{"common":{"save":0,"post_id":"7912","level":2,"total":10,"point":10,"point_extra":0},"segment":[{"id":"8223","post_id":"7912","mon_id":"1159278","chapter_id":"1159329","question":"<p>Trong m\u1ed9t trò ch\u01a1i, hai b\u1ea1n An và Mai cùng ch\u1ea1y trên m\u1ed9t \u0111\u01b0\u1eddng tròn tâm O có bán kính 18m. Th\u1eddi \u0111i\u1ec3m nào dây AB n\u1ed1i v\u1ecb trí c\u1ee7a hai b\u1ea1n \u0111ó có \u0111\u1ed9 dài b\u1eb1ng 40m?<\/p>","options":["<strong>A.<\/strong> Khi hai b\u1ea1n g\u1eb7p nhau","<strong>B.<\/strong> Khi hai b\u1ea1n \u0111\u1ee9ng \u0111\u1ed1i di\u1ec7n nhau<br \/>\n ","<strong>C.<\/strong> Không có th\u1eddi \u0111i\u1ec3m nào","<strong>D.<\/strong> Ch\u01b0a xác \u0111\u1ecbnh \u0111\u01b0\u1ee3c"],"correct":"3","level":"2","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>C.<\/strong> Không có th\u1eddi \u0111i\u1ec3m nào<\/span><\/p><p>\u0110\u01b0\u1eddng tròn tâm O có \u0111\u01b0\u1eddng kính là 2 x 18 = 36 (m).<\/p><p>Vì \u0111\u1ed9 dài dây AB không v\u01b0\u1ee3t quá \u0111\u1ed9 dài \u0111\u01b0\u1eddng kính c\u1ee7a \u0111\u01b0\u1eddng tròn nên AB <span class=\"math-tex\">$\\le$<\/span> 36 (m).<\/p><p>V\u1eady không có th\u1eddi \u0111i\u1ec3m nào dây AB n\u1ed1i v\u1ecb trí c\u1ee7a hai b\u1ea1n \u0111ó có \u0111\u1ed9 dài b\u1eb1ng 40 m.<\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2024-11-01 02:02:31","option_type":"txt","len":2},{"id":"8224","post_id":"7912","mon_id":"1159278","chapter_id":"1159329","question":"<p>Khi \u0111\u1ed3ng h\u1ed3 ch\u1ec9 5 gi\u1edd, s\u1ed1 \u0111o c\u1ee7a góc \u1edf tâm t\u1ea1o thành là:<\/p>","options":["<strong>A.<\/strong> 60°","<strong>B.<\/strong> 120°","<strong>C.<\/strong> 90°","<strong>D.<\/strong> 150°"],"correct":"4","level":"2","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>D.<\/strong> 150°<\/span><\/p><p>Góc \u1edf tâm t\u1ea1o b\u1edfi kim gi\u1edd và kim phút t\u1ea1o thành góc có s\u1ed1 \u0111o 150°.<\/p><p><span class=\"svgedit\"><svg height=\"162\" width=\"159\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g><title><\/title><rect fill=\"#fff\" height=\"164\" id=\"canvas_background\" width=\"161\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g><title><\/title><image height=\"162\" id=\"svg_1\" width=\"159\" x=\"-0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAJ8AAACiCAIAAADQnYjEAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAEARSURBVHhe7V0FfFPn165BcR9S3BnuUnQwZMPdhrMBY4LbsLpSd6GutFSAulB3d3dvmkYb73eSm4Zyb2pQIOX7P78z1iu58j732Kti76onf3\/CpjPZNAaLxmDSGIwWekcCR+EcOBPObyWKfX\/yPbDLJ7KNMxqVVodvTquo9M3JfZmQqB4eIRcc8jgw6IF\/wD0\/\/\/t+\/v8FBD4PDlENCzeLi3+TlZNYVlGNw1MpLXzKW+gI5aiS6ovSV9kVaGdDMyE0v1AjPOKMm\/sGC8sZOjqDlJTEnz8X66EMUFScrKW1xszsuIurfEioT3ZuZWOTQLP7qHL3PXYJRHJkUYlOZPRvbm7z9PWBFeDyE+jsRJAL9ldQmK6jc9jZWeV9WFBeQT2egCo70Zc+w24VDm+TmHTIyXm0mpqknJyEnJy4nByKlS8hQDPcC2SkquoOG1uD6Ji8mrq+YrdFnd2c6lrtiKit1tbDVVSk5OWhlFGl\/zUF7i4pLz9UWXm1qZl8cGhCaTn4aVSBipSIKLs4AskkNm6tuTkUZb9vTSpW4HngUxuspLTYyEj1fVhJfSOqWEVERI7djMrq276+k7S0pBUURY1UrMATgnueoKl58bVHWGERS8RUWVTYpVNpnhlZex0cRqmqQXl9ZpQEPweln6Wru8HS8pCz8zkPj8teXtfevr3+7h38+7u39wVPz6OurlusrecZGIxQUfnMzwhuBwYGHPPmly+tE5ObCSRUKX8r+fbsQn7pkJyy3NhkmDLXs6IKrjsCRK4yMwPOdGNjvXJz4ysry5qbcVQqgUYj0ulkOp3CYCBCbfsDhMxgkOh0OKeppaWSQEiuqfHJzzdOSPjbx2fjy5cQu6Hu0h0BrzxESXm+gYF2ZFQzkYwq668v35hd35xc+N4hYoIwGFVSnQicvMjI6LynJ9AZVlpaSSQ202jAFo3JZLDZLA4XrRiQyeSqqqrm5mb+djvA2fArJptNY7GAeKC8hkSKraw0TUwEXV9pajpQURH1DJ0IWAL44FaYmNgkJdOoNFSJf035ZuzGl5UfcHQcpabWfX2FIt5sZaUUHg7aWUcmE2m0FiYTKBHCJAYFBQWXLl0aN27c4cOHY2Nj+Xs7BpdvNhuuD\/rdSKGk1dTAl\/SrvT2YX9RTdSTwCcLJP1lZeWdls75RBvUN2C2qa7jk4TlWQwP8K6pEhApo9l5HR8P4+My6ugYKBXQUyp1PQgcICQm5fft2YGAgsI\/s0dXVnThxopiYmLS0tKKiYktLC7I\/MjLy\/v377u7uQtVdANBssOpNVGpuQ4NNauoJNzcZTU3UcwoV8MfwpgednKKLS1FF\/xXkq7LLpjEs4hOm6eh009DN1dd\/FhqaVlsL2gOFyxZGQGpqqry8fHR0NIPB4O9qbTU0NFy4cKGRkRGVSkX2mJiYTJ8+HdgdOHCghoaGgHVbW9slS5bAFQR7AElJSerq6kFBQfztdoBnAIUGV53T0KATE7PazKzLiAxiLmkFhana2s+DQ0gkCoqALypfiV02nQlJ4RFnl1Gqql3WMcH3vtPOzi4trRiPB\/MLesMvWmEwNTWdP38+qCYej+fvam1tamrKyYHybxBoZGNjo6am5rZt2549e1ZcXIzsBMCv8vLyampq2uuujY3NrFmznj9\/zt8WBqAZ4jUI3zxzco65ug5TUUG9BUrgrUeoqv5sbRPzFZX4a7DLpDFsEpPm6OkN6EplByspQeoSWlJSTSSCsqKsZVFR0ZkzZ8zNzYE8\/i4ebVFRUZWVlex25hp+CJvwD\/yBXAP+RyQSa2trIapisVjIWXAOAv5JbQCy4+LiSktL+dutrWAD3NzcLly48P79e\/4uHuCHEMpBEBBbUXHb3x8SX9QboQSpu1YKfU8hU1FMfAn5suyCKS6tb\/zNzW2MunrnKgv6euzVq\/elpfVkMsS9\/ML7GCkpKcuXL\/\/vv\/+g9Pm7eOULNhkY4m8jYFFqs4Ksnl3Yd\/6ZXVgxnb8XAau5JPa19q0ze7asWbZk6dJVm\/deuK\/vmVBGQDgHwNV44dqHaxIIBH19\/ZUrV7q6uvJ3fQw4G3KwuMpKiLEhUEC9XXuBcoCcfpetXWJZBYqMXpcvyC4ksuGFxUuNjQcpKaHesL2AW9pha\/smL6+KSGTwtYqL\/Pz8mJgYCoXC325tpdFooL719fXtfeTHYOa+1X1wfvfPW7asWzpnyg+DBy8+8+JNFvWDZnIIOd4vru7fffqB0bvEnOykQOunZzbPnfDDzA1nFVxSGj\/c\/mMA0zgcDkw6GAD+Lp5CZ2ZmJiYm8rd5HIMeBxcXn3Rz69xQgScGY2ablIzio3flS7ELeR5ke9O1dTpPZJebmNilppbi8WDfPjKOra2nTp0C55eWltbebKJMKAbsppK0uMiI2JRkxydH1kyUlJp\/StM7kyL4Ebs+wvSfnTOGDJm684Z5eBWTRSeVBOj\/uXWytPTIRQcfOSQROrs+6u4Q0O3cuXP\/\/v1g8Pm7eKCzWBUEgldu7i\/29p1UukE4NvHFi2dBIfQvVn\/5RdglkihPAoPGa2p28m6DFBUfBgXlNTZSwL+2tmZnZ4NmtFfKV69eqaqqogquS7CZDDqdwWS3ROld2DIVy25DmBFw2U9ytOxlHb9SrqoyygJ0r64fIyExbMnR5665HVkFIYBns7KygrBOEK7D81dXV8O7QMYFoXU+DqcVE9NJ7gTlM1pN7Zy7O45ARBHTK9LL7IKjrWxsOuv2GlwL6k3aywpTUzDF9RQKog3a2tqLFi368ccfnZ2dBTkMmUyG6KktAuop6MLZbWURyhLf2RjoW3nHFuHo3P2sEj\/dP9aNlJAYseyEvHthD9iFZwNDLaj8AscBSdTatWvhXe7cuQM+BaI1fEsLBImQr3fyoQ9RVt5uY5NXU4vi5vOlN9kFR5tWUbXDxhYeF\/UCAhmgoHDH3z+nvh5MMVIoUDpz5syRkJAQFxfftGlTT5W1A3TEbiuHRacSCc1ECp3F28usCDW+vmV8v\/4TZM+p+xS3tDu1h6ioqPjzzz+lpKTgXSBJCw8PR\/aDoQYTpR4ZOVZDA1UaAoFYepmJSUh+Ye928ek1dhkt9OTySllzC4gXUI8ukPkGBh7Z2bUkUnsHBp88aC2UiJiYGLixuro6\/oHPQofsfgxmfYLDk0Pzfxg7f9c\/piFFxB5oLgYQyd+9exfeAj7TuXPnQoTPPwAOgcOBiDqgsHC7rS2qTAQCbni2rp5\/bl4vVlv2DrtAbVJZxXoLC0hsUA+NCKQBEGIkV1eDN+K\/cRuAaX9\/\/\/379h0+fBhV5fQxuoqoPkJ32OWQikNMb\/y6cumW08\/sI4tw1E9zAlxwnw2eHGLAq1evHjhwwNraWuBiBAAlzqirg5Spo+otsN4QSPciwb3ALlALqdsGS8uOqJWSl7\/+7l0BDgefMPKeycnJkO0gPpVJKAt3Ut67Yv5htZB6Ag054SMwSVWpPqb\/nT9y62V8SVP3KOiSXQ6lLNL28Zm9+y89swrNqcXXleZmpKaXNPfgC2rlMKmNRbHuuvf\/vPKvUQykbkBwZWUlpG2QHyOnwB5I7UJCQpBNKIESPF4lImJIB1kiEDxXT98vJ4\/ZGwR\/LrtAbUJp+caOqYXUXiMqqrLtbRH89NNPS5Ys1v3jtzPHDu7fv2PtnIkjBw76SS29jtS+UoKR4SJ\/6\/eThw8c2Ll+wfSxQ4asf+CTUdORan+MztnlUMuj7JX+uXxd7mVAZjWBBtlsoruRpqpxYIXwipSPwcaXJr9Sunz62OG9u7atWzhxzKT5m257NQn7MCCMOH\/+\/MaNG0tKSpA9oOb1ZLJNauokLS1UWSECBM\/T1\/fNyYU4BsVWT+Wz2IVELb60fNPLl\/2E+VqwP1O1tR3S08HlIC8mgL6+vrLSk3A3F2\/fkMj3ynvGDe4v3n+Tcmotqb1msqpTAn3e+gSGh2r9tnDSMIl+q+++zaj5uOKpI3TCLqelMsbh+fk9O\/ac+ue5hr6JmYmRnuajSwcPn71pHI7vju5yqE2V6aFeXj4Br221LyztJzFy9oabHjhhHwaJRHJyclJQUIAUgL8Lft\/aSqTRfAsKIHdAFRoiQPB8fQMg+DN75X06u2A6Mquqf7a27oja2Xp6Pvn5ZLoQOnA4XEN9LZVEotKZHIrruUnDBghht5VJo1CoNAab+u7O2pkje4VdDq06zknu1Nqpo4YNHzVu0lQupkyeJDN21IRVxx47Z3Xv6hwWk06FR6NVpr57uEG6E3bZbDZYaaGJAI3Fiq6oWG9piSo6RIDgRYaG0cUln0PwJ7ILgXtpQ+OpV6+ERshA7Rx9faAWXgB5E2yI8QHUDtltQ0u32eXg4x1Ubp49dPDg1hWzJ40eNHjsrOUbd+w\/eOjCM+vQbHwruy7a6t6+eSOluRH6R5CYsPGSdlBtdwzzB7Cqu2IXC7DMgtZlFpsdV1nZCcEbLV\/m19Z\/cpD1iezW4Qn3\/QKENntJysnN1dd\/B9TywmP4eCGShFTH3d0deSU0epVdekNxRnxEKCAkJJiLkBDuRmhkSmFNMx2sckNJRlxoAETpKASEJWSVN3XPqQvQY3aZTGZSUtK+ffsEpdE5wf3kFY67uNY2NX9aHvwp7OKJJMOY2PHCcnOgdp6Bwdu8PEFlBbAL7zNt2jR7e3tkDxq9yW5naG5uLiwsbGxs5G\/3Aj6F3djYWMjvbW1t+bvgKhwOECxrYYEqTESGKCvf8fUjfFIfvB6zSyZTX2dkztLVRT0ECELtm3bUIiASiWFhYe2b7T7CV2EX0pL79+9v2LDhypUr8fHx\/L2fix6zC2YZPrKIiIjq6mr+Lh4gU4oFgi0twRqjShXkB3V1g+gYKHkUeV1Kz9ilU2mRRSVrzMywDyHOa\/FwzcxEUds1vgq7FhYWs2bNAv86cuRIHR0durBYr+f4FL\/bEYDgyLIycGpCCZ6ho+OVmdXSwx6WPWO3qK7hmIur0F6Mo9TUtGNikAgZvtAeNAB8FXYVFRWBV2BXXFz84cOH7ZtpPwO9wC6UVUNDA\/I3+ODX2dmgqUIJXmtunlNd26MIqwfsNjYTNSMihXY8GKqictPPr57X0g6kZmRkHD58uENHi8JXYVdeXn7EiBG86Fjs3r17goadz8PnsgtBSUxMzJ49e969e4fsaWEy9eLiBglr+edW+b15i+vJQIfusgs2ISA3D+wG6pYgA5WUjrq6FrX1dQJ2IUhesWKFubk5sqcL\/P9mNyoqCoIsT09P\/q7WVhyVesffX2gtAqi1Q3Jq9x1wt9iFcDy3pu6wkzO2+ru\/gsLGly8T28UIYGrA7kESUl5ezt8lFOz6QM1\/rl3544\/LOxeOGjZk4KBp64+du3D59z\/+s0tuIHFTEzYuwuzp7etwxp4Vk8cOHzho8so9x8\/AGQ\/Mw4rq+CljN9Gr7HLodXmRVk+uXP79zNE9q6cOGjh87NQVv5z\/448\/7zw3DfkoXOocUFZ4PD4wMBDVMlba3HzEVbgHXGlqmlZR1c1Kym6xW48nqIaFY7NbIHuGri4EyYLmgR6AQ8577+H2CuDq4syFiyv3b9dXPomVZBpXhzmU4hg\/b3f+GVyBM1zhjLexRY08\/ruP3tVdJqm+ON6X+ywA7oO5uMBjvXrl7u0fU\/BRjfonI6WmZrGxMVadJOXlr3p5d3MigK7ZpVJa3mXnzNHTQ90GBCKp56Gh1J4Gyd8CX8Yyf0GAutilpY0QNrBljJqaTWISqRv2uWt282vrjru4YvurDlRU3OvoCDYEHgUSDEgira2t23dhFCn0FXbBCnh7eyPpBoFGu\/LmjbSwCGuVqVlmVXWX8XMX7BJIlJcJSdihUWAx5unr+xcWIs8EzuPRo0erV68uKChA9oga+gS74IZlZWV\/\/fVXQTqeXV+\/wtQUrDGq\/MElK4a+7zJ+7oxdCKZ4\/aRsUJcGGaOurhgWJuhoQaVSfX19NTQ0erWerzfRV9jV0dExMzNr3zfUIT0dTDE2AwZfGVdS1nkLUmfswqehGxWN7QIHKdB+J6eyjwuIwWC0H8kjaugrlplEIqHa04h0+rW3b7Hj6sBX3vX1q+s0vOqQXbDp8GnImqOrtuEj4sbJubn8m\/cR9Lmoqj0y6+rmGxhg+\/1P0dIKzi\/oZAB4h+zW4glg2bHDJSAvuuTlxZ2TgECAEEBVVdXf3x9sCtes8B9GOLhjsvh\/fgOILLsdFUtKSoqKioqxsTE8KiScCmFhQ4X1I\/7d07MKh0eRKhDh7EKy\/L6gaImRMepaEEwtMDQMLy0F6+Hl5bV48eIxY8Zs27rZ1UJbX1XNKRVTw8BhswhFUe5mmkrKGjq6L1SV1IxcQvNwzE\/Ijz8PosUuh9VSmxnkbKQm\/\/zx\/du3Hz5T1rLwiCpsavO2OBzu0KFDULbTpk0DgltaWkrx+FVmZtj6jXEaGm+yciBrRfGKiHB2a5uaFUJCsdeC4Pmmnx8EU7jGWrln\/yKFNaC\/1PJZE6ZPmXvWEfcxaWwmMcdb6eKuTbsuyhvbOjrZm6v\/tXfjtlP\/OaXhGd2aEKHXIELsspnUqmjLe78dOX9PVd\/IUEfp0ZV9K2bNWr795B3zmBoG98PPzc0dPHgw8rRAM9LD0iAuTmj6e\/G1Z0VjE4pXRISzG1cqxOOC3YfPJ5lX6UihNLu5GE6UkenXT3LW5NFzpcQHjp5xyrahvZHhMCklnrc2yAwZseFJRB2vaomFT32xa+yAMcsu22dTmF\/TUIsOu2xac47NhQWjBo9b+bt9AZPDbsHlBusendlfXGLI7H0qYY0sTmtDQwPkRVJSUsOHD9fT00N66tSSSD9ZW2Ono5DRfBFWWCQ0eBbCLuS4pnHxgzEdbn9QV38aGsrkuQkOh91QX2VpYams9MRE7dTP0lh22QxSvs3xSf37DZpxzV8QBTKSnywfICk1ZodOOpnxFekVHXZZ5PrYp6ulxSUHjFj+IIrXYMqm17r+NlESHk160YMoBm8ITEREhJKSElBbW1srCGns09KABRQvIM+DQ4TWTQphN6uq5qizC+r34HFXm5tn1tcjt0EAd2XQG6szNHcMkECzy2FQ670uT5WU6Dd0xZMkQaUwu0Jv2yBJCYnRh60rKehBnV8QosMuh0GuDNb58\/iRU9fVfct5bWJsJiXk75lcdiWnXPVjtBk1SDJRoWoTlbpVmPouNTZOrajEzk2KZhfCa7f0DGyfKfC4N3x9hUw2wyZ0wC6NVKS3Y6C4RP9h61WyBQ17nAbTXwdLSoj1WyWXQqR\/PeUVpagKdBVfnpmaWYpHaqQ4LHKW1tYREmLiA2adtitidhqRGMbFYWdK66egYB6XAEa3C3ZLG3A33vmgfgwy39AwhNebnk6ng88PCgqi0XijQjpil91CSFeS7ScG7G5Sz\/vQbNtkuXcIsCv14+0wPK8l6OtAlNj9GBwWtfTdvXUjJQdMWH1ON7IOGZr4EcBKJyQkINWTEDyDpmJz3z32DgW19Z2xC6oN2fECA0PULwcpKZ149QpyXLh6fX095GH79+8vRCqZO2SX2pyqsI7H7ka13A804i338didd\/P9\/9gFNWY0pjrf\/3na+Pm7rr7wzm7GcstkMg8fPnzhwgXBXDC3\/P2xrbFgXCE1QnW8+ojdZiJZNyoaOyJouo6OTWoqcmm4h5WV1Z07d8rKyrjbHesuMU\/zJ2muZZZVzvpgmRvNdvMs87L\/4gn\/Ty1zGzhsZlPWG7XzW2V3XVZyiCqnMOvzUgqbUHUB4H3v378vJycnGHkWV1k5Q1cXW\/N8z8+\/+uOajY\/YzamuPePmjvoNkP2zrW1F26XBzyMTLiKbHftdOqXK\/sQP3Khq2X+JH6Kqcl1uVCU+ZKdBCZk7pcJXgsixC1qLz\/HVvXHy2MWnNuGlFA6Y6KpX9\/40Tcf6XUiQ8Hi8oFKLzmIddXXF1jyvMTPPqKrukN2gvIIf9Q1Qv\/lBQ+NJ2wBFIeiI3VYWrTnlxbaRklKDpl\/1E2REzJRnKwZISAxe8TiKSP96hlnE2OVSm+uve+0X2Z\/PPHvpEx4ZERYa5O+teXDGBpVsJCPqHA7p6eMx03EMUVZ+l53Tvtr5A7tkMtU0Nh47LmihkRESTwlHh+y2sumENNNjs4dKj9ismIzMJcOh5JsekOk\/cMovmjH4r5nuihK7HBajOT9Q7+qWKUOGT1+9dTsXP2\/dvGHdihkjfzjh3NSdWp4qInGxkRG2X45ccEj7VqMP7BbVNVzzfoM6W0pefpe9PTJEEywDlUpta3pkUZvLol+ZmZjoajw\/vniQ9OCRMrKXtUxNzSxtvJIQljksWk2E\/h87li7YdFHD3ss\/4J2L3t\/bFy7cfEYtoJzWjS+0FyE67MJHn\/\/63rYpA8SRp2kPqUUP41s6KRgikSiwz6fd3bETgW23scmurhHCbnhh8SrMcNLR6ur3AwPhWnDRkpISPT29QN4mmFhyfc4b7Qf3wOPfv3f39m2Is+7ef\/Dg\/sPHcsZBVW2fH4dFKY100nly69YjJc0Xqk\/v3Hyobh1cQPy61AJEh10WjZDzSv6fv4ThX53gBlZHqpuenq6mppaZmYkomGVyMtY4j1FTD8wrENRK8tkFY22blIxtY\/rRwMCL15TLYrGioqLWrFkDxcS7V4\/AphMbqkpLK+qaW76ir20P0fK7nwQXF5f58+d7enoi1c75jY3ADjZy1oqIFPTI4bNbhcM\/9A9AnQdmfauNDTIpAoTKECfb2NjExMTw7tXH8B2wW1hYaGhoCBYU6VPHYrP3OzlhG+BPuLgKqjX47KZWVB1yckadN1xF5fq7d1\/bhn4ZfAfsYvEiOho7B9YCQ0PB\/KJ8dkMKCpcZo9vqIWUG486\/Uh\/Hd8luTEUFcIRiDfKiwLx8pDMsl13461Va+ihMy\/ByU9PozkeL9B18l+ziW1qWmZhgu5pbxicSeS0KXHZJZKpuVDTqDHDXP1lb1\/FmamEwGHV1dSLbm7U7+G7YhaSovLwcGEE29zk6Yruz3\/PzRzpbcdkta8Dd9EG3C4G7PuXmhgwQgsspKysbGxujmhv7EL4bdj08PCD5LCoqQhLfh0FBIzENggccHXOquXOKctlNLq\/c7+iIOgPc9dO2CsiMjIzdu3dfuXIFidb6Ir4bdhUUFNavXx8fH49kvXZpaRMxs5pBphRXWsZnF5zwEiMj1Bmz9fTgl8gVSSRSQkJCWttmX8R3w25paWlQUJBgbrOk6mpgCsXdYCUlP95kk1x23dIzxmC0e6WZWWxFBXKJ7wDfZVQFINBoK0xNsYGVdWISmUwVA4ZtEpOxbboQUtWQSPxr9H18r+wCdjs4YNt+NMMjGpuJYlRKi350DOoYfAvwG3qf9bJYfMfsXvL0xFYhP\/QPgLBZDBhWCAlFHeuvoHDSzQ35MY1Gq6qqwuFwyGYfxffELoRBJSUl\/H5tra33AwNHYRzrH55exfUNYhWNTbd8fFHHhvHqIJEfFxQUPHr0yNraGtnEok+kSX2O3U5KNSAg4Pr164LGIs2oqHGY+sjDTs6QFInl1dRd9PBAHWufDkG0vGHDhlu3biGbCDgsGrGuODMxNioqGhATk5BRWEPs2VQWXxV9hV02taEkMyk+Lj42OjIiPDwqIb2gupn2cV8cHR2ddevW+fr6Io1FQqd63mJllVpRKZZSUYltP5iira3T1hYEdgDy3fbLprHppJqMACv5P\/Zv33Xw9LlLF88e27tr7wU528gyoqh66j7BLofekP5a7fqp42f+uHbtyvmjO1cuWLr11AOzoAIcf40OHpqamqKiogSTWPjk50\/H1DYvMjSKKykTiy4u3WpljToGKZSgEyQaHDq+KFTv9PxRwyet\/t0+l9LKpuEL\/Z5uHT988qZbbkXt1u0SJfQFdjn0LKP9UwaOlb3jzeu6Qs3Q2Dl+UD\/J4ctveZcSecvrCENCZSV2HrGJL16EFxaLvS8oWmNmjjq20MjIs4Px15yW6iyPf5cPkhgis+i8fS3vlszmymj59QP6DZu8TTGOLJL0KsvJzRo+fJqY2DgxsSeiyS6H0+xwbEx\/CXEpmfOvm2jgUqk+f84ZJi0h1n\/lk6g6EtLjCYtCHG6BIboLOkROwfkFYsH5hStN0B1ulhgb+\/LmN2GxWBAtl5eXCzrTshsLopW2DRYXHzZ5+XUvxDhwyLXZRvuGSfQbNmGrcooIel863fn+feXBg+3FxJTExJz\/+ovw8RSrogEOI9Xw9KYVy9adNk6lMNgcWpHBPq7uDp7+m3VeU4ugRw6VSgVGamtrkaiqgkBYhKlqHKSkFJhXIBaUV7DM2AR1bKmJSUBhIZvNLi4u1tTUvHjxopWVFUIwq7EgUnErl90py\/\/is8sm1WTq7R4qLj5w5IxzjkJXf\/i2yMig79vHFBdvFRMDoa5b1+LnB7rCPypKYDSVF1c1EXANtZX5QfLbp\/4wbsqSI5oRtZS2vt90Ot3LywsYefjwYW5uLhBcQyQuxrTNSysoBOTli8F\/izFj7JeZmATxll0xNjaWlpYGXzV37lxkpkoOpSrD6c9FQySHyCy+6FjPvSeHjiv0vblESkxcevik\/YYlohdZGRq2Tp2KUAvC6d+fo6TU2uHCR98apLwQFyv9Z+c3TBoxcdnhx24Zje36SRYWFs6fPx9ZnAsIbmhoqCeTsexKycv75\/LYxer1MlPT4OLi+vp6RUXFfv36iYuLT58+\/eXLl9zLc1oaCnzkf5k1fuLsLffeFtc3NlbnxTnf3jimn5h4\/2ET9+oVih676uqt48YJ2GWKidHv32f1ziS+vQ82ITPAye6lvuLNo2vn\/rh2zxV196Ty5ra5CmJjY2fOnAmMAM6fP19VVdVAoYAnRTEoyWU3Twys81LMMbDMgUVFDAbj\/fv3mzZtmjVr1qlTp8BK864PukqoSXD47\/TP6zYfv6djbmGoeuP8779tHi0hPmDkjDP2jaJn8d6+bZWVbZWU5CqumFihmFjktWtVlZX8o6IDNoNCogp68bPxofdWjRwoJTl69U23fMh6uTvJZPLVq1fnzJmzcOFCMNHgg2tJJKzu9gfLDLoLkdUKE7TfhW\/BjxdVAcElJSWoee85bBad0gSOISXsnbuDtb1nSGxaktaOQeJSQydseBYtggaPTObo6bUsWlQ\/cGAWGDQxsc1z59rY2Ah6OIgEOJTajCAnK5fQrFoKX1HJnhenD5MWF5MYudcot5HCp51IJILWZWdnI2M+q4hErPUdiERVoQWFq83MUMfg7Ld5eci1MADVrUpy134up++VwVuciUNvKva9ubif1NBJ6x4EiWi7EodTHBSktHXrAimp\/rys98SJE1BA\/KPfHhwONfT2XGlJCE2XPookIQpM9bk2ZwR3dZ0Ba5\/H1naQE5Xi8ZDBohgcqqwcBBlRRFHxRsuXqGPzDAycMzL4v0aDXpfrc3\/1wP6j5\/z0LIwOmtxSl+N7X3bokAmLjhtmIMPJRRQWFhbgtHjkio0dO\/bFixeCpYG+NTgcouu58dIS4v2Gzb\/hS2BA8MKhl5kenDCkn7jUsAXX3MqbacJdXkZt7Y8G6LF9Y9TUQwuKxBLLKvbYO6COTdfRMU5IQH4MMTcej2+30BmruSzW4MS8KfO2\/mWdVFFZnB3p9GT3j5Pnb\/3TNuujOfBED5WVlVeuXOnfH9Fese3bt0dERIhIKwiHVed3f8O0cXP3qgbklFVWVVUUBSvunDJyxGiZ5RdsM5o+jOKg0WiNjY1IsgsIKS6eiamJnKOnF11cKpZVVfPbKzfUsQmamoptiwMXFRU9f\/7cwcEB2QRw6M1VsVZ3Dm3duvf46RMHdq5fu+X4HaPgUhHRgs7h6em5cuVKCDiB3UGDBkFSIUL1VvRif+2\/DmyU3X7w5Olju9cvnjd\/1a9XXrzLaWpfzdwKTvevv\/6CZBfp5uaSmTlFWxvF4Dpzi6TyCrGS+sa\/3r5FHRupqnrL3x+5VlRUFERokD4jm23gsBjkxvL8rOySOrLopUAdA0KSR48eDRkyBFHfFStWeHh4CAbWiQRYVFxlfkZqdmkDVeisQJCmQhYDjw0BM2waxMWBNqIY3GNvn1lVI1aHJzwJDEIdG6ioeL5tHQYKhZKXl\/dhsH3fR2Rk5M6dO5EKAUlJyd9\/\/71vvR18oAkJCQi1gGehoWMwk1idc39dUFsvRiRRXkREoo5JyMntd3Lqu72XOwd4LC0tLYiqEPWdMWMGakrkvoXrb99ilxG66eNb3ogTY9IYlgmJ2IGC221tm0Ulnux95OTknDp1ChQXIfjgwYMZHeYIog6hc2gohr6vxxPExGxrnVPTsFNsy1paZn88s9x3Bjs7u9mzZyPsjh49WllZWTBffR8Ci81eb2mJnb7KJDaOQCJz2X2bnTNDRwd1eIGhITIuGwBBB1h5kUkNewe1tbX\/\/POPlJQUQvCWLVtCQ0NF3xnBJwiRkCAMLGpqwia74Fg9MjIZLXQuuzHCumdM0tLSjIpCLlFcXPzgwQN1dXVk87uBj4\/P2rVrEXYHDBhw8+ZNQTO2yMLJyenMmTOCcURv8vKmYtIhGU3NyKKS1tdxXHbza+sue3qizhiqrHzlzRvkiomJiYsXL96\/f3\/fHUckFKAE8vLygpmQlyxZ4uLiIuLqC\/ZGRkYmPDwcqSRXi4zEzvr6k5VVemU1n11cM1Ep9D3qDIizdtrZIauWwIXq6+sFS01+T4iLi9uzZw9SuQE5EqiFiGdH8EWWlpYK2j\/Ovn6NnWv5qpd3SX0jn10WjWGflIIdbLLG3Dzz4\/Xpvj+AfTM2NhZkR1OmTNHX1+8rqSCEVMARdtYqrUjexCgIuyC+OXnY5bDnGRi8zsnhX+n7RWFh4YULFxD1BezevbuvjHYsaGwUuqrqm6wc7qRGAnbjSst22NiiThqnofH8\/Xv+lb5ruLq6zp07F2F3xIgRT5486RMRhmN6+sQXL1CsTdbSiikpBWo\/sFtY1wDGGnUeZFG77e3br3T+vdZeNTY23rt3D6mbBMjKygYEBPCPiRJQ9eG\/e3tjx4f9bG2TVVXzEbtkMtUgBj0SEGSZiUkMbxQvfMsREREQOcN3jVz6O0NQUNDGjRsRdqWlpa9cuUIUsY5Xzs7OEydO9PDwQCoeiDTaYmNjbCXjA\/8A7jy+7dkFAdc7XRtdpwFZ74voaLgWfDUxMTEbNmxQVVXl3atLMJl9KnuiUqkaGhqC7Gj+\/Pl2dnb8Y18FdFoX01V7eXnNmzcPcnRk9N+7\/Hwwwii+xOXkvDKz6FQamt2MymrsYhfSCgpH2lJAIBiu22ltO5tBroh5effotk2A9WtXLF22+dQju8QmUWpf6xjJycmHDh1C2AUrffTo0S6W\/+4lcNj0ctdL88esfprY2SpNYD5BawUBwW1\/f2zjwRIjo+TySoTaj9htIpDUwsJRZ4OsMjPL6l6FM5NUE611WPa4TmwNGVSBQmquTDA\/t+iHGQdMc\/tCAwwUnJWV1YQJExCCwQyCNvOPfTmwmaSkF7vGS0v0n3czAjXar0Mw2OzVZmbY6uXrb96UN+KEsMumM72zssdiKj6mamubJibyr9oJONSmIvuL86ZsUUwUDGhit+Cz1TYPHr5VM79vmOmSkpKrV68i7EKOtH379sTuvPsng8OiVfvcWjNmgIS4eL95N8O7y25kWRm2PwaIY0oqhdIihF2QpPKKX+zsUD8A43zYxYXRZYbAItalqGwZ0H\/o1C1\/mkZWIAue0IlpCrIDh+8yKO8bxhm8j6en58KFCxGCITu6e\/fuF+sYy2aSc6zPbDzw4Mqa\/j1jV+jCF9N1dBLKykFLhbNb09T8NCgY9RuQ9tOr0+l0SPYdHBzQ78xpaSp1uTBVSlxCasDwcbM3\/675JrMs3uDonB\/m\/\/G6su80jUN29PTpU6TtCNR31apVyBCb3gaobX2k8v5tf7vmZqht7pRdb2\/v0NBQwVQKtSTSfAMD7Dw3Z9zckQpI4eyyaAyPzCzsJAwjVFX\/9fVFLl1WVnb27Fn4uiMjI5E9beAwyVXRWvsm9xeHYgGKh4wcN3HSpOW\/22c2Id3o+wYghAwPD9+6dSuivgMGDGi\/Wkxvgc0gFbv\/u+OgakQ9mVqg0Qm7EMHMnDkTctHa2lpkj2FcHLarDYh1YhKJTOmQXZCMquojmMgZPpPV5ub5vHkiIWyLi4t7+fKloF\/PB3CYpMoYo+MzuPxyAZ++5MAxy8+YJDX3IXp5NfX6+vrDhg1DXmPOnDmWlpb8Y70CVgsuyej0zt+tM4kMNpPWKbvwtbm4uID9QNJccJGbXr7ENgosMTJOqahsb5aFsEsmU83jE7Brs8q8eIE098LNwCYLo5ZBrorUO7Vyxvydt156Wj04tHi0FJdl8X5Dxq+55d\/Yt9Q3PT39xIkTCLtgpfft21dUVMQ\/\/JngMEjl\/k8P7P\/Pt5wKwQynC3YBwCs4RCQv9cnPBy5Q7IA8Cw7mLvTYjloh7AL5MSWlshbo5VmB759tbAgdd8+AdChOY\/d0mR9PmGU1UWlUfG1pkofq2VVjpUCBB0046dCX6OU1ejo6Ok6ePBkhePz48YqKikj5fh5YLfgM+2u\/HFUNLmloJgIITY3pShv6Abtz\/grANZMona\/1ctrdfaCw5VUjioqZNEYX7ILAJ4CdwQpkmo6ObbvJNCA7rKqqio2N5fkkNrk+x\/jAuJGTD5tW8KNrDqulubYwQvfglH5SgzZpFvSNnOgDIML4999\/BU2\/27ZtS0lJ4R\/7ZHBaCCXW5+dOmT5\/+Wo+Vq1aIDNIAu4xcMKC1atlz1sUcvumg7JGR0cXFBQIqi8AidXVwAK29vH869dlDR\/SXIEIYRdiq4DcfAivUZfor6Cw084OWb0GPm3wvmvXrp06deqhQ4dqaqop9fmmB8eOmLhHt7Ddtwfmutxs\/8gBMmdfi+gUQh0DitXX13fZsmWI+kLwHBwczD\/26eCwGYSaUsir21CYl667Zxh8RP1mXnTNKyqpwtM5dAbjypUrU6ZMmTVrlo+PD5KegOX4DRQX0\/0RfLBXZlZLuzRXIELYBSkS1mQEMvHFC4O4OLgTDoeTk5MDhwRPNWHCBHt7exalIcP63IIxMmuuO2QREII5bFp9vOGR2RM2Po3oW3EVH2CWILyCFxw8ePC5c+e+SLcNFp3geHwEl90PfjczM3PMmDGwD3Ds2DGkt1dQcfEkLS2s4m61ss6rqUPFU4gIZ5dGpb1Oz8Su8wred+PLl5UEAvgLY2NjpMlMRkaG214GhrghP8jwr\/2bViyX\/fXkxWvXr144vvvnX07e0XuXhetg\/JqIA9QFvmOwUiEhkPDzFxPpLbBozXGah9evW7du\/qSh8PkMHjltybq1G85bFNDLK6ugVIFaKN6\/\/\/6bRCIx2Oy9jo7Y2T6BbIiCuSvvYqgFEc4uSGFdwx+eXqhrgYzV0FAMC2Oz2eXl5UpKShBYmpub80cIQoJOqCsrzEqOfh\/o+843JCYlK6+wrI4\/arxvAggGUsE29kZI9RHgwuSawpzsnJzs7CwesrNhq7iBxmEymW\/evDl69ChQC18VlLZbVtY4DQ2s4v5kZZVTzXWmKF4R6ZBdOpX2LjsX28YkKSe3yswsp6EB3hkMV2UlaDKqlyiHzaS3UClUWnfWK\/wfhAOyoIqKitraWqCWwmBsFpbj9lNQcExJhSQWRapAOmQXpKKx6Y6vH+qKIMNVVP728RGySvr\/8GWgHxc3ErPiDMgBRyeIkLjL3WN4RaQzdhkt9JD8wh8x\/bIk5ORm6em5ZmXxb84LL8GAQITZ6+br\/xtiYmKSkpJAX\/nbra1pNTVz9fWxHR8HKylxF8sWFioLpDN2QerwBHlhuS9kR1usrIrxeOQJIPQAD7Fy5crUjmaX\/B+6ASB18eLF69evFzQYUJnMg87OUNqo8gc55\/4ajKvQUFkgXbDLpDGii0vB0aIuDYLYZybvK6NSqRAFPH78WGRnxu0rUFVVhRxM0AFGJzZ2lJoaNpgao64eml8o6GHTkXTBLkgzkWwaF4\/t8A62YoaurlN6OjwEGGQIm2tqav5nmT8TjY2NEKsixZjMW68Ea5NBngYFNzYTUVxipWt2wWkX1tX\/Liw7gphtg6VlQW9Nqk\/ND30dnFH\/YTou0YawL7n3vm4ynb7P0REbJ4NstbLOqqrB1ipjpWt2QcACvC8oWo6ZLBRkiLLyeQ8P7DjuT0j8WbmmZ2RXr9m4dceve\/cfOnr81Jmz59pw8alDciVeZLoAcEilKZ5q187\/\/Z+KrrGlrb29jZm+6uOb\/9546pDe8zHA2I6I8JE8Cg4epqKCtck\/qKu\/zc5p6comI9ItdkHAPpvHJ2D7RovLycH9HgUFCbrmAK+QmB88eNDJyQnZ0020+N9YOnawpLi4hKRUv\/7SAwYOGjSIW4UzePDw6TufemTWtc219u3BxmUFax2dMXT4mAmTpk6fMXPmjGnTZi2QPf7UNb1H\/T8hjEpISNi1a5d\/2xw0CCySkmRevMD2vgCRCw7pjk1GpLvsgn0uqW+85i2k8hkcw7R281sBu8nJybNnzzY0NET2dA\/scvMj0ydOmTlv4bJVa9fJykLouH79sumjBo1ccFzJI7WaLEIGm43LDNI8NFlKSkpSUmrA8PFzVv1y4amlX2p5c896YEFZhYWFycjIuLWtIAMILi6eIywFAtlhY5tbU9cdm4xId9kFobfQIotKVmLWxgeRkpdfZGT0Lj8fHg6sCpFIDA8P72FnYEb04w3rLxt4BkTExScmJkLWF+OhfHzNyr13rSKKmmki1X7IZVf\/6rYd1w29vL3fBoRGJqQXVhM6nNu+Q0BZQQwVGhpa1zbWMqehQeiwPpBxGhp+OXm07tlkRHrALgiRRLFNSh6vgZ4dCQSJsFLaTRbaQ1Ajtf9UelPSREVUlEPOtL9z7Ni\/+n6ZdcKnbfqGAHaDjW4cOm+U2kInNzfh8KS2ybE\/Cw1k8l5HR2zHGBBIeTXCI8A\/ovjrXHrGLuTOtU3NKu\/DBmESJJABCgr7nZzyhC3TSyAQugonWU2luWVNdCaPXE5TnPHvuw7etokoInQxAONbgKu7epfXrzlyU+7p4\/+e\/Hf\/xp\/X\/n1q6JlU0\/XUIohtw5ZGE5V6ycsL23yLyN9v35U34jpqLehIesYuCNygqK4BbibUekBafMTFpT3BEDikpaXt27fPw8ODv6trUDMsL8ku3a\/MXapFxNSWB05zXpTN\/aPH7pu9C4uMio7wc9T5Z8f82av2\/qnlX9aZ64XwGIKSI0eOvH79mr+LBxyV+oe3N7aLMiL7HByzqruVAqGkx+yCMFroqRVVhzGrGCECan3YxQXpQAkAdsGFzpo1y97eHtnTJdiVXnd\/miHz0\/OQYlxv9xMHneGCv\/XJYJJwFdlJKYUNLVzDwqFVp3rdkR3Sb\/Ck1Wf1YpFThALYjY2NXbRokWAIGjxKI4VypWNqV5iYRheXIqOteyqfwi4I5FuhBUXrzNFL3SACBB91dUUIhqIEsxwQEFDZ3bnMmXmWp5eMGzrjnH1WDaV3NJdDrcuN9DDXkHv88OGjhw8eyenYB2VUf\/LFWRRcSWqoT0B0XgPy9bGbCiK1DoyTEB8oI3tcn7dLOKA08Hh8cHAwUhrwAOBrr7550xG1k7W0vDKzexRJtZdPZBeETKa6pWdg52NAZJCiIhAs1Ad3AVah5cn5PwyUXnE\/qLCxN6YHY9Rn+Bje\/23\/wbM3lcxc3rx10ntwfv8vpx9ZhZe2fAq\/HGpFqqf8cdlVPx27ZRFH4l6CjS+M0js8QUK8\/w9rflVETusS8MN6Mvna27cdUTtUWcUkNq6T5tsu5dPZBYEQziI+YZqw4UogECAcdHZGBnej4OXl5ezsjK2jAXCavf9aOmGIZP9NCvGlTZ+fB9HKw8zu7ls8Z9Xhu+bvi5taGNXhlrd+mT1mxvYbZuG1nxKwcYh5743PzJUeNHnNyRcRPHZZDbmhyjtHSkgOnbr5j48cUEtLC2S0YIfpH09kx+ZwwLZd9PTEjtJEZKiysur7cFwzsfNWoM7ls9iFGzcRSGZx8R0RDHH8Vmtr9+xslKvbvXv3unXr2s3o\/QGsYqPDM0cPEB+wTS2lHP+54TK7KdH27t4Fo0cvPaPpnU2Cy3Ga0t\/o3Di25\/QDs6Bc4qfobisDlxugc3nL6l9uWifUwffHoeNy\/DUPTh84eNziQ\/I+ZfzTeKivr7927drGjRvbLyzBZLMjy8oOODlh22YQAWohManDEzppme+OfBa7IAjBph0TDKH1MhMTvbg4ZOorBC9fvtTX10d9zgjYFXbnF4wdLD3lN5uc6s9ddY7THGty\/eeZg6Sm7XniEF5cXZKblZ2bm5uZnBCfmleJ\/yTDDGBR6nPC7JTu\/HPj7mNFVTWlx3+f3bdx1dq9f6rATYgffZHwBUOyAC8LWRCyh8ZiuWZmbrayEprXggC1yqE8aj9DaxH5XHZB4CHwxM40WJzX0\/2\/oKCGtmUnqVQqvLZAobOzs58+ffr8+XNuv0NKUZidjrqW7fuiZu5AjM8CM9fp\/v6FQyWk5u66cEPBxEBbR0v58e2bd5\/puUcXNHwquQA2g9JQlBzi6Wxn89LMxNjE3MrRMzA+L7WwQkdHB94lpG19W3hHGo2GdD2D2zW3tOjExGCXDxIIQm19b1AL0gvsgvAI5jYDd0QwyGg1tcteXvFVVSgrDS9\/+vTpUaNGjR49+vbt2xBSsloIzSQaS+iQmp6hJcboyrbp\/cQlRs3ZevappUdIdHSIk+Lvu9csXnPkgWVoPr\/f9aeCw2bRyIQmXDOZu+Qm0vl58uTJ8C4HDhwo4C35IwCLzc5tbLwbEAAfOqpkBALUKvFm3u0VakF6h10QeCAIskCDFxig15MUiLSCwnZbW7PEREJbzxIAiUQaP348r7s\/dx776t5cf5ESqXdp8xRJMYnhS39T88xqBlvAbo6xuLlr5sBhs\/c+sIn9pLCqA5SXl1+8eBF5kenTp4eGhvIPwDvS6a+ysg45Owvt\/IbIOA0N8LUN3W7\/6Y70GrsgQDCRRHFNS\/\/Jygr16O0Fkqh\/fH2TqqshboQ3ZzAY169fHzJkyNChQ+Xk5DD9Zz8HtASz69tnSYtJTtv71CkeaZxjZr96fnTxYAnpuQce2SfzQt7eATw5xBOTJk2Cdzlx4gTSiAIBFMTGYKkh+BBauwciLicHKmEeFw8RDIqez5TeZBcRSL2D8wtOuL7qKGoAGaSk9Iu9vVVKCigxFG9+fr6JiYmZmRmUiKA7YERExKtXr8BQI5ufBFaZ5\/NjK0ZLSM05ouSeisRozFw3+eNLh4pLTt150yLqcxYchWcLDAz09fVFUjvwOLW1tQ4ODvAusbGxsAkq65GTc\/zVK6GDqREByrdaWb\/OyPzkKotOpPfZBWHyqir\/fvtumLLwZA6Refr6N\/38gouLaUwmyhkD\/v333\/Xr1+fk5GAPdRscarbTw4OLRvaHmNkpHse7Dj3d6cnBBQMlhiw5Ke\/2WQsowbOdOXPmt99+Q\/UVhAeGN4qvrASVXSVsZhqBgKs6\/crtfWHRZ2Y+HckXYReERWOUNjQqhIRiF9xvLwMVFSE3eB4aGldZiZp4xcnJSVVVFdxwe3Zhk0KhdJ9vDrXIX+vSpukyS44ruqXhGK0cWrnfi0vrZYbIrDmv+SaH0P0PB+4LyWv7GhhIYS0tLS0sLOAQfxd8PCxWVn29ZlQUGKdRHXtZyCPAB99455PBm0j5C8mXYhcE3DA4EvP4BLA8HbkcRIarqEBZaERFZULxtVlmiKUhaxIYagBEoffu3bOzs4PolL+ra7Dw+cEv\/zu546dfTv4lp21ooH7nzJ6fNv586rFFYHb9h9iuC8CTvH37Fu7efrYQro7SaAJq4cmLm5qMExIOu7hgFwhqL5Ly8suNTTTCIyoam1B89K58QXYRYbTQQwsKr795M1ZdA\/WSKIGg8Yirq2F8fGptLWgAUmTtkZmZefDgQU1NTdAh\/i7e4jywvzO+ObTGong\/e0NNVRVlVXU1NQ09C9eglDJcS4fxMjhUCAXa3wUCe\/iq4O5C57+Bp81rbLROSTn3+vWMDireEQGVHa6iesbN3Ssz63MqkLspX5xdEFDiSlyTfnTMRkvLzpUYZLK29kFnZ+XwcPDHTS0t7Y0waElwcHBeXl77Si4\/P79Lly55eHi0r9eEvysqKgTVQwASAffK0ebff26aW9lX1X6YUhzOrKqqQsVuECudP3++\/TyRYEJKS0shyRFMPAOAJyPSaFHl5doxMSfd3ISOB2kvEGYuMTKGjDarmj8H65eWr8EuIqDEgXn5f3h6\/aCuDp8w6s1RArZ6k5XVbX9\/l8xMMHeMdvYZBWAXskxPT8\/27Pr4+EBQBv8KvoOAgIBt27YNHDhwyZIlEIoLOuQCYTdu3HBxcWnfRRfLLgosNruKSPTOzX0cHLzTzg6sDur5UcJTWRXII9zTM1GTDn1R+XrsIlLegNOOjNphYyu07w5K+snLLzQyOu\/pqRUd7ZOfX9jUhLXYoKDp6em4j3vMA3\/Hjx93c3MTDMjR1taWkZER482AoaCgIGAdLO3JkyfNzc3bswt2Pjc3V9CTTQCI+yoIhKCiInAf196+XWlm1p23GKCouN7CUj4kBFmJ4mvK12YXBJQ4oqjkSWDQegsLoeOfsDJKTW2NuTnQrBoR8To7O7OujszorJ8a2M\/4+Pj21V5BQUG7du0aMWLEqlWr3N3dBVyCc01KSgKri2wKBZXJzG9sfJuXpxUTc+XNm00vX44XNlAaK\/B2S42Nb\/n4+ubkfU2VFcg3YBcRCpnql5sHbw7v30m9B0oGKyktNjI6\/uoVpJLmSUlv8\/OTqqvBSAqNwtoDfLa\/v7+6ujrY8Mau+hSAI6gnk9Nqa\/0KCyFWUggLO\/v6NWhqJ\/WIKAGrM0dP74qXt1t6Rvc7l\/e6fDN2EcETSPD+4Ix\/1DfoPscgcDJkHVDiB5yd\/\/LxUYmIABrAekeXl6fX1oKrriOTKQwGUtnZESBka2EyGyiUUjwe7EFsRYV\/YaF9WhrkZjf9\/I66uq6zsJispYWdraITgQebpq3zm5ubdWLSl054upRvzC4i1Ti8XVLKNe83a83Nhyord8fooQRs4MQXL1aZme2yszv26tVlb2+IyOTevweHbZqYaJWSYpOaapeW5pCeDv\/C37DHLDFRJyYG9PJuQADYWwh6dzs4AJ3TtLU76nbauQxSVFpmbHzxtYdpbHxeTR2qoL+JiAS7iOAIJJ+c3MeBQb\/a2cu8eNFJBV73BSwkBKsQ08poak7S0pqirQ26CBcHxwlmtptev3OB54QsYKuV9W0fX\/f0jG+ur+1FhNhFhN5CTygrh7j69Cs3cLFDQJV7g+YvIaDi8\/T1Dzs5K78PCy8sJnUwrdA3FJFjVyCl9Y0uqWkP\/QOOODuvMDGBsLnLmpCvIPAMw1RUFhka7XNwhJAQnGt2NXeGAlSxioiILruIsHhjwz0zs+RCQkGbZc0twMYKHbP8RQViJTC\/K01Njzq7PAoIdE5Ny66u6eYg2m8oos5ue6nC4QNy8zXCI656eR90dNpgaTlXX3+0mlqPgu1uCnjTEaqqs3R115mb73NwuOzhqRj63jsru6S+kflJwwK+ifQldgVCo9KK6xtCCwqtEpOeBQVf8vDc6+Cw3sIC\/DTwIaP5YoQKN2LqTuwN5\/STV4DIC\/KrmTq6YHKBTgjrzrm\/Bh01i4uH7ym\/BtKrL17j\/yWkT7KLEiqlBaw3kO2alm4Wl6AeFgHE\/PnmzVk3d\/DZe+wddtna7bSx3W5j87M1V3bY2MKe3fb2h5ycITGFTOyBf4BqWLhJbDyY3MC8gpxq7lhWVEn1Rfke2O1IwC\/W4QlAPPjIjMrq1Iqq5PLK1IrK9MrqrKqagtr6miY8fBm91QFRBEWMX23zP3yP+B+73y9aW\/8Pc+JLmjFFK88AAAAASUVORK5CYII=\" y=\"-1\"><\/image> <\/g> <\/svg><\/span><\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2024-11-01 02:05:17","option_type":"txt","len":1},{"id":"8225","post_id":"7912","mon_id":"1159278","chapter_id":"1159329","question":"<p>Trên cung AB có s\u1ed1 \u0111o 90° c\u1ee7a \u0111\u01b0\u1eddng tròn (O), l\u1ea5y \u0111i\u1ec3m M sao cho cung AM có s\u1ed1 \u0111o 35°. S\u1ed1 \u0111o c\u1ee7a cung MB là:<\/p>","options":["<strong>A.<\/strong> 45°","<strong>B.<\/strong> 55°","<strong>C.<\/strong> 60°","<strong>D.<\/strong> 65°"],"correct":"2","level":"2","hint":"","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>B.<\/strong> 55°<\/span><\/p><p>Vì <span class=\"math-tex\">$\\text{s\u0111}\\stackrel\\frown{AM}<\\text{s\u0111}\\stackrel\\frown{AB}$<\/span> nên \u0111i\u1ec3m M n\u1eb1m gi\u1eefa hai \u0111i\u1ec3m A và B.<\/p><p>Do \u0111ó <span class=\"math-tex\">$\\text{s\u0111}\\stackrel\\frown{AB}=\\text{s\u0111}\\stackrel\\frown{AM}+\\text{s\u0111}\\stackrel\\frown{BM}$<\/span><\/p><p>Suy ra <span class=\"math-tex\">$\\text{s\u0111}\\stackrel\\frown{BM}=\\text{s\u0111}\\stackrel\\frown{AB}-\\text{s\u0111}\\stackrel\\frown{AM}=90^o-35^o=55^o$<\/span>.<\/p>","type":"choose","extra_type":"shape1","time":"0","user_id":"127","test":"0","date":"2024-11-01 02:10:40","option_type":"txt","len":0}]}