Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 9Toán lớp 9 - Sách Kết nối tri thứcBài tập cuối chương 4 - Hệ thức lượng trong tam giác vuôngBài tập nâng cao
{"common":{"save":0,"post_id":"7869","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"8155","post_id":"7869","mon_id":"1159278","chapter_id":"1159328","question":"<p>Cho&nbsp;&Delta;ABC c&oacute;&nbsp;<span class=\"math-tex\">$\\widehat{BAC}=60^0$<\/span>. Ch\u1ecdn \u0111&aacute;p &aacute;n <strong>\u0111&uacute;ng<\/strong>.<\/p>","options":["<strong>A.<\/strong> BC&sup2; = AB&sup2; + AC&sup2; &ndash; AB . AC","<strong>B.<\/strong> BC&sup2; = AB&sup2; + AC&sup2; &ndash; 2AB . AC","<strong>C.<\/strong> BC&sup2; = AB&sup2; + AC&sup2; &ndash; <span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>AB . AC","<strong>D.<\/strong> BC&sup2; = AB&sup2; + AC&sup2; + <span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>AB . AC"],"correct":"1","level":"3","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;BC&sup2; = AB&sup2; + AC&sup2;&nbsp;&ndash; AB . AC<\/span><\/p><p>K\u1ebb \u0111\u01b0\u1eddng cao BH c\u1ee7a &Delta;ABC.<\/p><p><span class=\"svgedit\"><svg height=\"180\" width=\"210\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"182\" id=\"canvas_background\" width=\"212\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><g id=\"svg_12\"> <path d=\"m80.26931,32.31277l107.00001,122l-165.00001,-2z\" fill=\"#56aaff\" id=\"svg_1\" stroke=\"#000\" stroke-width=\"1.5\"><\/path> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_3\" stroke=\"#000\" stroke-linecap=\"null\" stroke-linejoin=\"null\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"80\" x2=\"79.86363\" y1=\"31.43181\" y2=\"152.43181\"><\/line> <rect fill=\"none\" fill-opacity=\"null\" height=\"11\" id=\"svg_4\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"1.5\" width=\"11\" x=\"79.86363\" y=\"141.43181\"><\/rect> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_5\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"1.86363\" xml:space=\"preserve\" y=\"168.43181\">A<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_6\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"73.86363\" xml:space=\"preserve\" y=\"24.43181\">B<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_7\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"191.86363\" xml:space=\"preserve\" y=\"165.43181\">C<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"24\" id=\"svg_8\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"72.86363\" xml:space=\"preserve\" y=\"173.43181\">H<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"17\" id=\"svg_9\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"32.86363\" xml:space=\"preserve\" y=\"148.43181\">60<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" id=\"svg_10\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"50.86363\" xml:space=\"preserve\" y=\"138.43181\">o<\/text> <\/g> <\/g> <\/svg><\/span><\/p><p>Khi \u0111&oacute; ta c&oacute;: HC&sup2;&nbsp; = (AC&nbsp;&ndash; AH)&sup2;.<\/p><p>&Aacute;p&nbsp;d\u1ee5ng \u0111\u1ecbnh l&yacute; Pythagore ta c&oacute;:<\/p><p>BC&sup2; = BH&sup2; + HC&sup2; = BH&sup2; + (AC&nbsp;&ndash; AH)&sup2;<\/p><p>BC&sup2; = BH&sup2; + AC&sup2; + AH&sup2;&nbsp;&ndash; 2AC . AH<\/p><p>BC&sup2;&nbsp;= AB&sup2;&nbsp;+ AC&sup2;&nbsp;&ndash; 2AC . AB . sin60&deg; (v&igrave;&nbsp;BH&sup2; +&nbsp;AH&sup2;&nbsp;= AB&sup2;; AH = AB . sin60&deg;)<\/p><p><strong><span style=\"color:#16a085;\">BC&sup2;&nbsp;= AB&sup2;&nbsp;+ AC&sup2;&nbsp;&ndash; AC . AB<\/span><\/strong><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2024-10-28 00:51:48","option_type":"math","len":0},{"id":"8156","post_id":"7869","mon_id":"1159278","chapter_id":"1159328","question":"<p>Cho t\u1ee9 gi&aacute;c ABCD c&oacute; di\u1ec7n t&iacute;ch S v&agrave;&nbsp;&alpha;&nbsp;l&agrave; g&oacute;c nh\u1ecdn&nbsp;t\u1ea1o b\u1edfi hai \u0111\u01b0\u1eddng ch&eacute;o AC v&agrave; BD. Kh\u1eb3ng \u0111\u1ecbnh n&agrave;o sau \u0111&acirc;y l&agrave;&nbsp;<strong>\u0111&uacute;ng<\/strong>?<\/p>","options":["<strong>A.<\/strong> S = AC.BD.sin&alpha;","<strong>B.<\/strong> S = <span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>.AC.BD.cos&alpha;","<strong>C.<\/strong> S = <span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>.AC.BD.sin&alpha;","<strong>D.<\/strong> S = AC.BD.cos&alpha;"],"correct":"3","level":"3","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>C.<\/strong>&nbsp;S =&nbsp;<span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>.AC.BD.sin&alpha;<\/span><\/p><p>K\u1ebb AH&nbsp;<span class=\"math-tex\">$\\bot$<\/span>&nbsp;Ac t\u1ea1i H.<\/p><p>X&eacute;t&nbsp;&Delta;BHI vu&ocirc;ng t\u1ea1i H c&oacute;: BH = BI.sin&alpha;<\/p><p>Ta c&oacute;:&nbsp;<span class=\"math-tex\">$S_{ABC}=\\dfrac{1}{2}BH.AC=\\dfrac{1}{2}BI.\\sin\\alpha.AC$<\/span><\/p><p>T\u01b0\u01a1ng t\u1ef1&nbsp;<span class=\"math-tex\">$S_{ACD}=\\dfrac{1}{2}DI.\\sin\\alpha.AC$<\/span><\/p><p>Suy ra&nbsp;<span class=\"math-tex\">$S_{ABCD}=S_{ABC}+S_{ACD}=\\dfrac{1}{2}BI.\\sin\\alpha.AC+\\dfrac{1}{2}DI.\\sin\\alpha.AC$<\/span><\/p><p><span class=\"math-tex\">$=\\dfrac{1}{2}AC.(BI+DI).\\sin\\alpha=\\dfrac{1}{2}AC.BD.\\sin\\alpha$<\/span><\/p><p><span class=\"svgedit\"><svg height=\"144\" width=\"239\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> &lt;title&gt;&lt;\/title&gt; <rect fill=\"#fff\" height=\"146\" id=\"canvas_background\" width=\"241\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> &lt;title&gt;&lt;\/title&gt; <image height=\"143.99999\" id=\"svg_1\" stroke=\"null\" width=\"239.00001\" x=\"1.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWMAAADVCAIAAAANRAZqAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAADvJSURBVHhe7Z0PdF1T2v\/P\/r\/32\/XrzPSdvtM1nSlKKSFGiYZSxIRQgphYpQSdFULprCkdMZ0VdGSmS2ZCQ9aUkCGUELIINaUzQSoaQksrGkJqWtUQWlKl9J13ft\/ue5pJ86\/5c3Nzzs3+rLuy7rPvuTf3nrP3dz\/PPns\/2\/u3w+Fw7AunFAOntfU7Y55V6m4pb1WqUOuH7ONhPIypNOZvZWVb\/EMdjpDjlGLgtLR8O3\/++1qXe54Q4vKZMxtmzXpn9uz1+DtmzEohchg7dcaMtf7RDkeYcUoxWOA7eB43ptq391BS8jEhPxLiisbGHX6RwxFanFIMip07\/yVEtufp5cs\/94v2gBJKj6L0Z1VVrX6RwxFanFIMitraL6AFjE3z7T1AQZYs2UzI\/3CeXlf3pV\/qcIQWpxSDIiNjneeN0fpe395DU9PXUuYh+hg79mW\/yOEIM04pBoXWSz3vvzoOW+7a9X\/FxR8ptZixE7R+ZMeO\/\/VfcDjCjFOKgQNREOIazxul9f3GPG8fz0p5gxBXaV1aWLiprW2Xf6jDEXKcUgyclpZvGTuZ0iPnzHkPj5ycd7OzGxGPSDmf85kJCa\/hAP9QhyPkOKUYOHl5GwiZKOUtmzfvhLl1665IrIEnUv6WkAPHjau1BzococcpxcBBuOF5ZsyYlb7dgeTkNzxPSPkb33Y4Qo5TigECP0LKGwk5YMmSzX5RByZPftVO3LzOtx2OkOOUYoDYmRRHcn5Oc\/M3flEH4E14HtH6Ud92OEKOU4oBMmfOe57nSXmzb++hrW1XWtpbnvd9So\/pOnHT4QgpTin6TUvLt\/X1bcZUWa\/hiYaGr\/CAZ4HC0tItxixnbBrn5xYWbvLf4HCEH6cU\/UapxZxfRmkilIKxM4T4pX1cIcTlnF+Ev8YsW7Fiq3+0w9EDcD9TUtYY8ySi1MTE+vZ76gUFG5ct+yzyPDg4peg3q1dvr6j4tLz8k64PXODNm3e6eZmOXti16\/9qa78w5kXOZ3F+iVL3wDNV6k4hri0q2lRWtoXSY5cubfGPDgxOKRyOmDJ79nrOLxbiqsmTX23PSIDeJS9vA1QDL1F6XKQwUDilcDhix9y5TYQcJEROU9PXftEedu78l9YVnke1LvWLgoRTCocjFsBryM39gJCDOc9cu3a7X7o3CDoImTB\/\/vu+HSScUjgcsaCqqpXzdEL+Jzu70S\/qwtatuxhLCeZwuFOKwbJr1\/+hExDiWiFmT5++Bj6k\/4JjxFBX96XWD3E+U6k7u\/UXUEm0vs\/eVi\/xi7rDrk6e3dr6nW8HCacUg2XBgmZCDvQseJKQ8BrqSnPzNwhEGxq+2rjxm3YTTzZv3om\/eN7JxAF4goPxlo5m76\/CbGzcAXP16m5MPEdJx1fxwBOYKMSreHQ0O70aMfGPYEa+bUez06vtJp5HDu7lp7V\/n25fbTfxHToe3NGMfL2Or+KBJ5EvHzm43Wz\/LZ1M\/COYkW\/b0ex4cLvZ8eBOP62+vk3KWzxvVKQKcH4pXvIrxx5qa79g7DQ4FAsXbvCLuqOl5dvCwk3QC98OEk4pBotSxZ4nbC0BhLFpQsyVcr6UvxHievu4Ds+7M6\/rzrx+jzmvgzm\/q2n\/7mXax38O3lMC89ftpv2Q9oM7mrvfaEt8M\/KWjmbHg\/eYw\/7T\/mPaD2k\/uKO5+4225D9fvpPZ8eA9Zj9+GiHj\/Ou\/u7f4UdeE7FlZ61GOugGd8ovChlOKwaLUIs\/jfjXxPEqPFuJXqHa2fXb9i4rVbXm3hZG\/AXxLTwdH\/nZbGMa3dFuIvx3fcg1jKZ6n\/cu\/m9FpaW\/5lcNiQ49SvCBlfnjn2jilGCzp6etQOSJ1BDB29vz57+\/c+S\/UichfVJT2vzi+U0nkmPYnHd8SOTj2b+l4TCezX2+JvBT7t3QsaX9Lx\/dG5S0ISbKzG6X8PaVJdsJuJPqQnF+IyAXHtINoRcob8Zoxf8en+aVdwIcH2eNwSjFYRo2qIeS\/4YJyfgEhBzN2CqXHZmSs8192xCOFhZukvMnmXj\/PmBdLSj5W6h7GTqD0kK7TK9vadkl5M5RiypR6v6g7li\/\/fPLkV30jeDilGBRLlmym9CitH2pu\/mbZss8YS1NqMZxSdDLGPItC\/zhHXACPIDf3A6X+TOnhnM8cM2Yl\/IXIS\/AIpk9fQ8h+9fVtkZJ2oBTQEbibCQmv4TC\/dG\/gpKDCzJzZ4NvBwynFwGlt\/U7K3zL28\/YdPbQuYexEdDhaP4zKhCrVtd44wghaOzRCyj8wdjJjZ6JV19Z+0anZQzUI+XG30yWSkl6HA6LUnZHgpStFRagz963tYUZWEHBKMUAgE2lpb1F6ZHLyG37Rv\/9dUfEppYcZ8zQqVmrqm5QmC3F5efknPfUkjuADP6K0dIv1IxLQDUAjNm7s0VXE5UZU4hsdwIdw\/gvGju92myjUJa0fhBL5diBxSjFA0Akwdio6GYiCX2R9SK1LGUuNdA4ZGevgo6KKzJixtpehLEcwwdVEdKlUEaVJnJ9jzJOrV2\/vySmIoPUTkIP2kKQjtuc4Bk5oVVUrDkB92Lp1V0vLtzk572p9\/6xZ7\/jHBRWnFAMBvYpSixg7qaTkY79oD5WVreh8tC7Hc9SG5cs\/F+JaSo825sWOmuIIMvAB7SDlXXAioBFaVyxb9llfHMPMzLcJ2b+gYKNvdwBvnzevifNMIWYrVWDMM8ZUIh7R+nFUkuB3JE4p+g0uOXoASo+aNKnOL+oALjnqAXqh9uFM+BdK3U3IgVqXdNvbOIJDxI\/Q+iHGUiidqvVfETz6r\/UBtHlCfth14\/t20MdAL0aNqjHmuYSE1xDX+C8EHqcU\/aamZhtj06Sc79tdQN2i9Ahj\/u7btn4gvmXsBClvKCvb4oYtgsnSpS1KLYFGIK7U+oEVK7b290q1tn7H2GnoKnw7jnBK0W8QdyDgRIP37e5A5EnpYR1vfKDOzZixFmLB+UWLFv3TiUWgQHABacBlZex4rR9BCDmwcAAuCbQGl9i34winFP0Azdve7jp4\/PhX\/KIegI4QcoDWD\/v2HvLzPxTiCsZO6uXWuiNmQA4qKj7FZcIVsb5AcXHxR4O8LgsWNFOaXFXV6tvxglOKflBX96VNsfvrrVv3MTZpRyvu5PzcrpOv0H1JeSulx2q9NLzrhcIOLhCCC3urIhUyoXUJxD0qQ87Ll3+Oz0xM7G06ZhhxStFXUI0QfzI2raHhK7+oV6AIlE415kXf7kBLy7da30vIgfjAbm+wO4aUtWu3G\/Mcen5KE5RajFjDfyEaQP05v0ype3w7XnBK0VemTKm345TP9b3nscrSYwqjceNqGTsBwUhh4aaBRcWO\/oIOX+tHGTuTsVOU+nNu7gf7dA8HgFKFnF8Y5AmXA8ApRZ9ARyHE5ULM7pqkpBdskpuDIS6+vTeIh3EA5xcxdnpKikuWNbRUV28zppqxswg5SKnbioqGUJ1Hj15JyP74F74dFzil2DdwIrR+gLET+3v3e\/PmnUr9ERLTy+qPqqpWIa5DUGPMC0PRv41wIMc4+cY8z\/kFcAmlvKX3m1ZRIT\/\/Q+jR9OlrfDsucEqxb3Jy3qV0stYV\/U1wiGpqF5smGfNSLyPqq1dvV+ovNmYucmOcUQRKbczTnJ9P6XGINebMeS82q3uhTXBetH7It+MCpxT7AP28EL9E2NnLuqBegD8ixDzOz+v97Tt2Lzp+iZCJQly9dGnLIG\/UORAkTp78KmNplB4iZd6iRf\/sfb1GdMHls8kHrulXrBpwnFL0hp1Icw8hB+fl9ZYotXeysxvhi+5zCRD+V1raW5xncH5ZVtb6WNbseAL9+YQJqyDulE6V8nczZzYMTOIHyahRNdCpeLqx5ZSiNxYu3GCXey0dzOgX3ivlzYyd3r5FbS+g9xPiWsamjR37svMs+kVDw1djxqyE92f9iFugEejSh0twa2q2oYNZsKDZt8OPU4oeQV8kxGz08INvsagxnvf9nm6CdMImyPk9IQcY87zLmtUXIAe5uR8IcTkhP8bfwc+zHDzoFexQxX1xI\/dOKXrELgQ4cu7cJt8eBKjKQlzN+UV9cSsAXGitH6H0KClv6tdaxpEGlHT06JVCzLVJg65LTKwPyJCwdSRv4Pz8uIkinVJ0A66uTVRzstYPR2WGL7ALTH82bdpq394X8CxmzXqHsVM5zywsjKs781EBkcWMGWvRFOHkQymGN9boFq2foPSYPs7oDT5OKboBdU6Iazi\/OLrT7GzymzP6NcqVl7cBTiwe6enr+nuPNl6Bw5WVtV7KhZRO5vySjtkJA0VBwUZCxsXN\/CunFJ3ZunWXMX8nZGJKSpRnzsBHIOSAceNqfbsPoJNcurQFrcKuhn58hE\/NglYmJb0uxK\/sLPh5Y8asrK39wn8teNihihOMed63Q45Tis5UVbVSOlWpu6I+mmiHKhcIkdPfBg83ROuHCPmxUotHZtasxsYddsF+DiH7cT4zJ+ddlAR\/sBASj2\/rGyHHKcVeQB2kzGXsTLi4flFUKSzcxNi0KVPq+1vL4Vygd6L0WCGu6zZNY7yCKwJfTKnb8ds5\/8WoUTVDdGmGgkmT6gj5aactxUKKU4q9MKYal7bv4479BR6plL\/h\/LIBuAYQCzuGl8HY2SMk2Xd2dqMQ11CaJMTlxrywfPnn\/gshwQ5V\/E+nbUpDilOK\/1Be\/gkhB2n9WNTjjo4kJtYTcsCAb74ihIHQUHo45GxYZh\/GgIaGr+zozI2EjI9kNsavDuPEhKamr22m5VLfDjNOKXwQ96K3R9zRUzqJaAHXQIhf4X8N+JZeTc02u1HNcVo\/GGdiAZ8rM\/Ntpe5g7AzOL9T6ibC77kJcgYdvhBmnFD5JSa9TOnX69DUx6LtmzmwgZMJgdjlGZ4VAidIjhciGcPilIaeyslXKWyg9jPMLjHkJscaAxTQ42Hp1rG+EGacUu7HrO46JWfJ19JycnyfElYNUJWiNbVezSko+Du+wBc4G4j6t7\/W8MTar2DPRmu0WBOwGlIcvWvRP3w4tTil211SlbmfshFhezpSUNWjkg\/yP6HILCzcJ8UvGThs\/\/pXQTc2CUNqtw+9E0Ae90\/rhsrItkLx4GqzFNeL83MiecqHGKcW\/58x5j9JDJ0xYFcsxsz3rAvq6EqQXamu\/gNLZkbNHQ+Su263Vdn\/tyFaMy5Z9hnMSxmHL3sEvkvJW+I+h0\/FOjHSlsBuCnYhG69sxZNq01YT8ODPzbd8eBFu37lLqbjQ5re9Hk\/NLAwm+an7+h8ZUMXaqneF2R1McpXvpCuTPmCcR24buFm8nRrRS2AZWyNjJwxJGooVwfkkvuxb2HXRc8E3sGGeyEFcFdq0Bgnalijg\/h\/PztC5duHBDHIxZ7hM4rZ43ep+pjALOiFaK6dPXEDJ2ypRh28TF7jc1NSfn3ag0GHRflZWttq9OxGcO6ayQ\/tLYuMOYp+FDETIejs\/q1dtHgkZEWLFiK6VHITb07XAycpWiqgqN6mwhrhnGABL\/GhGslHlRXM2xdGmLHeM805gXhne2BTydtrZdhYWbtH4CfoRNe7uotHT3mGX8jUf0ApxHKRdIeXOo7+mMUKVAE1VqMWOpw75\/JNozpUdkZzdGsRrZqVm7hy2UKh7GUQCbj6fErpo\/Tev7EGuM2LWwxlRxPjPUewWNUKVITn6DkJ8Ys8y3h4\/a2i+EuFypO3w7eowZs9LzfiDlDUM967QT8BcgT+np6+ByE\/JDKRfG95hlX8jP\/5Cx4weTt3nYGYlKUV29DY1TiKsDkklt3LhaSo+J+jAk\/KZJk+o4T+f84szMt2MTZJWVbTHmKRv+HA+NyMl5F7GG\/9oIpqHhK8Z+bsxL4R2dGXFKYedZLWHs5OBsq4Eul7HTpbzVt6MKBEiIKyk9buLEVUPaaO3twKfRHmw283sLCzeNzFQa3YKTI0S2lDc6pQgN8+e\/T+mhWj\/m28HAmH+ggQ3RRngQRClzKU005vmoJ4lC1YePlpr6JufnEHKgEFfFYDu\/MKL1\/YydGN60miNLKXCdhLiC86ygbdmyceM3nJ+r1B+HaHh87drtWj\/I2AlKLYpWJhgIkN0W+Bkba5wq5S0pKWsGP+U0XklMrKf08PBmIRpZSqF1CaWTFy4M4sCSMS8QMnbo5oC1tn6Hnp\/SwxDpoIX7pYMgM\/Ntxk4iZH+lbsMpxeePqHuf\/aWyspXSn0VlSu6wMFKUAoEiImfEHUotCeYYW2PjDsaOh1vh20PAggXNnF\/AWCpjZ6PKDizvFtyx8eNfEeJ6Sg+BNwH1Ceb5DCCcX6rUnb4RNkaKUtTUbBMiGzU7UDMXO5GU9DrEYunSFt+OKghwpLwRjbysbIuUN1OabMxT\/RILhDB2Gx7EGidKuWDKlPq42cwiNmj9KAJA3wgbI0UptK7wvO\/DrfDtQIJ2y\/k5Si0eitGKtLS3pLwpMrUB\/ovWD3veDxCO9XE6UFHRJs7P8zxJyLihyzMa3+TmfuB5\/xWijMEdiX+lQPCM4J+xnyt1d\/DnCBrzLKWHR13RID0QhY4bo6LEmErrHfy+p6kcOHWo1hMnrpLyFhzJeRZ8CnwIIrgRO9tyMCxf\/jkhBxlT5duhIv6Vwt7vmCPE5aHYor66ehvnGVrfG123Ao4DQo\/8\/A9929Jik1YydgZjZ3bNAAwHJyNjHU6d3R71xoSE1xDBQTsKCjbieBd3DIAdO\/6XsdOkzA3j0G+cKwUuiTHLCfnv9PSBJ62MJa2t3xnzDGOpkcwufumggZMixLXdaiX0gvOZhByg1J2UTraT3J\/Ff5fyN543irFTOi2XRvxCafI+Z5RC6eCPLFjQPGlS3cKFG\/Cu9p8TxnYSLZQqgHsbxvlXca4UxcUfQcURd4Qoh3Vt7Rdon1qXRlEp5s1rEiK7p5OwYsVWIa7wPO75jKb0aM4vhch2G1Rzfm7v6YLxgVr\/Vak\/QfUgNAh8oFMlJR\/jJShIXt7uW6qRI0cac+a8R8iEgCwj6BfxrBSIpYW4nrGUcK3hQ5er9VLGTo7iyq7Zs9cLcVVPdzrwH5W6zVcJC6XHwgHpSargbvSS1AMqIOUfENSUlW2JuA8IVaxe347naCTGPBXkO1BDCoQS0dwwpkQZMPGsFBMnriJkP3i\/vh0eamq2UZo0duzL0XLUrVJc3XUCJT4f8mHva1zmi4QFZi8eDRwQnFvf2Bs7UPo0pYd0Ws5vtx0+EU8Qj2j9RLR+VxgR4hopfxdFhzE2xK1S2HW+J8QsMX\/U0foxShOilRTTRh9Xdlr9DY3IylqPWstYKucXwI+IyATkldLJiYnd93uIsTlPxxt9e2+WLm1h7HjOMzuNyMKh8LzvoVDrR+fPf98vHZFoXY6aGboh4bhVCrsmamp4d6CqrGwl5CdK3eXbg6O0dAuij45JX+vr26S8Cf8CDRvOMFQDwc6oUTVjxqwsLv5IyjxCJkKtuo694Y3wn3vKAISPstM0\/urbezDmBc8bhcsRtLV5sWfWrHdw2qHdvh0S4lApECcj4qD0iBkz1vpF4USpYvT2Uel87F3SvIyMdZFYQ+v7KT2OsRStH+5WTO3IRRFEBG0eoZBfapk7t4nzi7sdHIWsaP2458nx41\/xi\/YAgUC51ve5laboAzxvjDEv+XZIiEOlKCzcZBdQ\/LmTAxw60KoZO1XrR6IS1WtdIeWtSv0JHgHnFxpTiUbby+06aIExf4OgCDGvouJTv3T35zxuzDPdhtkohGtNyI+zsxv9oj0oVQilSE9fN5JHKCI0N0fWDe8e3w0R8aYUqKy4BpT+rLz8E78ozCCqp3TyIFeC4JwsW\/aZ1g8QMoHSw415sY+T0PBGO731JIgLQhI0crxRygW9ZHlLSHiN0kM7TcFA21CqwPMonuNDwq7gg8emID4\/XKIZV0qBHtJmAUhGfe2ltwwR0IhI3p2BzZ5uafnWxholjJ3N2IkIKAZw57WgYKMQ1zB2ijHViFaUuqOXc4vP53yWUnfX17dBIGDOmfMefBNjnoROQW6gMhMmDG32reCTlbWesZPD1ZnFlVLY3S7OQKcXN72WMX+PZJQYQA5xVERIA6VH4+0IGfAJvZ+Wmppt+Hdjx76cnPzG5MmvIpA2ZhkaPLq+pqav0fgJOZix03rPxYKDS0o+1rrUmKfRc+IDk5Jej4Q5di7WncZU5ed\/GK7uNOpUV+\/eua6nu0vBJH6Uwt6Bewhxx5Ilm\/2icIL+du3a7Qj1hZgtxFVpaW\/BS9K6oo\/yh8NsKqon8S6b0vI+fFpfPCwoBYId6Kzdv2d\/pe6CLwPxjbxqp5k\/B7GQ8ibEIPts6vin+EBITPu\/xlsqKj4N0WTZIUWIX0LHQ7TQLn6UAgpNyH7GPO\/b4QStC6GTUn+S8vf4RWhXduSlkLGT9ulWoE2Wlm7R+hHOz4MfgXehe++Xn49PgDfheaOl\/K1f1AG8OmlSHWNnQsIQU\/iljgGh1G2c\/6LTDJcgEydKgV6OsTQhLg\/1ami4DzaD8w2pqW92XBlhs3UdOW5crW93h0058Qilx1B6uNYPwBfoix\/RFfgUnkc6rTptB34BXrJKdHxPk68cfWHUqBpCDiou\/si3A088KEVLy7da34u62+nOf7hQ6h7Oz5kypb7bfgZdEGMnd13AAmVcvvxzY\/7O2FkIN6S8eTDjZA0NX9kU2z\/x7R7ANxRiHiEHGvN0c\/M3I3zQYWDk5W2g9Ojp09f4duCJB6XA6ab0ELQW3w4niJuEuLqnRZZwK2wSlGUdlyEiHjHmSc4zGDtFqduzsxsHeU8BwQshB0MsfLtn7GzLpYydIOUforiSbeQA0Uf0oXV5T1c8aIReKRB3cD4THnsYV\/J2BN+f0qk9TfJFKIHABL095xdofd+yZZ\/BfYUbRchYpe6CjkSlY4fmet7\/k\/IW3+4V\/Mfx41\/BdxbiSgQ7zrPoLzjPQswNy3kLt1Js3rzTrrdJiY95VqNHr5Qyv9vxBfTb6MAjK7g8T1GaYFNR5SLQRQASrekJWpd6njTmRd\/uA7NmvcPYGZyfP3v2+mh9jRECIk1KfxaWHi7cSjFnzns411o\/6tshp6XlWynndzthYf789z3ve75Q7F7u+UPUs66ryAeDnWV8GT67X8NsUAcEQULMs3uULQ\/RYP6wU1HxKSH7h+UuUoiVomF3gszZeMCz8IvCjzFPIvLv9IvwS6GGnqd9ndidaSYx6sO3RUWb4Kcwdjokwy\/qM4i6lfoLPB2l7oZYOOeiL8CbYCwVZ8y3g01YlQJ1UeuHUbNDvdN8V9DPcH5pbu4HEbO6etvYsS9DDSk9gtJDEXdYofi+Uouj61AAu2B8tFJ\/GtidZsTbWj9O6XEIoPaZZdMBcMaEmIvALRTCGlalsAsiErReOrBZA4EFlcaYv2ldCj9i9OiVnM8i5CAhrsrIWFdS8rFSxVLeYExlH5d49R3bzu\/3vP83alSNX9R\/cC2Sk9+w+f5nLlmyOc4uzVBgd65ODEXIFkqlqK9vQ8eLxwD85OBTWrqF80zOMwiZwHlWTs67Hd2HIfrJbW27OL8I\/7FwcFuNtLZ+Z79\/FqXHwkmBWLh7Ir1ghyp+FIqcHeFTCnu\/o4KQAxcsaPaL4gX0LWhdQlxD6c8QcYwbVxv1EKMnanZn7jyGsZOjkiWssrJVyoWUJmld7hZ69A7OuTFP+kaACZ9SFO9OzH88XOV4cm4RdMyZ854QvyZkPzgU6enrYuwu4ayicxNiXhS1SevH8HOUWhStbKBxid0B5FTfCDAhUwp7v+MqIa6Im7gDP2TGjLX2LuPhcNqTkl6P5Zx0qC1Uafz4V6S8wfOEEDkTJ66K1hbKEB27ouwUIeYgJAn1kpyhA54j9DT481zDpBSIO2y+hkN635YmLCDWmD17vZS\/oXQq55dMnvwqSjpF9Whs06atTk5+IytrPR5o1Xheb3frQXvG81mz3kE5\/uJ5dnZjfwcF7Fryf2j9gFJLlFqs1D1aP9jT8rABgO8zc2aDnW9+Rmbm236powMFBRs9bwyiTt8OKmFSCrQNuxHxXWGfQIH2idYo5Y3Wj8gcO\/blnn6RHZQptUm0D4REKlWIxhxZfj5vXpNSxXg7IeM5Px\/PjXk6mBFZRcWnQlxnp2a96DyLTuCEEHKw1vf6dlAJjVKgdcFDZuzsUK\/vQLWwfsTNViMuRMvpPdbYufNfcCumT18TGUSAcLTfe0d3jZeE+LXnfc+YajwP8l0GXDU7NQtiV7x69fYgf9UYgwsKvxIBmm8HldAohU1Uc3Bq6pu+HTaam7\/Jy9ug1B8pPQIuAPyIyBLyfbYZHKB1uV2O0TnvO9QTCkLIQaFYbt+2e3ux5yk9Gurmxjg7ggATEahvBJVwKEVZ2RZKj1FqkW+HCrTnBQuabfr8ZMbONOa5fg1fIaCQcj4hP+w6OlNS8rHn\/Rd0x7cDD1Rvxoy1cAwRNMG38ktHNjgnNv\/rCTNnNvhFgSQESgGXW8oFlB5XXR2yRDXwI4qKNtkkNMdznm7Ms+j828OHPoKAhbGTKT20q+MwceIqz2PQIN8OAxC+\/PwPhZjN2GkpKWsQNPkvjFSgFLjENlfFUr8okIRAKZKSXidkIqrXPh31QGEnX\/+FkAPt7I8n4Fn4L\/QT+COEHCBEdtdGJWW+53nG\/MO3wwM0VMqbPU9rXRFP82IGDNxGIa4O8lB90JWiuPgjSpOUuquPmamHHbgMixb9U6lie+\/zXGjEPtPn9wI+bdy4Ws8bJeXCefOaFi7cUFCwMTf3Azzy8jagW\/Y8HtJc5E1NX9sVZUdJeVPHDVNHJnaD+GPaM6EHkEArBbwym5Y6JVpzgYYUeA1lZVuUWmKDhalaPzr4cTv4EQheoBRw16X8nZS32L8LpPyDvevxA0oPCW+fDAGdMqUep4vzLLhOcTObbgDMnr2ekP067b0WKIKrFGgAqEaUHhnk0xcBPb\/dqushSo\/DQ+v7ozXlrq7uS0qPZeyETr0NTg6CDrtIPGTbW3Zl7twmxs7AIytr\/YiNRNCpMDbNmGd9O3gEVynsuTsd0WzA1+SWl39iM4Ofgrqu9YNwfyAc0arxCDE8jwiR02mMBp8P\/8LzBOIRvyi04Kch+oCvZPdMrfJLRxhwn4W4DrU9sFoZXKWI7Nwf2ASZuKKINbQuR6BBaaJSf4G0Rf0yG\/OC59GuE\/jgqNt0+wfEjcduk30\/jl+EeHNkJvs25jnOMwM7ZBNQpZg2bTUhE3rfC2e4gMtgNeIJxs5k7CRoxNDJmZS3ep5MSnrdt\/eA\/2jvqpwd2C5oYBjzjN21ZEG\/cnnGBwsWNCPWDmzXGESliOQXFOJXQbvZvnnzzvr6Nq0fYiyFsZOhEYWFm4Z0GjXn5xKyX9dkc9AOz\/s+dCRcd477wuzZ6xk7CyqMwCrOdLB3EGUzdoIxz6Mr8ouCROCUorX1OzjblCZFVkwGB3yfiRNXMXYiIT9BPIlYIwatlJAfQjQbGr7y7T3YdPts7NiX408pAKIPIa6i9DA4lQEfpYoibW27hJgjxBVOKfqEXQ21X7+2nBhqIArGPM35+TbW+OP8+e8PafvEhxcUbLT7GN\/mQQ\/YWZMm1VVV7d56BzKakrIG3Q6cGryk9WM4LC6nOVZXb5PyD9BlrR+OShqu4IPrq3UJY6cGUxwDpBSQUsQdaJBS\/i4IJwuuL+qoMcvRLAk5SKnF+fkfxmAWHc4D5LJDzohirR9E3I6aZGOfpTCVuhMPPIFYdPU44gMoIASakAlSzo96huFgkpb2FqVHBHNQM0BKsXXrrsgQwLBPOkSbRJ82YcIqzi+ldLIQv6qo+DT2k0T3KZcjIUVlVtZ6So\/h\/MI5c97DdfFL4xRccUoTgrlULEBKkZ3dSOlRw559FH6NMX\/j\/BL4gVLelJn5dly692EB6jBvXpMQVzF2BrQ77q+FEJcj7PKNIBEUpWhu\/kaIHDyGsZ+EosP9Y+wUSg+V8ta8vA2INeK+HwsFy5Z9ZtMI\/mzs2Jfhe\/ql8YjWFZQe5htBIhBKgdZoTCXa59y53e\/0PaTs3PmvmpptSUmv2\/H2IyHqGRnrnEAEELs29wCl7grySqpBAs\/a80YFcOptIJQCFx46qvUjsb8\/1LY7EdMLUAdohJS\/mz59jdufIrDA6RszZiVjJ8H3jNcNDaurtxEyHh2nbweG4VcKePicZ3A+M8ZDhnV1X8KF4fwCQn4qxC\/Lyz9pbf3OuRIBB31JQcFGxlIZO7F999Z4AjXQ7u26wLcDwzArxY4d\/6v1Y5ROzsl51y8aYnAlGhq+mjKlXso8SpOFyJ44cVUQbso6+s6SJZtx4aAXxrwYfzeJtX6AsdN9IzAMs1LYDcGmGfNUzOKOWbPegQdB6eFSzk9NfbO+vs35EaEDlwwuoVJ3I2hV6g6\/NF6oqUEAclDQZlUMp1KsWLGV84vQbmOQmB9eA7xWIa72vDGMpQU\/54WjLxjzHCHjpPwNhCNuFB91lbFTExODtVfQsCkFnAhcZkqP6rpQMrrgvNtY4xbGUoSYbUx10FaUOAYM1AHBI+fn4MrOmLHWLw0\/Qlwr5W9jP8DfC8OmFHZDsCHfiLi6eht8FkJ+wvmstLS3nEbEH2hOZWVbhLiC0mMyMtYNOLNxoLD505Jra7\/w7QAwPEqBywnJRFcwFIlY0M+0tHybk\/OuUkWETECsYcxL8VGBHD2BABY1ipD9jVke5AzXfQReMLq3QM2qGB6lSEh4DT0A\/kbdv0Itycx8W8qbGPs5vAljno6swvRfdsQvdvnc\/YgxpVwYuq1hOlFR8SmUouuuccPIMChFXd2XhPxQqbujLhOrV2+X8kZCxlF6VGJifVPT1yMqFYqjrW3XjBlrCfkRY2dCLMLbQ9jFDbOVus23A0CslQJN1+7xfXQUVR9+BGINre+z2\/mdpvWjkS0\/HSOTOXPe4\/xczn+RmvpmSKNOO8\/oUYhFcFbExVQp8PuNeREykZ3dGBWHAh9YXPyRlLfahcmXGvNMefknsV8e7ggUcCXKyrZI+VtKpyL89EvDht3A9bTCwqBMWo+pUixb9hmlR0Zri4rGxh1aVyCQIeQACJATCEdH0IvYIe0faV0SRs\/CNpbkKVOCMqsiRkoBmcfVshuCnTTI7MP4nNzcD+wWG2czlqrUPaHYYcwRexCWav04YydLmVdUtClcwxZQOs4zlbojIF1gjJQCPzsxsZ7SpPT0dYOJOyorW6X8PWMn2Dn\/ldAId\/vT0QuI8zMy1jF2KvqVvLww7aKEZqJUAefnBGRxc4yUAi2csTOkvAGS4Rf1B8jq8uWfG\/MPSo+1U\/3vcWOWjr5j50efhcg3IeE1PPdLA48x1ZQeUlLysW8PKzFSCruv7+kD2O4FyoIzZVfXnQ19RfyycOGGqN9edcQ9NmvWrYylaf1gWPL35ud\/SOlxMVtm3TuxUIrk5DcIGT9x4qr+tnA7ZvkQYhZKE41ZVlHxqYs1HAMGkYgxTxKyv5R5oUixh26SsdOMWR6Ee6VDrhR2weiFQszue7iFWGPp0hZj\/s55pk1FlefGLB3RYvLkVyn9mRBXLljQHHznVKnFQlzuG8PK0CoF2rxSdzB2Ut\/jDjgOWpcj0ICjqNTts2a9EwfT+B3BYdeu\/8vMfFuIKzg\/d\/z4V\/zSoAJdgxMUhGw9Q6sUM2c2eB5D3OHbvQJZmTBhFaXHeh5X6u6amm1uPMIxRCCwFeJ6Qn4ctDQQnSgt3ULIuIyMdb49fAyVUkC5167dDseJ88t6j7IQjFVVtRrzDyHmUJok5Q35+R+G69a3I4w0N3+jVDGlh2p9H2qgXxow4E3YPS4LfHv4GCqlaN29EfEDjKVAFP2i7mhq+tqYKs7Po3QqYg1o51CsQ3c4usVWvxfssuOrAnIzshPoMoX4NeeZw9537lsp8BUHEAXk5LxLyE972hAMn7l58047JeZ0zxuDcxFYUXfEPXbzusMpTUYlDGDAa8xLlB42sIlIUWTfSpGb+8H48a\/0a0ppfX2b3d\/92m5zTC1b9tno0Svt\/nHQ8nkpKW6LDccwU1z8kRBXMHbymDErg+bVok8lZNywb4a0D6WAxEo5n\/Nf9H1mG\/wFrcspPWb+\/Pf9oj1s3borMbGe8wy7gXX+zJkN+Nhhd6scDrB27XabuCABf4O2MwBjZytV7BvDxD6UAsEbIWMZS129uq+zp+0auEStS3zbyk1j4w7EI0Jcg0\/jfFYc7xbnCC\/wbe2ulwlKLaqt\/SI4kYhSf2HslOENQHpTihUrtgqRTelkRHFo\/35pr0CMOb+gY2J++HI21rgWPxXuyYQJq9pfcjgCiDEvMXYG6nB2dmNAHF7ERIT8tKyst5sDQ01vSqH1YwgQ4FDgW1ZUfOqX9orWT3iead8GbsGCZs4z7Zjl1ZmZb4docY5jxAJXwm5YdTalx6akrPFLhxVohOfx4c1V0aNSFBZuUmoJNBXBAkKG3veAhF\/U0vJtQcFGSqdqfT8UAXos5R\/gjzB25vTpgTjdDkffQSQCR5jSI415FvV5eCMROOaUHqL1g749HHSvFDhNShXNnr0eSmH33fpBL\/v3VFdv0\/phpW7n\/ELOL0lMrBdint2Q+lrEHW6LDUdIWb16OxonY9OUWjy8e\/+hJ1bqDiGu8u3hoHulSE9fh3MUuXkJ18DzRhlTHXmpE62t33F+jucxbzea0kMJ+Qljp2dkrOvXjVWHI5hMmlRHyH5CXFFTM5w7A9hJH8cNY7\/bjVLU1X2JCKJ9yprWj3nefxlTFTE7gdjJakQ7P4AzUlq6Ze3a7W5llyMOQH+emfk2Y2dxfkFW1vrh6v\/snnunDuO4SWelQDxmzD+MebL9lgxMzxNK3RUxO4EozpcIH2VT6Z8lRI6UeVrfC2cEUUzQNm52OPqFTQF\/A6VJxvytvWnEEoRCnKdrXT5cIyadlaKqqlXKm3NzP6isbC0v\/wQPY16CAEj5W\/+IvVmxYishP\/Q8YmVCSJk7a9Y7Wj8BmWDsTEoPJ+RgO1X2EMR7Qlyt9X2TJ79aULARGllb+wUCHMQvOPV4uClYjiDT0vKtUn8i5ACtlyIKiH11lXIh55dGxgRiz15KsXXrLngTOB1aP25MpdaP4oFoYrcGiOye7nEmJLzG+cU2TebNkbzbEdlD429s3LFw4QZIgzFPKXWP3Ys0i7FUmzL3DM5n2T2dF2hdgv+LgHDu3CZEPRUVnw7X6XA4egFV2k7NmiplPkLsGHfvxlRReuRwued7KUV+\/odot2ilkE+oRqSrLyraRMiPOJ\/Z02gKxLW5+ZuGhq\/gHfQitHgJB+DItWu349fm5Lw7fvwrWldAKYWYy9gp8DvgnlB6LLwsIa6Q8lb4JhkZ6+rqvgxFLjPHSAB1GF4zYz9HLY3x8lNE8ZQeOm9ek2\/Hlv8oRSQ\/Vde5mNXV2yg9CrEDAg2\/KNrg7MNhQeCTl7fBmOeU+rMQv8TFoDSZ0mMIORBP4Iyg3JhlyclvzJnz3pIlm6Fc8Fki8Qs+xAUvjpiB6geloDRp2rTVMevG0ADtxv3PDMtQha8U8B3Gjn0ZfXjE7IidoH0uOnw4F37R0INzAe8Dmp2VtX7ixFU2Jloi5Q2cX2AT551lg5fzhJhtg5f7jXk+JWUNhAZy42aCOmKAHdHLp\/S4yLCFXzqUoJGitsPXHpYavlsp0BvDySdkYtcp23gJSiHElYT894IFzcPYb0M7cKbwBFcFmgUFGT16pdYPCHE9Y8cTMt7zxljv4zjoGiIarR9JSnq9snJ3xgE8nMfhGAqMecrzvg9nPDYja8ZUMXZ2xImOMV55+SdKLWbsdEoPQ6vrNF6CWMBuTX4spYcLMUepO4fF8+kFfJ\/Nm3fi3C1cuMFqR6ldJj+LsVQbvCRQeiTnF+NX4CV4bpMm1SHeKyvbUlv7xdq12yMjMv5nORz9BDH7qFE1jJ0oxNUx2G04P\/9DdIfDsq2xF1mvgV4aXwLfAI3Hf8VSWroFr+Il\/I088V8IMHAfIPAI6oqLP4LrMX78K\/bOy21CXIOABQ9cV8ZS7HrBHKX+qHU5Ii8ciWCnsXGH8z4c\/QJ9Ffoezi9Fd5uW9taQ1h841IydZExl7GvpXvc+4piIw4YAD\/EIwqgpU+oRXiLOhPdB6RGUHgrXg9KpjJ0GB0SpAnQUs2a9g4PhejQ3fxM0T8oRNKqqWm2KhiPQMw2dl4pP5vwSIX7l2zFkpChFt+yw070QvCAYSU5+w46bLhbiOhu8pFjtiNyyvRqaYoOX55OSXkeYU1HxKcI0eC6RoROHA12RnZpVYBd93jd0Y5x2l\/+TYj9UMaKVolsg23A96uq+XLJk85w5740bV6v1X6X8rRBX2l1wjyXkIHvX9hdCzFPqLgQv06evQeAWmwFwR5BB5zFpUh0qiRBXDVHimXnzmuACxz5\/n1OKfdC+zg3Xprz8k6KiTZmZbxvzrFJ3w9dg7Gw76nE8pUfjic33db3WD0+e\/GpW1vri4o9qarZB\/iM3X\/DXRTEjAfinjKVxftHcuU1Rv+LoySidnJr6pm\/HCqcUAyEStuAJLtvSpS175ps+YoOXuZxnQDgoTbILEC9C92Lv2t4\/alTNzJkN0Bq8BbrjIpc4Ji9vgxCXM3Yy+gxEJX5plBDiWiF+7RuxwilFNIk4DpCAtrZdiEcQlRizTKnbpMy12dYO8zxByAGMncD5LClvUmoJnNX589+vrf3C\/whHvABvVMpbCfkpOgm\/KEoY8zQh42Izg6MdpxRDDlSjqenr+vq2qqpWiMKECbunnEq5wG6iew5jp1E61TogZ8AfUarImKdwTHZ2Y2Vla3Pz7jU4+AQ4Ly5yCR24dlo\/ROmxUuavWLEVF9F\/YXAg\/vW80fBkfTsmOKUYNtD+4UosXLhhz3zTR9AF2VW5pzN2ChRkz4z1bKVuh28yZUp9bu4HcFWcAxIi4GAiMrVjnFcXF38UlXkQqACe9z1UCd+OCU4pggKEI1KN8Le8\/JPZs9ePHfuyUvcoVcj5pZQeRcgEu6PCcXbs40qlFhuzHN1LRcWnkQxj6LKiUhEdUaeoaBPnmZQmz5zZEJVrxHmGENf7RkxwShFQEGtEqhQCkMbGHdXV29AjpaevgzpEFsvZAbOzELZQejhjqdAOKW+Eshjz7PTpawoKNiLewRsj927c6OmwU1q6RYjrKE005rnBDzHgKsPrjOVldUoRMiLygSoCFaiqal2yZDO8D2OeV+pOIa5FV2Mjl8i0sSQ7bjpf64cR3UBlELnU1Gxzfsdw0dDwlVJ\/gWOIv5B+v3RArFixFT3E0qUtvj30OKWIKyAfqEO5uR9Mm7baeh+L7Z766ZQew9g0u9oljfMLpPyd1n+dOHEVnGFoDd7S0vKtU5DYYPcunwwHEGd+wOccLidjZ6CH8O2hxylFHBIZY0dlamvbheijqenrZcs+mzPnPZvp4yml7rKZPjLthLHD4IPY+aZXSLnQBi8vZGWth7eCTg+BD97uIpfogvM5a9Y7nJ+D0w5\/cGCzLfAhNrPkb2M2rdspxYgD\/RgUBBUUQgD3NS3tLa0fkzKP80vspI\/jCBnnef+PsZPtWts7jHlm1KgaCE19fZu7Uxst7BjnxYgQU1LWDMyzsNsap9XVfenbQ4xTCocP5AOuB1xi+BQTJqzSulzKW4S4HMGLvXF7ImMn2UkfVyr1Z60fh4eSk\/MuajzCb6cgAwCN3K4oO0Lre6HafmmfgcQTsv+iRf\/07SHGKYWje9DRwbPduPEbVOiCgo0ZGevsYjl4H3\/g\/DIIByEHR8Y+7KQPeB8FkQzJOBjBS2PjDjz8z3L0AII7Y562wxYLIdP9CvQqKj6lNAHRom8PMU4pHAOktvYLhCR2qf7tdrVLlk2PvJ+d95HM+UWIorX+qzF\/T09fV1a2BcFLZL6pc0A6Ae8AQZ8Qs+Eg9D0Swfm0\/t2dAx4W7RdOKRwDBBW0vc1v3bqrunpbZeXu7OozZqw1ZrnW99kZ6zmRJGN23sdxe5bqL0bwkpDwWm7uB87viIA4TohsRHlTptT3XUm1fhj+3erVe+WpGyKcUjiGBFR3+NIIv5cv\/7yoaBO8DzvltFiI62zS1mMoPcrKxzE2Q3KuUvdAO+bObVq6tKW8\/BO8MTZdZUDA6aqp2QYvjNIjjXk+Ml9un0CUGTs+NtuOOKVwxBoEIOgG581rMuYlrR9QqkCIq+zODMdTmoi\/nF9sBz4WaV2OY7Ky1kM+VqzY2tT0dXzfsoU+wuGi9DClCteu3b5PrYSkUno0FNa3hxKnFI5hBpELhAOuR2TSB9xvY6q0LrF7U15mN5c7Aj2tnfdxiZQ3KHVXZFtsdMJ4O7QDj9hnixsiNm78ZsKEVfYW9RWlpfvImtXS8i3n5ytVFIMV6E4pHAGivRfFE7ge6GMhImVlW1JT37TbYt9kp6vD9TjU7k15EKVToSZK\/QXakZGxDsEL5Cb2meOiDn6ITWJyLqSzFzcKMQt0k7HUgU3f6hdOKRxhAgpSV\/dlfv6HSUmvG\/OM1vdLebPNkPxz+ziL83TOZ0o5346blk+e\/Gpk0kdt7Rfh8jsQcCEEw49C\/NXLNzfmBcamdd3TK+o4pXCEmMigaaNdaws5QFdst3epVOoOIa5h7CRKJxNygN2f4WwhsqW8BfKRlvbWihVb8a7Nm3fCbw\/s2AfCK6XuhAOl1D09iUVJyceUHh6D+VdOKRzxDNxytKLRo1cqVcB5lt1ZLoGQ\/T3vB1AQ630shLJMmlSXmfl2cfFHy5d\/DuGAVx+QOy\/4Jvh6hPwUkVdPK0c5P8eYKt8YMpxSOEYQq1dvLy3dEpmubueM3SXlbzi\/lPPzOT\/X3n85jfPLpFxgxz6enDKlHsFLZWVrH29bDhGJifUIQ4T45ezZ66EdfukelCpmLMU3hgynFI4RCppcW9suRB9NTV\/DlcjN\/QDt0C54eUiIXzOWZsOWw2ymj2SY9sbt4oSE18rLP8HxDQ1fQT5iMJQI4OBA4Gzqs6nJyW\/4pXtISnrd80ynfUJ7At8Z37yqqhXHI2RDgNNu9j4S7JTC4ege6MjChRvsapf7pbzRBi9nU5pIyMF2wth5dtz0L1o\/OH78K3PmvIcwp76+DbrT2vrdUAQvdXVf2qlZRyHW6KhQCJo8bwy+g2\/3CjROqT\/DPbFTV9KkzMOvwK\/DA1IIMy3trW4zAzulcDh6IzLeib+RNB95eRtSU98cM2al1o8rVYhmZnOsn2dHT6famy8IXm62wcvTKSlrysq2RNHvQPSk9VJKk6S8pT1rFtwESg9X6vaI2Ts4GGKBwMrzBHSntvYLOBSRx\/z579utDE\/WuryrWDilcDj6DVyGSPCCFtXc\/A3aW2RnbGOet5k+zkXkQshEQg7CX0oPhZQo9Ue8Cr+jpORjtFXojv9Z\/QT\/FyESIfsLkY04KDJsYV2eiyMH9AWEUZ7H8Dm+vQf8HCn\/QMh+iMX8oj04pXA4og+EAIpg55s+o9QdNsnYLLu3y1F2V8pMIa4S4tc2UdCySZPqcnLeXbJkMxSkjwteinYnwsng\/PwZM9bC37G5Kg6Gcvkv9wqO53ym5yn8O7+oA3PnNhHyP0oVRJypdpxSOBxDC1p+Y+OOmpptFRWfwqdA2x41qsYGL0VCXM\/5JZQei\/DBZkhOtznWf6f1\/aNHrywu\/qiXadr4KCkXMjbNmOU2ADkUjdx\/rVfsapEExn7u23sD5yiSMBGOkl9kcUrhcAwbcD3g8KP3XrbsMzggcDHgJsA7sMHLOM\/7AR72\/ug8Y57Kzm4sLNwUiVwifgfeq1QhIT8x5jk7yf0Qpe6pq\/uy653UjhjzD3ys1g\/79t6sWLGVsTMoPayTx+GUwuEIBGj8EYcfQURZ2Ra7pX412rNSf5JyPucX2enqp9mg4wIhrrbzTe+FgiCQ8Tzu+RgcDBcj8pldgYgo9WfP0+np6\/yivUFcE3FwOk30ckrhcAQXyEdr63dwE\/BA1ICIIzX1TZtj\/Ukp8zmfic6fkLGeR3yh8Dx4FkuWbPbf3wWEM3gX3JaeZnzm5LwL3YEedZqg4ZTC4Qgr0BG4D9AOz\/uerxNWKXpZMFZZ2YoDGEvtaSGJ1uXQHaVu8+09OKVwOMJNU9PXQlyLgMIKxfeVKuhl7WlS0uuE\/FDKm7u9UQLdESIbH5KYWO8X7cEphcMReqqqWhMSXlPq9kmT6pp73RBA60fgdhjzkm\/vTXX1NkL25zx9dZfcnE4pHI6RQmPjDiFyoAXFxR\/5RR2w065yCZkwffoav6gDTikcjpECXA9CxnN+Xqe5EhGMecbzRmv9cLfBi1MKh2OkkJb2lucxKW\/17T3s2PG\/6enrCPmRMc\/2NBfDKYXDEf8st8vqpfy950mtS4qKNkUeKBw\/\/hWl7uL8QvgU\/tHd4ZTC4Yh\/jHnabvV2ld1d5XdK3aHUYvv3Nq0fGT16ZWnplk4LPTrhlMLhiH82b97Zcbu2NrvnY7+WwzulcDgc+8YphcPh2DdOKRwOx75xSuFwOPbFv\/\/9\/wEzdXv272QMbwAAAABJRU5ErkJggg==\" y=\"0.5\"><\/image> <\/g> <\/svg><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2024-10-28 00:56:34","option_type":"math","len":0},{"id":"8158","post_id":"7869","mon_id":"1159278","chapter_id":"1159328","question":"<p>Cho tam gi&aacute;c ABC c&oacute; AB = 8&nbsp;cm, AC = 12 cm v&agrave;&nbsp;<span class=\"math-tex\">$\\widehat{A}=60^o$<\/span>. \u0110\u1ed9 d&agrave;i c\u1ee7a c\u1ea1nh BC b\u1eb1ng<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$4\\sqrt{13}$<\/span> cm","<strong>B.<\/strong> <span class=\"math-tex\">$4\\sqrt{19}$<\/span> cm","<strong>C.<\/strong> <span class=\"math-tex\">$4\\sqrt{7}$<\/span> cm","<strong>D.<\/strong> <span class=\"math-tex\">$4\\sqrt{5}$<\/span> cm"],"correct":"3","level":"3","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>C.<\/strong>&nbsp;<span class=\"math-tex\">$4\\sqrt{7}$<\/span>&nbsp;cm<\/span><\/p><p>K\u1ebb&nbsp;BH&nbsp;<span class=\"math-tex\">$\\bot$<\/span>&nbsp;AC t\u1ea1i H.<\/p><p>X&eacute;t tam gi&aacute;c vu&ocirc;ng ABH ta c&oacute;<\/p><p>+ BH = AB . sinA = 8 . sin60&deg; =&nbsp;<span class=\"math-tex\">$4\\sqrt{3}$<\/span>&nbsp;(cm)<\/p><p>+ AH =&nbsp;AB . cosA = 8 . cos60&deg; =&nbsp;4&nbsp;(cm)<\/p><p>Suy ra CH = AC&nbsp;&ndash; AH = 12&nbsp;&ndash; 4 = 8 (cm)<\/p><p>&Aacute;p d\u1ee5ng \u0111\u1ecbnh l&iacute; Pythagore c&oacute;:<\/p><p>BC =&nbsp;<span class=\"math-tex\">$\\sqrt{CH^2+BH^2}=\\sqrt{48+64}=4\\sqrt{7}$<\/span>&nbsp;(cm)<\/p><p><span class=\"svgedit\"><svg height=\"220\" width=\"239\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>&lt;title&gt;&lt;\/title><rect fill=\"#fff\" height=\"222\" id=\"canvas_background\" width=\"241\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>&lt;title&gt;&lt;\/title><image height=\"220\" id=\"svg_1\" width=\"239\" x=\"0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAO8AAADcCAIAAAAX\/GHtAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACiZSURBVHhe7X0NTFVnuu6j8XAZx8sZ77HOUEbn6NRpm9qxaZk5NKFzbIq3Dc0xTY2GtCFNjI2h6SWaxnuIaWqMwTQkBq\/XxpTYkHjoLalDTTVylUbaQ5Q64E+VKlKtiMUiRUTkny3OfdazF\/tu11bKz\/5ba39P3pDN3ovN3ms96\/2e9\/3e7\/3w98TG4OBIQ8NAZ6dvZOSu\/ZSBa5HQbPb57tbV9QHvJyVd7Om5Yz9r4FokNJvb24eBUuC3wBcdHcP2swauReKyuavLl519HXgZSALKL10atF8wcC0SlM1UydXVvcBXwFZgJrCjpqbPfs3AtUhQNre0DGVk\/AgcARqAh4B3i4u77NcMXItEZPPw8Mg773QCZ1esaF+y5BrwMJCXk\/OT\/bKBa5GIbG5uHpw79wpwsq\/vTlFRF7AAWPnYYz\/YLxu4FgnHZirm+fOvAuf277\/t891taBgAHgeyZs68ZB9h4FokHJsrK3umTWtKTb1Cx0xmt7UNAc8CGRTQZgLF7UgsNg8OjgCngA+BvcAJWa2UxmN8YNjsdiQQm6krpJK\/UirjNHBGRnKnA78HDjE6tA81cCcShc30ux0dw4z8Fi36obFxwH5WFAe2AI8CH1N72M8auBOJwuauLl9+\/g2gqrz8drCi4GPgI2ARsKOz02c\/a+BOJASbKSGKi6kx1mVmtoXWYwCVwCPAe62tQ\/ZTBu6E99lcUNAJVADPAMnA5sLCm359TI3R1DRAuayX\/kG1R3vWrOkwsaB74X02k7IrVrQDFyia09OvtbQM+fnKn93dvtzcjqSkiwoKL2RnX6ekNmx2LxJFNxskAgybDbyDBGUzRbPJLnsPicjmwcGR5ubBuro+6majkr2EhGOzVk+VqQo0BXg0P\/+GWRHoGSQcm4Fjyi4H8LKp0\/cMEpDNm5V4DuCXWVnX7dcMXI4EZPMBYK7NZAsP5+Z22K8ZuBwJx+ZNmzqBV8TjJOAfgWezs6\/395v8hheQcGweHh4Btmu9SRHwGTAbqKqu7jXJDQ8g4dhcUXEbeBso6OgYbmkZUsH+k8CRtjZTcuR6JKBuPgVsBI7+\/bO\/+Xx3L10aBPYArwHHjN5wOxKLzZQTwAag2Oo38Nnf\/KZiUWqPt4BGozdcjQRiMz3x\/v2UGS8C+yxdMcpmmrpqbCWhMzPbeJj9BwZuQwKxmUICOAm8Th8cTGUaQ8NZs74H8ui5y8tvG8nhUiQQm7u6fEAu8FFeXoeDzbTubp8KnRkRflJV1WtqktyIRGEz9cM33\/QrH3fGWv8XwmZaa+uQCJ0E1AWvhDVwCxKFzc3Ng1pg8idKZEsZh1CZxudJYvUneJqapL3ddHR2GRKFzWVl3cAbwC4+cJA42Cgw1G2\/GFgDfGsEtLuQEGwmKdPTrwG\/SUm57Mhm3NfWrOkA3gMKZs9uNjk7FyEh2CzFXAf81t9J0cHd+xp5rMz0xvz8G\/a7GMQ9EoLN2hFiM1BI9exg7YNM5RznlM7bSjFtUhyugPfZrPk\/8vJPCxdetZaZhBD3Qdbd7QPOqg3S4aYm05nABfA+myUz9gHppLLFyBDWPsh4sLo7n9Saq3Nmm5\/4h\/fZrN7j7wM7HGQdj1FgVFb2AOVAJnDB7MIW5\/A4myUzDgNr5sxpdjB1nNbfP1Je7q\/uWDljxncmZxfP8DibJRWKgDxrbi+EqT9rvBlaW4dSUi6LzQuBjenp14yAjlt4nM3arWcj8ImDpj9r1BiM\/PLyOtSxPAd4VVmR1yharPkXg7iEl9ksmbGHLJyQzCCP29qGpC7OqkppHpDvL6wDvhatd1FAGw8dh\/Aym5Vie4nxn5WOCGHtfY1Urq3tU9j3e9nO3NwOvo9\/zkWdZY5qTeFR07o8DuFlNktmPAGkaVavPjOzrbDwZl1dX1eXGnaJvoODIxUVtxcuvAocB0pUy0ES8+eXGRk\/1tT0BaeoyWnV+1cBv0tOvmi6l8cbPMtmyYxirY9iFPgBUKDHq0dF8CpgLbAOWKkJv7cli3dSYQPV8+dfJY+t9MUojwPGJ7XyagewjALGeOi4gjfZTCcqVZAOHMrPv5GVdV37aX+hlgMfaRXg+1o6ReODj7VRVePixa1kKgk6di0HvbWaclBSv7do0Q8mZxc\/8CabqSVUNPf4jBnfWSUW99KRbpuMpJg+ebKfXAyojvEb9YnECf36B3l5ZnOJeIE32azZbPrdAqsrVwgXJ2T+VF15+e3q6l7HohVNelO3fMi7wv7HBjGFN9m8c+ct4CHgREPD\/580oQelhAhYsEt+0Et8oPmXg8BT1NZpaS30ysF\/pU2AXgTK+Ff2\/zaIHTzI5ra2oeTki8AvqAECMoPS4p13KHbLgc\/VWPF4wG2ToMp+HBY1SdwS\/iG1Cl\/iMcB67cL9tRT2cv65RdxRQo9yPZN+2myeGXN4kM3KOewGXq2p6fNzjhJ5zpxm4N2ZMy+J06QmOfqRXzSrMJ+B4Nf8Q+2QeYxh4tKlbVrjfR74I7leV9dXWHhTC1LWB\/t7Mlu7HX8KPDN\/\/lVTlhRbeI3NZCf1APA8cNq\/aIqud\/HiVmXoimtr++itFy36QZmNA3xJMyybgCIewz+nf1W+4i9Atarn6oAF\/pk\/6QreJKv5fIDNNP6JVl69y6AwI+NHy6kbxAheYzMZLNf7OB2zX+NKDFQCT9A9k7s8hvEcXS8pyAM0G0JNvMNffUHKkrvAn4HNPGbatCat3z5FIa4kyTreFaEzi2Tw8uXtQBadOh9Y\/9cgFvAam1UnVALkBqimrS+pKxaQvuRuVVUvf5LiFAl0q489Rj\/9MPAhtQT\/nGymwgaW0dFSfMtPF0sWU21TZqwGjvKYwJsHjH8lxbKUoqW0tNs6xiDq8BqbVSqUB9QHeDZjxnfymvOAWsV5DAF3MQpsahogBadPp\/f9JwoP\/so\/JwtJcWAF8ALQwF\/ViIN64xXSmt46OAQMNc3CvMRY0\/TiiAk8xWYRsZSelfo4iGHk9x+VsLNWQ3V2UiifkYzep8cNaoBU6mczwdBQ0yIZwAmymUbSt7QMUYH4pcsYpsCRESGpX+l\/N4NowlNszsn5SZMmW4JpJ76Szb8rKuryK1op4LcY6iktfVpstn0zMeqbn6VctgRDEFnHY+p2Xga8zJvHJKGjDE+xWQM91e2pYHopkvsL48Jvvun300spCLJ5nmanL8ht2\/N5o0qDXKQ4OTcJNvNf6KaimHnJn+bTRzOIBrzDZo3yG+mY6XGD6aX0HKO3J\/yRH49UpEg2Pzx\/\/tXMzDZJ6u0MDfkS6av3eQ54be7cK8HvM36jMpH7X0vjncNf9QENIg7vsFnTIjnAJw51qw50H9I3l5Tc8isNMZhUe7q4uEtd55YChaQdXxoeHlFGbwmwraCgM\/h9JmQU2cqWPEHVUVh405qSNIg8vMNm5Svomy84iKX5kW+VdAtEgeeAfPKVL5FnkrlbKEjoldvbhyU\/KJpPWHmJe99qQsZ\/pHQKCV3JqNQSLQYRhpfY\/BJ5SQfsYBVNi6PqgReVj6NQprbeETiyqqpXMndrauoV9fhaSf6N3Up0nEZhoyoO6pZDpgw6CvACm6kflJ2gF6xnDOegFI0HNDUNLF\/eTjYnJV1kcFZd3WvRS6\/yQU1NH3k8e3Yzjaqa8eJ932cSxv+r2ZzXgVr74xpEDF5gs2azKTNyKRIcZAoYB3pGY3TSJ0\/2U9Ra4eC9r1IYkMSU0eTxJFIZY5gmFHfy4yUnX7Q\/sUFk4AU2K5L7M3CgvPy2g0nxYLxzlFcpBN6g47e8vkFk4Ho20+NK7P5qzpxmK7kbQqZ4MH5IlaSuAjZRFBlCRwiuZ7MivCPAU8XFXQ4OxZVRDmkTtzSGmBUVaopuEG64ns2aeMsBKqh6HQSKN5O+P6+SvVqrL7pBuOFuNg8Ojiin+2tGWuHKQkTO6I9VPF2uafOvTc4u7HA3m1XicwDIpNsLbyIiQsYPqfT2Nk1GWhWn9jcxCAfczWaFVhvo7QLJY1eYwtZCYJ2VUjQIH1zMZkoLoBrIJjkc+eM4N35aRYQFvBUZvPqrRwymDhezWatQdwEr418xh5qqRy7wVuRXqK7uNYQOC1zMZrFhM\/C5gyhusdZWf4rjIeD4yZP9RkNPHa5m84eUnllZ1x0scYuRvqo+PS5Cf2uWEk4dbmUzR2etZn2\/897ecO6y4eERemU15LVWXpk5winCrWxWjfJ6oMbBD9cZCa3mTBuBd5KTLxq9MRW4ks285Lr8290rMxymTQ03MAywvpHBZOE+Nvt8d9XQ9jngwPj3zY5z45fSaPMWsCk\/\/4ZZeTU5uI\/NPVYvokYJTeeiKVebNgM4AMwF3jQ5u8nBfWxW7c5aYJe1LjWEE+61mpo+rVKZBgsfWg1OJwgKMIeN\/bz3EHs2t7QM+bcmaWiw+7OMAY7Iymb8N+CstSVUCCdcamoUna\/G5rv1IAn4avwt+0lQii7N83PUol2gLV7cynGMPl49Ua1n\/C\/NmvU9z7k1e+o5xJjNjY0Dqk7O0eKRZ\/29XUpLu3m6S0puZWc7QyJ1hTsPPJqR8aMlLkNo4Trr7x\/RLPfrwDv8ahUVt5cubVPb0keAEx3jbgjNIUsrXPbob\/OAupycn0hlniWVhXyqVeu8W2rT06+N\/23dhRizWVfuhPraf6LL+arO+JvqqbyXkb593ChIccX+hfG5aGpCRoeqm\/mkNjzePHPmJX\/Rc3e3v3XB7xXpnhtnRMi7QtV529WIbDOpfOnSoF9XaI6mDFjEc8vn+atXo8wYs3n69CbK364uH8dEtXFpUIdZ\/xbta60mAUGgp5H7eSQpSTtPhvDDRUY+6fse1Q28kULL31s6AN3hC3gqxl9np4jibbH2ePBEDImugpYl\/Ont4DLGbJ479wq9RfCmqPQlBQWd8iV7SXH7WUGr+euB1NraPkv2hVDELUaqaX+JA+qru6Wuzur4b3\/JUShn95EWqjy\/ZMk12qZNnWPMfvN4xZFP8D1TUi7zNNov2OdttXZPrA9+3nuIGZt5WnlRJem+pQju7LTaDvlf4hBJjZGW1uL\/NQD1r98GFEyxC1HMTdV\/7wKPkdBjDPoMHvR9A3jG3hTrfuCdr1ByFpWYvwtZAFpsxpgkOzOzzX7Ko4gZm7WmiIqZg+kM4HfADp5rOhiyvLi4ixojNFJRA64sxkxuLAENNiUZMvldxk7D8VQoegvGWkYa9sv3gi5AEvwfgIP+fQICUFffRxmWjD9J4lLEhs10MBoWD4rQ+6T2OA7+s0beHUBRcvJFx7I5BUyfAUvpsazhMoQiLjI53Wq1CCvh1xxj9FeOIhjPMEC0X7sX2sClEJiuBFEpUDFqe9XwN43izSHNvYfYsJlhnzYsO1dd3UtaS28w\/vsYWKNgJY962pEQVfzHYbfIwQyXmsh3SBsQHrXKAO8HuVsSNBir0tOv2S8HgedKbXzp7znWfUmdRvdPYwRJDQ08rrNa79VURgCxYTOvn0K9C4GF+DzRfKwusa\/TZ1s9mIOgMfcLID8p6aKDFu413c90on8h4YLjYD+0gLdKafgU4LfAr\/Rg5ezZzaG+nNIrNfWKNnB50+orMgqeVd02lBk5oelO7yEGbKbM0KX62t+Wk2IuICrE2m8ZtThEs4bmLRQklvILoYVLjQ5VLereAFZz5Al4aJ4f1YhypGKY+Iymu4\/p193qg7rHyrXfC3nx4xLNnweLZoaG2ilrLvC+I93pScSAzZrPq1f0TV+SxZHR35azrW2IV4W+hFR2uB\/57PW8kA5CuN14G2s+6AmgmPcweTyavFsnT\/wyuRg4WLc6xQnV9qeOVJ3e5AOyec6c5uCXlIGmdH4IOMzH9rPeRQzYrO60R3TBtsv9zNCVY+xCLcFTX1dV1WsfOgp5pi0zZ14KXFrPGBmclcWw4UlgZ2Vlj7JpfEwU0XNbwUPQwfTfai7DqO6e\/rnamIIs\/zWdenD0rFlAPr+IIQr\/kf2sdxEDNlMjlpV1c7jkmEhmk6OK3JcBvwEeZuxiNUcMAodLrW3WBpVBl9YbRo+r9dsnFREulETmqPUlT1FoIpIHawaRhLa29fbnKCiOVU7Ee2AZ6RsY1vh8aSkPTqOP5+DmGO48idgoDVK5sdE+7\/Q3vEKq\/9pL1vICBGcz+FjZDCv2t7zLvVfXM6ZA4k0J3wUcnRgePOjL0vVqlmQHkLF0aZtS119pevwXwB8YONLB8xgpb6rtd5Wz4\/N7+FcmpxFOkL7ksTafZGRTSR7zGb\/xsUKiegZ89tECL4zWZm8ao9O4q43fXan0GiVzGBHWcWjik47Dgo0HqFprhZaTnZJjrlKMeGjGjO8YgfBOIKeTky\/qbXcpr3+B2tqwOZxgeDd37hWJ4A2Mshmv8LLxJ0893TNHSSrmYHlHx6yQMZ1BjCWmQ66r2433qrwyAwaq253k6Ng8DhjPJJWGBPTH9ALWXxlEmc0c\/lJSLmdk\/Ej\/QXb6r0FtbV9SEr3IBUeNEUFdqNqMh6mtLb8SclFdbfx2SjnvkxLYN9EaV8nl46o33Of5KetxIqpsTk29wuEvNPG5Zk3H9OlN1dXOVAbDPtWRrfHYoikauSj5+x7wq2nTmiZd4KpiQ4bIhzyvIsaDqLJZaeNPgLOOU08XRZ9NsWH\/Pgop6UVArZcmTWhUUNrrLQdYlp5+jVrLkYkbvykHxyCEUfJp+6wlMKLKZvnanTr1h6gX\/bkLxn9KaJx0xH+UhopjZufldVg51JAL6VJjDKd0+2tA4ZIl16g3xqmV72s8h9rE1trWm+9mnagERlTZzAhPBF2r2a9XgSIVKtC1HFi48KrDYWuSpZzeK\/63gBin8etzkNGXWk0FlZnZ9qA03ISsr+8Oeay1ZyvJ7NDwI3EQVTYTzc2DivnWqarrKeAVaccGjpj2EaNQ9oOR\/jFrqjbkErrO6JLz829onohfeW9BgRIRIYdNzjiOpaW1aAZqO2VbcF4ooRBtNhP0wXS3Imsdmc1Y3pr0uheawj0G\/JGCJCwOLLbGG1Jb1XMUepzfKxKTmowjNe7x\/a09rxIzZxcDNo8HqhfdzTjJcc3caPTKcpxvU18tWvSDNR0dckxYjO8sRZ4BfBlaYpoIiFM2A2fVkMD1LUAZpalg8HmGfVQaHGfCKDAcxndWTQvjbIqZYwnonuORzZrNpmNeVVra7bhgLjKSSekLCuWX+HXy8jqs+CzksLCbJhe3aZL8gn1CEwbxyGalnDYDW6Jz+SNhjASUkynUbsQHKZyipv45GqiKo4iEzsq6nlCzKuFns98nZWT8SN9AvVhZ2TPRIQ+oVaKjznGd3GKM+ZQyI59epoTdv18xWchhkTPeS1pyso5WVtadOEno8LOZ11LF4wxHqBZKgXP+KgL6jM5OH23s\/BGvhLYeK6KHdlwkV9ilS4Ni0lblyxomPWU9RWtrG1L7L0aEn1B7JIiHDjOb6QZUWVuyeHGrmnleUNXyhZaWoaIiq+QoNfXKpk2d\/PVBDlvV6C+6bkNLv2n9Ir9yLrCct3SUXbLDtFjwnNZAJMqeV2Fmc11dHz3TnDnNFBv8lY5WtRl00nTVKVogNB14muPvg4Y\/1Z7nA42OaxP\/RrqozvgJYMNEC+IiZFoXuE\/L1U6FJvW9hzCzWcX450tLu\/1yQhnQRl3g\/6IlPQczM9vU4eFLOun7Dn\/KLu0pLLzpuDDxbBRR31ibVzBy5ch+0JaqIYdF3\/jBRptyvJYI23qHmc21tX2zZn3vX7KmC3x0tCMExcMFag9e5qamgYULrwJfOLwFX1J2iY7kJOW148LErfX03FERNkMuxnzH43DyUjkiRtXrrBXgnkaY2UwWqhrhsFbvMJijV35IfYgbAn0FeLF1zKeO+hiJTrLfWpLpuB5xa\/zMmk\/eqPzuGXuRachhsTV6aNURvEsJlJd3T8NFjyHMbCa09ulb4H3NGqxQV5cD9AoBT8wwX0UL1Q7frGbaz5PlVqFzyCWJQ1NBXINWha0lp+M5bNUc4Xk1RtvG8XPstJJ7EX42E\/RPNTV9RUVdvN7UG2oq9UFBQSc1HGWGv+tcWlpLsG4mFTRe\/4JeJP5lBr+garWP63bdwE\/uOCAOjU5E64ufosbjh6fDtk+9hxARNgeDZ03Ne97WSHdaRQulQKVVfBMEkYMyY178z2bzG2n8Kdd6vo8qK3scB8StaaFKnXoVWDlT+9R7CBFnM0FFwUuulcmMRXb790RyxNdyzHlAiVXoHHIZ4sdIZU1Z86M+ymiVg481woQcFp\/GDy+vUQYsmTatyRG3eADRYDNBoUa5VlzcVV5+m1R2DHN8VZMOj+TmRqk0Z3LG8USLvhjwLU9Kusgbz0VU9htPtWa1LK3Pr+DwKW5HlNg8NuS5DwKZVMxxmBPwmxK3J7R5cAGHFztFE3KYK0xlSfnA5sWLW+1r4AnEBZuVP9pMERK3\/JA\/+1JU3rpw4VX38thv\/PwaDNcBRRww7cvgfsSezZIZR4BVlp8IOe8xt\/7+EU1wHtLkyIcurYUKNeXsjmuOsKypacCh\/VyK2LNZWdtiYEUcKmbGryqi2qW9KI8whHIc4GrTdFWNZris9g\/WgONyxJ7NWsJt7dzqONcxN7ordVam9\/oNg7+2NtfvHuQwfh3tpcSBcVZaWgsjAfuSuBaxZ7NWMm+Mt9ls1Uud1eTIG4yZSGVrLA45zO1Gmae+\/DuAZxm9OGZnXYcYs1npzzXA9ubmQceJjqGpBW2lMnHF6elWAyGPeeVgo8BTc8c3gQ0McF0toGPMZrVjWwt85TjFsTL6KtXxfaJ7rDQ7+7qHeRwwMljVB6vppFesaLevjQsRSzaTKErMWf7PcX5jYp2dvjVrOjTx\/hJwwOplGnKMV03Xol4eevf+\/c49r9yCmLGZ\/kArI57mmN7UFPvZbMZAquwr0l4NDRQbjgM8bxTNSkQyVDjYrkbx9qVyD2LGZoZZs2Z9z+Bj2rQmx2mNvlFgaEXMK8Af8vNvxPPsekRN1VSf8yRQAVonwW2IGZs1Ubwe2JabG+NO40pfHNES6\/WbNnXSRSWCVr6vccDUNlZ7gXkcqfyLO12E2LCZZ00TbA8BZ0hrxzmNmvFjqEhyl3q4fOzvrOU4JtGMN7O27GY8sywj40d35exiw+aWliFlM9Kysq7HikB0yerduEWx\/KHCwpsJ65IdRpesaaNXga18wHvevmxxj9iwWSXC7wPrrPA55GxGwVpbh7TTHj9DNvC1teVKyDGJbHTJcjckdJm1ft4liAGbh4dHxKQlwIWYtAJqahrQBrIbGYPOnm1NWTsOMEZTzu4LTexXWNsbuAExYLMWqJ0A5tqlWyHnMXLGK9TRMawFXS\/Tiou7XFduH01Tzq5M+9R85QoBHQM2r1jRrg3736ZydZy+SJvKIPeoxce2qqpeQ+WfNZUelALpKSmXrdMV34gBm7VqfyVwPprxH\/+XKu7Xy9NUlZWpG1PIYcYcRgYrxVFCQtstqOMY0Waz8vN7gZd400cth0B1oRa0a1VIVM\/QM8oKx9XGIVT9i+kIckjoeJYc0Wbz6OzxFscpi5w1Ng4oPC\/QbpON8TCL7jprb\/dv6\/0cnfQ773TGbc4u2mzWrBuJdd5xviJktbWUfWe0ovN1umfLr4QcY2w81mntEsYz+QJwoKIiTsuSospm7QOykWNWTU3ElyRRxmier1oNHTckVEFc5Ew9cV4FvrDSmvGHqLJZC9\/fBPY4zlHYjVRW+mKzOo7uNeoiXKaz6t8B44R9UeMJUWWz4r\/NVLGOcxRe6+8fUY9XnvEsDo7uakcU50Y3obKk7Ty9aWkt9nWNG0SJzTwLSsWTYaURnc1ubR3SstnXgNUzZnxHsRG1zEmCGJ2FUhz00MuLi7viKsURJTYPDvpbgD4P1EYuFFPMV6cOjgWu6DXqUuOJVUOfNQyvd+68RX7blznWiBKbFf99zPhv\/vyrjlMTLtP2P4z51gJbXNGC1tXW0uIfAx8HPqP2iJOcXTTYzLFeq6DTgUORkBl0\/Fqa+qmE8u442UHH86Z6m691WY8yOLEvdkwRDTYzENbq0ZQ5c5rDHpCNUjkPWMSTS5\/hOMBYRE3bei+jwIsHvRENNkvOVgCv5OffcJyLKRoluHZwewHISE29Qm9hpqyjbFoRtwl4HThnX+8Y4e7du9Fgs8pWMihqrfEo5HRM2lTyUa+lqRsyM9vsZcYhhxmLqPGc6\/paS3hi2D+XVI4Gmxn\/KlxIpdiwKrBCTsfkTC2fD2guZiepbDLKMTRqDDVpfxd4K7BVZDThpzIRcTYr2b4PeC5cq1lJ3E2bOtWOaDWwJ+zqxdgkjAOjGkKvAorpaKJJaJvId++OjIxEnM1KTNKDHraWs4echYka3yQ3l+PaB0pfHK6qMuv54sWamgZUuf4IUFNTE6U9r2wii8p37tyJLJs5BqlD8NMlJbemKAaoz0jl0UqPP8yY8Z1ZzxdvpjzsFyJ0g7XiM\/IIpnLE2axW3iUcgKaeatDEOMeyTIqWwsKblOAm5os34xXRssvNGjnPRdo9O6js8\/kiy2Z+JQUHXzi+9kRNaSDGfNlAEalMZhsqx6fxuuzff1sLVd5KTr5o8yACCFDZ\/l2IIJslM3YDa6ayVwjPjqasKZQZ81XwrQyP49x4gbRubQNQkJ193WZDuBFtNqsFzEZgy6TjP\/6hFni\/rwKXL0zFvVtsVBbSQxfaqzDDigCVKTDsp4QIsllNMygzjjm+6jituXkwLa1F80wvAqetBiUhxxiLW1M745NaIf+pvU1o+BBtNg9a+6YVTK4FKIcqUllzLlQXT6WnXzO1nW40OiCgFvgdw6emJhWahwPBVI4Gm\/m5tW9aBu9Lqxgl5HuObWpBWwP8CVjpxt1\/jQVMJTr7gIdSUi5bzYDCgWA2+3z3vGdE2Ez+qWqeYvf8RIM2JeG3K8Wzx7Qjcrvx8qkpzzvAK7NmfR\/pnF1E2KwgIAf4aELTzvTi2u3rbQmMmvLy2xO9E4zFoVFzqrPwm8B71lqNSCL8bCYpVXD8CHBq\/NN1ra1DivnozvP4h6YFrZeMXkm7gtBPbcvL67CJEgGEn83a7\/YU8OySJePdaUqt+xo1Hi2fOfMSQ0DHAcbcbhquKT7pqkpqatS0beKgXLYfPQDhZ7O2gFhFmVFa2u34SqHGb6VA4YQ6xK3yz\/M5jjHmDdPKqyPKt1Zz0J6Eho42m\/kRs7OvA79MTb1i7dsc8pWCjVQebbL4LEVVQ4Pp4eJxk+c6DDxMVTmJTdyizWYl5r4G0vbv\/5kYjrxX+oJDz3NAFR9bN2vIYca8ZLzEqnffA6Smp6st4EQQbTbLMW8Eisauze\/q8unIZUpffBvN7rfGYmtkMPWkUhy5jz32w4T0RlTZrDTzeSCd8d8Yi6ZUBXtBKbz1SUkXE3DX1AQ3ckN16iRAcVbWBMqSospmqaIDFMGURA+SDUreUYq8RSqbKeuENQ7FWqjCkfmj4uIum0A\/h6iyWQnjrcBOx0f3G7+AJkcYBOQCm3buvGWEciKbcnYkAwn9mTU+\/xxIZcJRAupA2NhMajKY44dLTb3i+Nzk8eDgSFVVrzqJ\/AUoM+rCGE1TE5+qHcopktuKnR6MqLJZubYtwKrQamZSWQ0D+KGfAc5MutzZmPdMPq4cSMvJ+cmKtR6MqLI5JeUy8B4\/mSM7QQ09e3azCuJWU4rwdnQcYCyRjZ4uP\/+GBu1HcnPH2iIoqmymnKcadsgMxYXH\/Ds2M+Yjs4NfNWaMxrFa23qvAvKXL2+3qibvh+ixWUk3xna7gleIFBV1AZ8rs\/gBbzvehYGXjBkLts5OH\/2gVjGr7vJ+iB6b1bjpNaDG\/+EYEaopaJkoXlZW9vMFG8YS3Kg\/gaNKQu9jlGUTKwjRY7P2Ddi2eHErPxMHDm07Qg3NsO+rJrODjrHxmRb50wO+DhwJ3fMqGmwmfSkhgEeBww0NA93d\/nZEjPmemTv3ShjbKBpLBFPObjvw\/PTpTY5J7wCbHWsBgzFVNtMTL1x4FXh6xozvlKQ7rTTcm1Q\/fMmkL4xNyMhghVu7yCKKVWtR6SiiwWb6Y3Vqem\/atCbVdr5CIV9Q0GmlWkI+qzFjP2scz7V9dSGwlMwOEDqybG5vH1bn2WPAQ8AOrRxZSwlfWHjT8fmMGZuQkVqqkliu+bizs2c35+Z2\/PTTUIDNjqXaAUySzRTpyckX1cyGipn4s6LRatOC1lhYTAK6Efgt8BSdtOrgT9y8OezzkczhZrMaar0mHgdQyPspJ+cnY8ambiSY4rF\/tMll4fGCghuDgxadw8xmdW+ZZ\/8XG\/+s6ntjxsJiL8grB+OfgNru7mE\/m4eG7tMfetJsPgs8af8XG+9qqbYxY2Gxek0kT7PJZeHXwPmengiwWamMT4BZ9j9CSX7+jUuXBo0ZC5fV1PQpS\/ZfRbBfAu9dvjwQ0M1kc39\/f29vr81IYZJs9vnuqqEtPXQlcLSsrHuM6icDg0mAHFMhcYOK+k\/l5f0UnNMIJ5v9GB4e6eryPajoycBg6iC7enru9PePKN0cSTYbGEQNkWIz\/XFLy5BD5TQ3D7a1DfE2smazDQzChO5uH9lVW9v3t7\/1nj3bf\/XqQH\/\/cH\/\/UEdHX1tbz1TZTLIuXtyqddeHZNQ0fqsGzuXlacNWA4Mpg0yjzFi+vF0doNdrI5WdQH19fe\/p0z3\/+q9Xn3zy+zCwWfFfjdarPgnUzp9\/deHCq5oarNCM4Bs8ILhexMBgouD4Lx6vU2nxmaKirhMn+v7zP3tnzGiSD\/2fwP9asOC7MCiNzk6f+iCSzdklJbeoMWgNDQPqYcPb6BFga2Nj2HYGMEg0KP\/7reo09tJXUmb09d2haKarPn26F\/i\/wGLgf5SUtIeBzT6r2QClxfNAcbAPVqHzBWAB8ExlZY9hs8EkoO6EZ7VMcOOaNR100v7nA1HgzJnfAf8d2Nbc3B2eKNBfsEe9EUxZtTQ9BqRRbNit5QwMJgJ6X63wXwNkZmVdD57ECLD53\/+9A\/jfwJFbt\/rCwGbtZLGCMoNy2X5KFNeeh1Q5j9NDWy25DAwmCC3y3wr8AfjYMY8RYPOhQ7eB0\/PmfR+eDJ2Km9KBNymae3rudHf7OjqGMzJ+FJVfAuocn8PAYJxQFegSsiu022KAze3tA19+2d3YeNvP5lu3btlHTI7N6pC+SFEgo8tq\/VytNsy7g4WOgcGEoLhru2qa11O12s+OIsDm4WHfwMCw\/ey9mDCb9S\/fpawBPq+q6qXqYMCnRdr12qalcPwtHw0MgqFc2WvaLfOT0OE9wGb\/XKD97L2YGJt9vrsK9Rj\/5VCt288KUjwfAE8DFTzMftbAYNxQj6EXFHfVhqYQ\/Gzu7\/fV1\/e2tfXbz96LibG5v39EbngBsMVa\/xcEvqTmzXzpdT42CQ2DiUJpZrKZIdkZ+6kgkMoDA3f+4z+6\/u3f2k6fvk\/7GGJibNZYcBp4mDLj0qVB+1mBv2rh+DzqEKtJl4HBBCF2MQDLAL4O9YZ37oxcv05dcP5f\/qX13LlwsFkdM97XytYzwbnAnp476iO2HPgjcMF+1sBgItCsXIV0bIkjw0ty37gxvGnTDaD60KHbYYgC+Y4Sx7x1lqWltQTfPZpSz1Zu5bCpOjKYNEb3MF66aNEP9lNCV5cvJ4cc+z9\/\/eutnp6hqUaBqjSqVpfE6UCqNi75iPeQUioF6h32YUrKZVOeYTAV0BVq4oK8Wgl8RqepKblGxoXUGH\/9a3dvr294mGSeGptbW4d430hOnJo+vWnx4tbs7OtZWdf5v3kbzZ9\/taioK7QTnoHBREGNUVh4Mynpokh8Njn5Ynr6tfz8GwcPUmDcCWeGzsAgCuDwTidNWUsSUxQwWhsedq6ksg+9F4bNBu6AYbOBd2DYbOAdGDYbeAcONt9nzfbf\/\/7\/AEwhiZ+HGzKMAAAAAElFTkSuQmCC\" y=\"0\"><\/image> <\/g> <\/svg><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2024-10-28 01:12:39","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.