHH38UI8ATQQtHVVxcnPQmPvDAA0q1HgDwDgpG6Cvo4cimT58uvaHceOY+AHgGBSP0Z4hwZKtXr6ZKlSpJby4vhAeA4qFghH8YJhzZgQMHpBqP3Hr27Ek3b94UIwBAxQUjnnzySel8QcEI\/RgqHNnVq1epc+fO0hseERGh7GkNALfwdiIoGOFfhgtH1ciRI6U3\/t5778WSQ7A9FIwIHMOGI+NCFa4HwaxZs0QvgL1wwYjf\/\/730vmAghH+Y+hwZPzvczgc0gExYsQI0QtgD5MnT5bOAW4oGOFfhg9Hdvz4caloBTfe+P\/y5ctiBIA1oWBE8ASsKo8eevXqJR0kYWFhtH\/\/ftELYC1cMIK\/a9ce8ygYETgBr+dYWuPGjZMOll\/+8pf00UcfiV4Aa0DBiOAzXTiyhQsXFjpwpk6dKnoBzAsFI4zDlOHIPv3000LLpbDFK5gZCkYYi2nDkfGX1a5bSrZv357OnTsnRgAYHxeM4JVg2uMYBSOCz9ThqHrppZekA6t27dq0Y8cO0QtgXCgYYVyWCEfmunFQuXLlKDU1VfQCGA8KRhibZcKRLV++nCpWrCgdbImJiaIXwBhQMMIcLBWO7N\/\/\/rdyd0974PF2sABGgIIR5mG5cGQ\/\/PCDMllWewC2bt0ak2chaFAwwnwsGY6qIUOGSAcif3TZunWr6AUIDBSMMCdLhyPj\/zJrD0pumCIBgYKCEeZl+XBka9eupV\/96lfSAZqQkCB6AfSHghHmZ4twZAcPHqTGjRtLB+vzzz9P169fFyMA9IGCEdZgipJlesnLy6MuXbpIB23Tpk2VqRUAekDBCOuwVTiqRo0aJR281apVU1YqAPgKBSOsx5bhyObOnSsdyNx44T8A4zqhvKiA582WBAUjrMm24cg2b95MNWrUkA5q\/lgEsGrVKuV4aNasmXikMBSMsDZbhyM7ceIENW\/eXDrAO3XqRBcvXhQjwI6mTZumHAu9e\/cWj8hQMML6bB+OqhdeeEE60Bs0aEB79+4VvWA3gwcPVo6DsWPHikcKoGCEPSAcNcaPHy8d8HfddRetXLlS9MouXLhALVq0oLNnz4pHwEo6dOigHAO8FlqFghH2gnB0sXjxYung55aUlCR6b1GDkfuaNGkiHgUrqVu3rvL+8tI\/hoIR9oNwdONf\/\/oXPfzww9KJEBsbq\/Rpg7FmzZq0b98+5XGwFr6xwu\/xqVOnUDDCphCORcjJyaG2bdtKJwRvyaDOZUMwWtfp06eV97h8+fIoGGFjCMcS\/OUvf5FODm68NAzBaE585V+1alWKjo6mGTNmKJO3XW3btq3Qe84NBSPsBeHogQkTJkgnyW233UYpKSmiF8yEi5Bo30tuvELqueeeUz4qb9y4kcLDw6V+FIywJ4RjCXi+Y8uWLZWTpEyZMtJJ8\/rrr4tRYCb8sZj3OeeqOVWqVJHeU9fG7z0KRthTSEYGwrEo2mC87777aNmyZfTII49IJ8+f\/\/xnMRrMisOyVatW0vuqbdoryz179ohngdXZpmSZL\/g7Jj45OBjV7xh5ydgzzzwjnTwcoF999ZXSD+birmCEeqeaKza5u7JEWNoDwrEEHJDubr4MGzZMOmE4QLds2SJ6wQyKKhjhcDiUP3PxCab9GO5aNJkb36DjsMSCAGtBOJbCO++8U+hESU5OFr1gVMUVjLh8+bLzMf6zO+7CsmHDhqIXrALhWErp6emFPnphna1xlVQwgq8W+bHq1asr\/98TO3fuVMISrAXhqIPDhw\/To48+Kp1w3bp1o59++kmMACPwpGCEJ6XKwB4QjjrhwqYciNoTj1dTcHBCcHlTMEItVdarVy\/xCNgVwlFnr7zyinQS8gRi\/ugNweFtwYi4uDhljLtSZWAvCEc\/mDdvnnQycnv33XdFLwTCjRs3fCoY4a5UGdgTwtFPeFrPb37zG+nEHD58uOgFf+IyY74WjFBLlfH6arA3hKMf8cRwtbyZ2ngCORc\/AP+YPHmy9Pvm5k3BiIyMDHr\/\/feVyjxgbwjHAOAlhtqTtX79+m6rwYDvvvnmG2Xeofb3jIIRUBoIxwBxrezDNwk+\/PBD0QulsWLFCmWVivb327FjRxSMgFJBOAbQP\/7xD6XcmfYknjJliugFX\/BWutrfJ7eJEyeKXgDfoSpPgG3fvp1q1aolncwDBgwQveApdwUj6tWrR5988okYAVA6qOcYBN9\/\/z099dRT0onNWzJ89913YgQUp6iCETwRH0AvCMcg4k27tCc4b+rFm3uBe8UVjADQG8IxyN566y3pZOdq47w9LMhKKhgBoDeEowGkpaXRnXfeKZ34r732mugFTwpGAOgN4WgQe\/fuLbSqo0+fPqLXnrwpGAGgN4SjgfCeNa4TmZs3b04nT54UI+zD24IRAHpDOBqQ69y9GjVq0ObNm0WvtflaMAJAbwhHg3I3XWXu3Lmi15pKUzACQG8IRwP7+OOPqWrVqlJYjB49WvRaS2kLRgDoDeFocHxTokmTJlJodO3ala5duyZGmBsKRoBRIRxN4Pr168rNCG2ANG7c2PRz\/FAwAowM4WgiCQkJUpDwtqBr164VveaCghFgdAhHk+Glcq6hYqY7uSgYAWaBqjwmxEFSs2ZNKWDMcPMCBSPATFDP0aT4e7lWrVpJQfP0009Tbm6uGGEcKBgBZoRwNLm+fftKocMfUXfv3i16gw8FI8CsEI4WkJiYKIVPxYoVafny5aI3eFAwAswM4WgRqampVLZsWSmI3nzzTdEbWCgYAVaAcLSQzz\/\/nH73u99JocTrlAMJBSPAKhCOFnPu3Dlq166dFE58Ffftt9+KEf6BghFgNQhHixo4cKAUUnxT5LPPPhO9+kLBCLAihKOFTZ06VQosbgsXLhS9+kDBCLAqhKPFffTRR3TXXXdJ4TVu3DjR6zsUjACrQzjawL59+6hhw4ZSkPXu3Vv0eg8FI8AOEI42cfnyZXr22WelQGvWrBl9+eWXYoRnUDAC7ALhaDPx8fFSsDkcDsrIyBC9RUPBCLAbhKMNzZo1Swo5bnPmzBG9haFgBNgRSpbZ1IYNG6hatWpS4I0cOVL03oKCEWBnCEcbO3r0aKGPyp07d6arV6+iYATYHsLR5m7evEk9evSQQrBt27bS\/+eGghFgNwhHUPztb3+jKlWqUFhYmBSKKBgBdoVwBCdePXP33Xc7gxEFI8DOEI5WkZdD2SuTKb5vJEXWdxRc\/TnqUmTbGIqfn0bZOWJsMXbu3KlcLaJgBNgdwtHscg9R2oRoClXDsNjmoMjhKXSohJ0Uzp49K\/4EYF8IRxPLO5xMMbW04RdKEX3jKSn\/KjFzS6bS0uYnUfzzdcmhDclaMZR2UvwQAHAL4WhSeXuSKMpREHgRcSVcEeZkUuLTmo\/bjyVS1iXRBwCFIBzN6FIWJT6mBqODoqZlU57oKpb0vBAKn5Dl2fMAbAjhaELZ0yKcAeeITSevNmPNv+KMEM8NCYmi5GPicQCQIBzNJi+TEpwfp30Jt1xKi61LkX3jaWZqOh06Jx4GAAnC0WRy1wwSwZjfuqSQB7NzAMAHIRkZCEczyRqjXjWGUOTcE+JRANAbSpaZyglKebYgHBM+FQ8DgO4QjqaSRYkiGENCwilpj3gYAHSHcDQVbThGU8pp8TAA6A7haCoIR4BAQTiaSjYlOqfx4GM1gD8hHE0lh9J6q+EYQvGbsL4FwF8QjiaTPS3cGY7h07LFo97J25RAddvcKmOWdcyr9TUAtoFwNJvtiQUVdtonky8zHbMmFBSgcEzIEo8CgBbC0XSyNN87+rB8UFp+6KDE7eJxAJAgHE3oxNwoEW75V36907xaQqh9bshjSeTbB3MA60M4mtGlLEoIK7j66zH3kEelx\/LyP5IXVORx4IYOQDEQjiYlB92tYrfZRVbYyaVDqYPk8ajlCFAshKOJ5W5KkAKPrwbrPq\/dJiGNkscMoijthlv5LSIu3acbOQB2gqo8ZpeTSUldQqXwK7I5Iik+1bOP4AB2h3qOFpF7OJNS3omnmLaRVFezt0xIrQilsG3yymzKQSoCeAzhCADgBsIRAKAQov8DBfQifGQ9N\/kAAAAASUVORK5CYII=\" y=\"1.5\"><\/image> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_2\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"28.95453\" xml:space=\"preserve\" y=\"123.49999\">120<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_3\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"162.95453\" xml:space=\"preserve\" y=\"120.49999\">80<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_4\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"60.95453\" xml:space=\"preserve\" y=\"110.49999\">o<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"20\" id=\"svg_5\" stroke=\"#000\" stroke-width=\"0\" text-anchor=\"start\" x=\"182.95453\" xml:space=\"preserve\" y=\"107.49999\">o<\/text> <\/g> <\/svg><\/span><\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\widehat{A}=\\widehat{C}=70^0$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\widehat{A}=\\widehat{C}=85^0$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\widehat{A}=\\widehat{C}=90^0$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\widehat{A}=\\widehat{C}=80^0$<\/span>"],"correct":"4","level":"3","hint":"","answer":"<p><span class=\"svgedit\"><svg height=\"140\" width=\"170\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> <title><\/title> <rect fill=\"#fff\" height=\"142\" id=\"canvas_background\" width=\"172\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" id=\"canvasGrid\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" id=\"svg_6\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> <title><\/title> <g id=\"svg_2\" stroke=\"null\"> <image height=\"129\" id=\"svg_1\" stroke=\"null\" width=\"164.00001\" x=\"0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUcAAAEJCAYAAAAHG+V3AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACJlSURBVHhe7d0JeFTVGQbgIBRwqVAEO1BRo7QsUkjAgpE9ioWAFiObLFKIUgKEpUFAUxYxgmBYVASECAWasBlkiywhCNUGgRKWssgiiKBRKKasQQH\/5r+cO7lnMklmJndm7vK9z3Oe0jlnApO59\/PO3HP+E5KRsYkuX77kdbty5YpPzd3PKrlddvuzSm6X3fyskpv7n1Vyc\/ezSm54bYWbdV8bP8\/9zyu+uftZnjR3P6vkhtfGLWTz5k0EAAAyhCMAgBsIRwAANxCOAABuIBwBANxAOAIAuIFwBABwA+Hod7mU1jeEQkJEC0uibNEDAMaFcPS3Y8kUpQaj0sIpaY\/oAwDDQjj62Ym5kbdC0RFKoY5bAel4JZPyRD8AGBPC0a+yKSlMXDHGplDKy+LPITGUdk4MAQBDQjj60\/ZEcihhGELRqTmUtylehGMIRc0\/IQYBgBEhHP0mjzJfcYgwjKLkY\/xQJiWIj9a4MQNgbCGbNiEc\/SI3nQaJq8SQ9sl06zpRG5gOStiCbx4BjArh6Ce5K2NECLp8hN6TROFqaL6MGzMARoVw9IsTlNxeBGChmy+amzS4MQNgWAhHf9DObeybRrniYZVzek9+w40ZAGNCOPpB9pRwZ\/jFb3LzwVkbnrgxA2BICEfdaT42OxIo0+2XitolhbgxA2BECEed5W1JcM5tDJ9S9DWh9oaNu4\/eABBcCEdd5VGmcxVMCWuo8zIpXg3HkGhKOS0eBwBDQDjq6VwaxTgDz7uGGzMAxoJw1FFOarTb4POo4cYMgKEgHHWjndsYTj1eSaKkKSW1BOrhnPOIGzMARoJw1It25YtzuWDJtHMecWMGwDgQjjrRzm306vtDqRiuKFABAEEXkpGBcCw1bbUdr+8851BKF\/W5IRQ5FzdmAIwAJct0oJ3bGNIlJT\/uvCPNecSNGQBDQDiWmryBVsxKH7411JY3w40ZAENAOJaWNLfR1yo72jqP+Q03ZgCCDuFYSifmRxWEWmy6z6EmfTTHjRmAoEM4AgC4gXAEAHAD4QgA4AbCEQDADYQjAIAbCEcAADcQjgY2depUysu7NSH8xo0byv8CQGAgHA1q8uTJypzHSpUq0ejRo6lr167Uu3dv2rt3rxgBAP6EcDSgXbt2FUwsz29hYWHS\/+\/bty8dOHBAjAYAf0BVHgNq1qyZMwjvueceio2NpTJlykgBye3FF1+kL774QjwLAPSEeo4GM2bMGCkAFy9erDx+5swZGj58uNSntgEDBtCxY1hvCKAnhKOBbNmyRQo9\/vjs6tSpUxQXFyeNU9vgwYPp5MmTYiQAlAbC0UAaNGjgDLoHH3yQLl68KHoK+\/LLL2ngwIFSOKpt6NChdPo09noFKA2Eo0EMGzZMCrhVq1aJnuIdOXKE+vfvLz1XbfHx8fTtt9+KkQDgDYSjAaxZs0YKtSFDhogezx06dIj69esn\/RxuZcuWpVGjRtHZs2fFSADwBMIxyC5dukQPPfSQM8zq169PP\/\/8s+j13v79+6lPnz5SQHKrUKECvfrqq3T+\/HkxEgCKg3AMspgYzf4x+S0zM1P0lM6ePXuoZ8+e0s\/mduedd9LYsWPpwoULYiQAuINwDKKUlBQpuBISEkSPfnhCeffu3aW\/h9vdd99Nr732Gl25ckWMBAAthGOQ5OTkULVq1ZxhFRERIXr8Y\/v27dS5c2cpILlVqVKF3njjDbp27ZoYCQAM4Rgk3bp1k0Jqx44dose\/PvvsM+rUqZP0d3PjoOb13ChwAXALwjEI5syZIwXTpEmTRE\/gbN26lZ5++mnp38GtevXqlJSUJEYB2BfCMcCOHj1KFStWdIbRU089JXqCY\/PmzdS+fXspILnVrFmTZsyYIUYB2A\/CMcCiogq2ci1XrpwyP9EINm7cSG3btpUCkhuv1Jk5c6YYBWAfqMoTQPxxVRs8Rgyd9PR0ioyMlP6d3GrVqkWzZ88WowCsD\/UcAyQ7O1sKm+joaNFjTLxqp2XLltK\/mVudOnVo3rx5YhSAdSEcA6RFixbOgKlcubJpCkOsXLlSqi+ptkceeYTmz58vRgFYD8IxAMaNGycFy8KFC0WPeSxfvpyaNm0qvQ5uDRs2pEWLFolRANaBcPSzbdu2SWHC657NbMmSJdS4cWPpNXFr1KgRpaamilEA5odw9LPw8HBngPD0mNzcXNFjblyh3HVvG25NmjShZcuWiVEA5oVw9COup6gNjrS0NNFjHQsWLFAqCWlfJ7fHH3\/ckq8X7APh6Cfr1q2TwoK3MLCy5ORk5U629jVz4xtRq1evFqMAzAPh6AdXr15V5gWqAVGvXj3brFnmpZG\/\/e1vpYDk1qZNG+U\/GABmgXD0A9dtC+y4Cum9996j0NBQ6ffAjVfhbNiwQYwCMC6Eo86WLl0qhcHo0aNFjz29\/fbbdP\/990u\/E27t2rWjjIwMMQrAeBCOOvr+++\/J4XA4A4Dv3MItU6dOpRo1akgBya1jx470ySefiFEAxoFw1NHzzz8vnfhcYBYK3Lx5k6ZMmUL33nuv9HvixjUmP\/30UzESIPgQjjrh9cbak52ra4N7P\/74I02cOJHuuece6XfG7bnnnqOsrCwxEiB4ULJMB7zBPm9cpZ7gTzzxhOiB4vBd\/QkTJlClSpWkgOTGldJ37twpRgIEHsJRB9qK2mXKlKH\/\/Oc\/ogc8cfHiRWX9ufY\/MGrr0aOHUtEIINAQjqU0bdo06WR+5513RA9464cfflB2YNRWSlfbCy+8QPv27RMjAfwP4VgKe\/fulU5gvqkApXfu3DllChRXStf+frn169ePDh48KEZ67tKlS8p3nQCeQjiWQuvWrZ0nLe8D\/dVXX4ke0ANvXztixAgpHNX20ksv0RdffCFGFo\/XefNzMK8SvIFw9BHfSNCerCj86j9nzpyhYcOGSb9vtcXGxtLx48fFSPdiYmKUsWPGjBGPAJQM4egD3vtZe4L26tVL9IA\/8ZV5XFyc9LtXGz9e1JU7FxfmMa1atRKPAJQM4egDbbFXXvVx\/vx50QOBwFeKfMWovgfaxleYrltQnDx5UunjmQSu3zseOXKEhg8frtwMAtBCOHrp5Zdflk7GFStWiB4INA42\/u5R+36ojb+r5O8sVWqlIPV7R16y2L17d+d4npQOoIVw9ML69eudJxM3vnqB4OO713wXW\/vecOO73aNGjVLufqvfOz777LOFdlXkx3jfbgAthKOH+ONY7dq1nScU\/xlTQ4yF50HyfEht8HGrUKGCslui9rGyZcvSoEGDaP\/+\/eLZADKEo4dcv+Piq0gwJl5R07NnT+n90jaeaP7f\/\/5XjAZwD+HoAd6WVHtyjRw5UvSAEW3durVQhSRt42WKPBXrypUr4hkAhYVkZCAci8NXGNo6hI8++qjoAaPiyeHq+8XfJ86YMUOp9qM+prYqVaooN2Lw9Qi4g5JlJeA5jNoTiuc4gvENHDiw0PeJ\/HFa+16qjetLcp1JrjcJoEI4FoNXvWhPIv4oBualne8YFRUlvbfc+BMCVywHYAjHIvCJxOul1ROH11GD+WnnO27evFnZy0Z9j9VWs2ZNZe8bsDeEYxH+9Kc\/SScMymVZg7t11rwbIu+KqH2\/ufHuiTNnzhSjwG4Qjm7wVYP2JJk+fbroAbMrbp0176vN+2tr33tuvAc578cN9oJwdMFVvPk7KfXE4CrfYB3FrbNWrV69mlq0aOE8BtRWp04dSk5OFqPA6hCOLnj\/F\/Vk4PlwvD8MWAtfHfK2DCWtjklLS3PWgtS2+vXr04IFC8QosCpLhyMXF+jbt6+yttYTiYmJ0kmAqwRgvAiA9yDXHhvcGjZsSIsXLxajwGosHY7qAc1bgJYUdLwdqPbA542dALRSU1OpUaNG0nHCjUvYLVmyRIwCq7B0OPKm+toKLM888wwdPnxY9Mq0VwYOh4POnj0regBkixYtUq4a1eNFbU2bNlWuMsEabPGdY1JSklKFRT2IJ0+eLHpu4c2ctAf50qVLRQ9A0fh7R9dqP9z4e8qVK1eKUWBWtrkhc\/ToUWWdrfYA5qWAXHhDe2D3799fPAPAM\/PmzVPuZGuPI278qYXvfIM52SYcVfxfe15Lqx7A\/H2k+mdePZGXlydGAnhn9uzZypxI9XhSG98dT09PF6PALGxZlYf3C3FXXh8HMOiBV9U8+OCDhY4vXoWDiuPmYdt6jjyHzfXg5VL7nk77ASgJl0rjddqux1n79u2Vdd1gbLYMx9zcXOmg\/fWvf+38c9WqVemDDz4QIwFKjyv9VK9e3XmMqa1jx45KYV4wJluGo+s+I9u2bVPmOWqXjHHhCS6aCqCHGzduKLMkqlWrJh173Dp16oQ6oQZku3D8+9\/\/Lh2Y48ePFz23vPXWW3TbbbdhEjj4Ba\/nfuONN5Qq5NrjkFvnzp2VublgDLYKx6+\/\/poqV67sPBh5qoU7PO3HdWN4AD3x\/jVcPFlbM1Rt3bp1o127domRECy2Csfo6GjpIORd6gCC6cKFCzR27Fi64447pGOTG++giGM0eGwTjjy9Qnvg8aoZAKPg6WWvvvqqsse29jjlxt+RY3\/twLNFOB48eFBaPtihQwfRA2AsvKZ\/1KhR0vGqNp5qdujQITES\/M0W4agtgX\/77bfTsWPHRA+AMeXk5FB8fLwUjmrjJa5HjhwRI8FfLB+OkyZNkg6s999\/X\/QAGB\/fGBw6dKh0DKstNjYWxZj9yNLhuGPHDulg4ruAAGbE2zsMHjxYOp7VFhcXR6dOnRIjQS+WDseIiAjnAcSTb\/mjCoCZHT9+nAYMGCCFo9qGDx9OZ86cESOhtCwbjnznT3vgcBVnAKvg1VvuiqfwxmEjRoyg7777TowEX1myKg8v6tceMC+++KLoAbCWAwcOKPskaY93buXKlVOKOKOQiu8sV8\/x559\/VnaHUw+Shx56iC5fvix6Aaxp37591Lt3bykguVWsWJESEhKUYivml0WJLq+vyFYrgiK7DKKk1CzK8bFEq+XCcciQIdIvac2aNaIHwPp2796t1AXQngPceJth3o720qVLYqQZeRGO2uaIpIRN3v\/HwVLhuGrVKumXMmzYMNEDYC87d+6krl27SucDt0qVKtHrr79OV69eFSPNRBuOoRTRNpIii2h1HfLrDgmJoMTt3l1CWiYceY3qAw884Pxl8O5wAHbHpfhcawpw4+1BJk6cSD\/99JMYaQbacEzM\/38lOJdNyX1DC153WP5zvMhHy4Sj65fSvKE\/ANzyz3\/+U6lRqj1HuPF+SlOmTFG+qzc+L8NRkU1JYQWvN36T5+loiXBcvHix88VzGzNmjOgBAC2+aODaAtrzhVuNGjVo2rRpYpRR+RKORCfmRjpfZ+TcE+LRkpk+HL\/55htpB8FmzZqJHgAoSkZGBv3xj390njdqu\/\/+++ntt98Wo4zGt3DMSS34WiF8mucl4Ewfjlw9WX3h3FAkFMBz69evpyeffFI6h7iFhobSe++9J0YZhW\/hmD0t3Pm6Bq3x\/K61qcNx1qxZzhfNjb87AQDvrVu3jlq3bi2dT9x4L3fjFGvxIRwvZVK8eufakUCZdrghw8unypcv73wT27VrJ3oAwFc8Ha558+bO80ptderUoeTkZDEqWDwPx7zcHDr08UyKeUwdb6OpPByG6hvHIYmdAgH08+GHH0qFW9TGq894k7rg0IajF61WNCV9apNJ4PzxWfvi+eM1AOhv2bJl9Ic\/\/EE637iFhYUps0QCy7dwDG0\/iGZu8b4il+nCkW+4aF94ly5dRA8A+EtKSgo1atRIOve4NW7cmJYsWSJG+Zs2HItfIRNZ3yH9O7mF9k2hE9fFj\/KA6UqW8VQd9cXyFB6eygMAgbFo0SJq0KCBFDrcmjZtSitWrBCj\/MXLGzLXc+nQx4kUpVlK6Hg5kzz95lETjl5csjrq5qdzNA0ak0zphwNX7YMnd2v\/HYG\/rAcANn\/+fKpXr550PnLji5eVK1eKUXrzMhxVh2dSlPN54ZS0RzxeAt\/C0aU52sRT2knxY\/yEZ\/Zr\/05eLggAwTV37lyqXbu2dG5ya9mypR8qYvkYjvnXipkvF\/zbPJ0IXkQ4OqhuGzef40WLqFXwFzmbI9LrW+Xe0F7Kc4EJLjQBAMYwe\/Zsevjhh+VMyG+RkZH08ccfi1Gl5Ws4yqtkQiZ49swiwjGaUk6Lh4uSx5\/nkyhaG5SOHpTihytILj3m\/DvyG8\/FAgDjeffdd6XqWGrj7ZE3btwoRvnKLOGoys1\/nnOiZX7rkkKeL+0uGV+aO392fuNitgBgbNOnT6f77rtPOnd5jmTp6kj6Go66fqz2IhzZyRSKdj7XQQlb9Pl4zdsb8DYH6oviX645SisBwP\/+9z8KDw+nKlWqKOfv559\/Lnp85WM4HkvW84aMl+GYL3tKweLukNh00uMeNm+M5fyZ+Y03zgIA4+PvGbl4BZ+3v\/jFL2jQoEGipzS8Dcc8ytni8tVf+2SPP9nqFo6czpHO58d7tcDbHd5K1fmC8htvtQoAxuc65U6\/81ebUSVMAm8bQaGav19pXt4T0S8cpYq7nl+6usOb7\/Mm\/OqL4jWeAGBsR44coSeeeMJ53nLj+pBr164VI0pLm1HeNZ5umHLYy8IT+oVjDqX1LvjHeFM3zVW3bt2cP4fbjh07RA8AGNGCBQvojjvukM7b7t270\/nz58UIPXgTjreuLGNeTqa0PTker4rR0jEc83\/ChIJ\/XHSq9wu9GdeOK3iBITRp0iTRAwBGc\/36derfv790znIzbjVxzxkqHI8dO0a3336782fw3CgAMCbetItnkKjnKzeu4MPbwlpBSEaGccIxKirK+fxy5crRwYMHRQ8AGMmbb77pPFfVNnToUNFrDZqSZcENx6SkJOdzuc2cOVP0AIBRcBUs1y1euTrW0qVLxQjr0DEccyilS8EvzJv9YbOzs53P48abkAOAsXBJMu0sEm4dO3akU6dOiRHWomM4ZlGC8\/mRlHxMPOwBruCh\/rIrV65MX3\/9tegBACMYPny48xxV28SJE0WvNekXjnuSKFx9vsPzpT3jx493\/rK5BW9\/CgBwtXv3bnrsscekc5TrOHIJQavTKRzzKGtCwfJBxyueVdvdtm2b8znc+vTpI3oAINj4e3\/t+cktJiaGrl27JkZYmz7hKBWe8Hx1DC9KV3\/pNWvWpNzcwFUVBwD3uGBEjx49nOcmtwoVKtAHH3wgRthD6cPRpWSZw8OiE\/Hx8c7ncEtLSxM9ABAs69evdxaMUFubNm3o0KFDYoR9+B6Ol05QVmpioWK3aR6Eanp6esFz8ps+FTsAoDT8VzDCnIoIx+K3Sair2c3L2RxR+R+nS\/6mMS8vj2rVquV8Hn+5y0uQACA4iioYsW7dOjHCnooIR+9aaJckyvRwzrfrOsyC5YsAEGiBKRhhTj6Fo6N+\/hVkl0GUMD+Nsk97PtmbZ9Frf87o0aNFDwAE0o0bNyxbMEIvmnD0vzlz5lDDhg2VN6FJkybiUQAIpKIKRuzatUuMABbQcGT9+vWjxo0b04YNG8QjABAodigYoRdNVR7\/Onr0KD3++OPON6ROnTqWKW0EYHR2KhihF009R\/\/jtZjaN6d8+fJ4cwD8rKiCEahhULyAhiPjMORQ1L5RVl\/ADhAsf\/3rX6VzDeeb5wIejoy\/+OWP1do3jLdhBQB9cBlAuxaM0EtQwpHxPKoOHTpIb15kZCSdOXNGjAAAXxRVMOLHH38UI8ATQQtHVVxcnPQmPvDAA0q1HgDwDgpG6Cvo4cimT58uvaHceOY+AHgGBSP0Z4hwZKtXr6ZKlSpJby4vhAeA4qFghH8YJhzZgQMHpBqP3Hr27Ek3b94UIwBAxQUjnnzySel8QcEI\/RgqHNnVq1epc+fO0hseERGh7GkNALfwdiIoGOFfhgtH1ciRI6U3\/t5778WSQ7A9FIwIHMOGI+NCFa4HwaxZs0QvgL1wwYjf\/\/730vmAghH+Y+hwZPzvczgc0gExYsQI0QtgD5MnT5bOAW4oGOFfhg9Hdvz4caloBTfe+P\/y5ctiBIA1oWBE8ASsKo8eevXqJR0kYWFhtH\/\/ftELYC1cMIK\/a9ce8ygYETgBr+dYWuPGjZMOll\/+8pf00UcfiV4Aa0DBiOAzXTiyhQsXFjpwpk6dKnoBzAsFI4zDlOHIPv3000LLpbDFK5gZCkYYi2nDkfGX1a5bSrZv357OnTsnRgAYHxeM4JVg2uMYBSOCz9ThqHrppZekA6t27dq0Y8cO0QtgXCgYYVyWCEfmunFQuXLlKDU1VfQCGA8KRhibZcKRLV++nCpWrCgdbImJiaIXwBhQMMIcLBWO7N\/\/\/rdyd0974PF2sABGgIIR5mG5cGQ\/\/PCDMllWewC2bt0ak2chaFAwwnwsGY6qIUOGSAcif3TZunWr6AUIDBSMMCdLhyPj\/zJrD0pumCIBgYKCEeZl+XBka9eupV\/96lfSAZqQkCB6AfSHghHmZ4twZAcPHqTGjRtLB+vzzz9P169fFyMA9IGCEdZgipJlesnLy6MuXbpIB23Tpk2VqRUAekDBCOuwVTiqRo0aJR281apVU1YqAPgKBSOsx5bhyObOnSsdyNx44T8A4zqhvKiA582WBAUjrMm24cg2b95MNWrUkA5q\/lgEsGrVKuV4aNasmXikMBSMsDZbhyM7ceIENW\/eXDrAO3XqRBcvXhQjwI6mTZumHAu9e\/cWj8hQMML6bB+OqhdeeEE60Bs0aEB79+4VvWA3gwcPVo6DsWPHikcKoGCEPSAcNcaPHy8d8HfddRetXLlS9MouXLhALVq0oLNnz4pHwEo6dOigHAO8FlqFghH2gnB0sXjxYung55aUlCR6b1GDkfuaNGkiHgUrqVu3rvL+8tI\/hoIR9oNwdONf\/\/oXPfzww9KJEBsbq\/Rpg7FmzZq0b98+5XGwFr6xwu\/xqVOnUDDCphCORcjJyaG2bdtKJwRvyaDOZUMwWtfp06eV97h8+fIoGGFjCMcS\/OUvf5FODm68NAzBaE585V+1alWKjo6mGTNmKJO3XW3btq3Qe84NBSPsBeHogQkTJkgnyW233UYpKSmiF8yEi5Bo30tuvELqueeeUz4qb9y4kcLDw6V+FIywJ4RjCXi+Y8uWLZWTpEyZMtJJ8\/rrr4tRYCb8sZj3OeeqOVWqVJHeU9fG7z0KRthTSEYGwrEo2mC87777aNmyZfTII49IJ8+f\/\/xnMRrMisOyVatW0vuqbdoryz179ohngdXZpmSZL\/g7Jj45OBjV7xh5ydgzzzwjnTwcoF999ZXSD+birmCEeqeaKza5u7JEWNoDwrEEHJDubr4MGzZMOmE4QLds2SJ6wQyKKhjhcDiUP3PxCab9GO5aNJkb36DjsMSCAGtBOJbCO++8U+hESU5OFr1gVMUVjLh8+bLzMf6zO+7CsmHDhqIXrALhWErp6emFPnphna1xlVQwgq8W+bHq1asr\/98TO3fuVMISrAXhqIPDhw\/To48+Kp1w3bp1o59++kmMACPwpGCEJ6XKwB4QjjrhwqYciNoTj1dTcHBCcHlTMEItVdarVy\/xCNgVwlFnr7zyinQS8gRi\/ugNweFtwYi4uDhljLtSZWAvCEc\/mDdvnnQycnv33XdFLwTCjRs3fCoY4a5UGdgTwtFPeFrPb37zG+nEHD58uOgFf+IyY74WjFBLlfH6arA3hKMf8cRwtbyZ2ngCORc\/AP+YPHmy9Pvm5k3BiIyMDHr\/\/feVyjxgbwjHAOAlhtqTtX79+m6rwYDvvvnmG2Xeofb3jIIRUBoIxwBxrezDNwk+\/PBD0QulsWLFCmWVivb327FjRxSMgFJBOAbQP\/7xD6XcmfYknjJliugFX\/BWutrfJ7eJEyeKXgDfoSpPgG3fvp1q1aolncwDBgwQveApdwUj6tWrR5988okYAVA6qOcYBN9\/\/z099dRT0onNWzJ89913YgQUp6iCETwRH0AvCMcg4k27tCc4b+rFm3uBe8UVjADQG8IxyN566y3pZOdq47w9LMhKKhgBoDeEowGkpaXRnXfeKZ34r732mugFTwpGAOgN4WgQe\/fuLbSqo0+fPqLXnrwpGAGgN4SjgfCeNa4TmZs3b04nT54UI+zD24IRAHpDOBqQ69y9GjVq0ObNm0WvtflaMAJAbwhHg3I3XWXu3Lmi15pKUzACQG8IRwP7+OOPqWrVqlJYjB49WvRaS2kLRgDoDeFocHxTokmTJlJodO3ala5duyZGmBsKRoBRIRxN4Pr168rNCG2ANG7c2PRz\/FAwAowM4WgiCQkJUpDwtqBr164VveaCghFgdAhHk+Glcq6hYqY7uSgYAWaBqjwmxEFSs2ZNKWDMcPMCBSPATFDP0aT4e7lWrVpJQfP0009Tbm6uGGEcKBgBZoRwNLm+fftKocMfUXfv3i16gw8FI8CsEI4WkJiYKIVPxYoVafny5aI3eFAwAswM4WgRqampVLZsWSmI3nzzTdEbWCgYAVaAcLSQzz\/\/nH73u99JocTrlAMJBSPAKhCOFnPu3Dlq166dFE58Ffftt9+KEf6BghFgNQhHixo4cKAUUnxT5LPPPhO9+kLBCLAihKOFTZ06VQosbgsXLhS9+kDBCLAqhKPFffTRR3TXXXdJ4TVu3DjR6zsUjACrQzjawL59+6hhw4ZSkPXu3Vv0eg8FI8AOEI42cfnyZXr22WelQGvWrBl9+eWXYoRnUDAC7ALhaDPx8fFSsDkcDsrIyBC9RUPBCLAbhKMNzZo1Swo5bnPmzBG9haFgBNgRSpbZ1IYNG6hatWpS4I0cOVL03oKCEWBnCEcbO3r0aKGPyp07d6arV6+iYATYHsLR5m7evEk9evSQQrBt27bS\/+eGghFgNwhHUPztb3+jKlWqUFhYmBSKKBgBdoVwBCdePXP33Xc7gxEFI8DOEI5WkZdD2SuTKb5vJEXWdxRc\/TnqUmTbGIqfn0bZOWJsMXbu3KlcLaJgBNgdwtHscg9R2oRoClXDsNjmoMjhKXSohJ0Uzp49K\/4EYF8IRxPLO5xMMbW04RdKEX3jKSn\/KjFzS6bS0uYnUfzzdcmhDclaMZR2UvwQAHAL4WhSeXuSKMpREHgRcSVcEeZkUuLTmo\/bjyVS1iXRBwCFIBzN6FIWJT6mBqODoqZlU57oKpb0vBAKn5Dl2fMAbAjhaELZ0yKcAeeITSevNmPNv+KMEM8NCYmi5GPicQCQIBzNJi+TEpwfp30Jt1xKi61LkX3jaWZqOh06Jx4GAAnC0WRy1wwSwZjfuqSQB7NzAMAHIRkZCEczyRqjXjWGUOTcE+JRANAbSpaZyglKebYgHBM+FQ8DgO4QjqaSRYkiGENCwilpj3gYAHSHcDQVbThGU8pp8TAA6A7haCoIR4BAQTiaSjYlOqfx4GM1gD8hHE0lh9J6q+EYQvGbsL4FwF8QjiaTPS3cGY7h07LFo97J25RAddvcKmOWdcyr9TUAtoFwNJvtiQUVdtonky8zHbMmFBSgcEzIEo8CgBbC0XSyNN87+rB8UFp+6KDE7eJxAJAgHE3oxNwoEW75V36907xaQqh9bshjSeTbB3MA60M4mtGlLEoIK7j66zH3kEelx\/LyP5IXVORx4IYOQDEQjiYlB92tYrfZRVbYyaVDqYPk8ajlCFAshKOJ5W5KkAKPrwbrPq\/dJiGNkscMoijthlv5LSIu3acbOQB2gqo8ZpeTSUldQqXwK7I5Iik+1bOP4AB2h3qOFpF7OJNS3omnmLaRVFezt0xIrQilsG3yymzKQSoCeAzhCADgBsIRAKAQov8DBfQifGQ9N\/kAAAAASUVORK5CYII=\" y=\"1.5\"><\/image> <line fill=\"none\" id=\"svg_7\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"14.36175\" x2=\"142.44439\" y1=\"74.27889\" y2=\"65.0646\"><\/line> <\/g> <\/g> <\/svg><\/span><\/p><p>Xét <span class=\"math-tex\">$\\Delta$<\/span>ABD và <span class=\"math-tex\">$\\Delta$<\/span>CBD có: BD là c\u1ea1nh chung, BA = BC, DA = DC.<\/p><p>Suy ra <span class=\"math-tex\">$\\Delta$<\/span>ABD = <span class=\"math-tex\">$\\Delta$<\/span>CBD (c.c.c)<\/p><p>Suy ra <span class=\"math-tex\">$\\widehat{BAD}=\\widehat{BCD}$<\/span> (hai góc t\u01b0\u01a1ng \u1ee9ng) hay <span class=\"math-tex\">$\\widehat{A}=\\widehat{C}$<\/span><\/p><p>Theo \u0111\u1ecbnh lí v\u1ec1 t\u1ed5ng các góc trong m\u1ed9t t\u1ee9 giác, ta có:<\/p><p> <span class=\"math-tex\">$\\widehat{A}+\\widehat{B}+\\widehat{C}+\\widehat{D}=360^0$<\/span><\/p><p><span class=\"math-tex\">$\\widehat{A}+80^0+\\widehat{A}+120^0=360^0$<\/span><\/p><p> <span class=\"math-tex\">$2.\\widehat{A}=160^0$<\/span><\/p><p> <span class=\"math-tex\">$\\widehat{A}=80^0$<\/span><\/p><p>Suy ra <span class=\"math-tex\">$\\widehat{C}=\\widehat{A}=80^0$<\/span><\/p><p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>D.<\/strong> <span class=\"math-tex\">$\\widehat{A}=\\widehat{C}=80^0$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2023-07-17 07:09:04","option_type":"math","len":0},{"id":"6021","post_id":"6561","mon_id":"1158921","chapter_id":"1158929","question":"<p>Cho t\u1ee9 giác MNPQ, bi\u1ebft <span class=\"math-tex\">$\\widehat{M}:\\widehat{N}:\\widehat{P}:\\widehat{Q}=4:3:2:1$<\/span>. Tính các góc c\u1ee7a t\u1ee9 giác MNPQ.<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\widehat{M}=36^0,\\widehat{N}=108^0,\\widehat{P}=72^0,\\widehat{Q}=144^0$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\widehat{M}=36^0,\\widehat{N}=72^0,\\widehat{P}=108^0,\\widehat{Q}=144^0$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\widehat{M}=144^0,\\widehat{N}=108^0,\\widehat{P}=72^0,\\widehat{Q}=36^0$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\widehat{M}=72^0,\\widehat{N}=108^0,\\widehat{P}=144^0,\\widehat{Q}=36^0$<\/span>"],"correct":"3","level":"3","hint":"","answer":"<p>Vì <span class=\"math-tex\">$\\widehat{M}:\\widehat{N}:\\widehat{P}:\\widehat{Q}=4:3:2:1$<\/span> nên <span class=\"math-tex\">$\\dfrac{\\widehat{M}}{4}=\\dfrac{\\widehat{N}}{3}=\\dfrac{\\widehat{P}}{2}=\\dfrac{\\widehat{Q}}{1}$<\/span>. <\/p><p>Áp d\u1ee5ng tính ch\u1ea5t c\u1ee7a dãy t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta có:<\/p><p><span class=\"math-tex\">$\\dfrac{\\widehat{M}}{4}=\\dfrac{\\widehat{N}}{3}=\\dfrac{\\widehat{P}}{2}=\\dfrac{\\widehat{Q}}{1}$<\/span> <span class=\"math-tex\">$=\\dfrac{\\widehat{M}+\\widehat{N}+\\widehat{P}+\\widehat{Q}}{4+3+2+1}=\\dfrac{360^0}{10}=36^0$<\/span><\/p><p>Suy ra <span class=\"math-tex\">$\\widehat{M}=4.36^0=144^0,\\widehat{N}=3.36^0=108^0,\\widehat{P}=2.36^0=72^0,\\widehat{Q}=1.36^0=36^0$<\/span><\/p><p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>C.<\/strong> <span class=\"math-tex\">$\\widehat{M}=144^0,\\widehat{N}=108^0,\\widehat{P}=72^0,\\widehat{Q}=36^0$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2023-07-17 07:26:00","option_type":"math","len":0},{"id":"6023","post_id":"6561","mon_id":"1158921","chapter_id":"1158929","question":"<p>Cho t\u1ee9 giác MNPQ, bi\u1ebft <span class=\"math-tex\">$\\widehat{M}:\\widehat{N}:\\widehat{P}:\\widehat{Q}=2:2:2:3$<\/span>. Tính các góc c\u1ee7a t\u1ee9 giác MNPQ.<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\widehat{M}=120^0,\\widehat{N}=80^0,\\widehat{P}=80^0,\\widehat{Q}=80^0$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\widehat{M}=80^0,\\widehat{N}=80^0,\\widehat{P}=120^0,\\widehat{Q}=80^0$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\widehat{M}=80^0,\\widehat{N}=120^0,\\widehat{P}=80^0,\\widehat{Q}=80^0$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\widehat{M}=80^0,\\widehat{N}=80^0,\\widehat{P}=80^0,\\widehat{Q}=120^0$<\/span>"],"correct":"4","level":"3","hint":"","answer":"<p>Vì <span class=\"math-tex\">$\\widehat{M}:\\widehat{N}:\\widehat{P}:\\widehat{Q}=2:2:2:3$<\/span> nên <span class=\"math-tex\">$\\dfrac{\\widehat{M}}{2}=\\dfrac{\\widehat{N}}{2}=\\dfrac{\\widehat{P}}{2}=\\dfrac{\\widehat{Q}}{3}$<\/span>. <\/p><p>Áp d\u1ee5ng tính ch\u1ea5t c\u1ee7a dãy t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta có:<\/p><p><span class=\"math-tex\">$\\dfrac{\\widehat{M}}{2}=\\dfrac{\\widehat{N}}{2}=\\dfrac{\\widehat{P}}{2}=\\dfrac{\\widehat{Q}}{3}$<\/span> <span class=\"math-tex\">$=\\dfrac{\\widehat{M}+\\widehat{N}+\\widehat{P}+\\widehat{Q}}{2+2+2+3}=\\dfrac{360^0}{9}=40^0$<\/span><\/p><p>Suy ra <span class=\"math-tex\">$\\widehat{M}=2.40^0=80^0,\\widehat{N}=2.40^0=80^0,\\widehat{P}=2.40^0=80^0,\\widehat{Q}=3.40^0=120^0$<\/span><\/p><p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>D.<\/strong> <span class=\"math-tex\">$\\widehat{M}=80^0,\\widehat{N}=80^0,\\widehat{P}=80^0,\\widehat{Q}=120^0$<\/span><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"131","test":"0","date":"2023-07-17 07:30:40","option_type":"math","len":0}]}