Chú ý: Để đảm bảo quyền lợi và bảo vệ tài khoản của mình
Bạn hãy xác thực địa chỉ email đăng ký nhé. Chi tiết xem tại đây
Đăng kí mua thẻ | Câu hỏi thường gặp
Đăng nhập Đăng ký
  • Lớp học
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Kiểm Tra
    • Đề kiểm tra 15 phút, 1 tiết
    • Đề kiểm tra học kỳ
  • Thi đấu
  • Ôn thi TN THPT
    • Ôn thi tốt nghiệp THPT môn Toán - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Ngữ văn - Lớp 12
    • Ôn thi tốt nghiệp THPT môn Vật lý- Lớp 12
    • Ôn thi tốt nghiệp THPT môn Hoá học - Lớp 12
  • Giới thiệu
  • VinaPhone
Học tiếng Anh online - Học tiếng Anh trên mạng - Học tiếng Anh trực tuyến
HomeLớp 9Toán lớp 9 - Sách Kết nối tri thứcBài 26. Xác suất của biến cố liên quan tới phép thửBài tập nâng cao
{"common":{"save":0,"post_id":"7971","level":3,"total":10,"point":10,"point_extra":0},"segment":[{"id":"10459","post_id":"7971","mon_id":"1159278","chapter_id":"1159332","question":"<p>M\u1ed9t h\u1ed9p \u0111\u1ef1ng 20 vi&ecirc;n bi \u0111\u1ecf v&agrave; xanh c&oacute; c&ugrave;ng k&iacute;ch&nbsp;th\u01b0\u1edbc, kh\u1ed1i l\u01b0\u1ee3ng. T&igrave;m s\u1ed1 vi&ecirc;n bi m\u1ed7i m&agrave;u, bi\u1ebft&nbsp;x&aacute;c su\u1ea5t c\u1ee7a bi\u1ebfn c\u1ed1 A &quot;L\u1ea5y \u0111\u01b0\u1ee3c bi \u0111\u1ecf&quot; khi th\u1ef1c hi\u1ec7n&nbsp;ph&eacute;p th\u1eed l\u1ea5y ng\u1eabu nhi&ecirc;n m\u1ed9t vi&ecirc;n bi l&agrave; P(A) = 0,7.<\/p>","options":["<strong>A.<\/strong> 14 bi \u0111\u1ecf, 6 bi xanh","<strong>B.<\/strong> 12 bi \u0111\u1ecf, 8 bi xanh","<strong>C.<\/strong> 10 bi \u0111\u1ecf, 10 bi xanh","<strong>D.<\/strong> 17 bi \u0111\u1ecf, 3 bi xanh"],"correct":"1","level":"3","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong> 14 bi \u0111\u1ecf, 6 bi xanh.<\/span><\/p><p>G\u1ecdi n l&agrave; s\u1ed1 bi \u0111\u1ecf trong h\u1ed9p.<\/p><p>V&igrave; n(A) = n n&ecirc;n&nbsp;<span class=\"math-tex\">$P(A)=\\dfrac{n(A)}{n(\\Omega)}=\\dfrac{n}{20}$<\/span>.<\/p><p>M&agrave; P(A) = 0,7 n&ecirc;n&nbsp;<span class=\"math-tex\">$\\dfrac{n}{20}=0,7$<\/span>&nbsp;suy ra n = 20 . 0,7 = 14.<\/p><p>S\u1ed1 bi xanh l&agrave; 20&nbsp;&ndash; 14 = 6.<\/p><p>V\u1eady c&oacute; 14 bi \u0111\u1ecf v&agrave; 6 bi xanh.<\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2025-03-05 09:35:53","option_type":"txt","len":2},{"id":"10462","post_id":"7971","mon_id":"1159278","chapter_id":"1159332","question":"<p>Gieo \u0111\u1ed3ng th\u1eddi hai con x&uacute;c x\u1eafc&nbsp;c&acirc;n \u0111\u1ed1i, \u0111\u1ed3ng ch\u1ea5t I v&agrave;&nbsp;II. T&iacute;nh x&aacute;c su\u1ea5t c\u1ee7a bi\u1ebfn c\u1ed1&nbsp;E : &quot;T\u1ed5ng s\u1ed1 ch\u1ea5m xu\u1ea5t hi\u1ec7n tr&ecirc;n hai con x&uacute;c x\u1eafc b\u1eb1ng 11&quot;.<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{6}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{18}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{36}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{12}$<\/span>"],"correct":"2","level":"3","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>B.<\/strong>&nbsp;<span class=\"math-tex\">$\\dfrac{1}{18}$<\/span>.<\/span><\/p><p>C&aacute;c ph\u1ea7n t\u1eed c\u1ee7a kh&ocirc;ng gian m\u1eabu l&agrave;<\/p><p><span class=\"svgedit\"><svg height=\"121\" width=\"321\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> &lt;title&gt;&lt;\/title&gt; <rect fill=\"#fff\" height=\"123\" id=\"canvas_background\" width=\"323\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> &lt;title&gt;&lt;\/title&gt; <image height=\"120\" id=\"svg_1\" stroke=\"null\" width=\"320\" x=\"0\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAeIAAACvCAYAAAAhWN2lAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAESYSURBVHhe7Z1N0hzHkaZB3YFakb0BtFIfoMENZ9XQLAVRJxguRJoJ2og3EChAJxBN2ArQrokjjDCrlm7QxFEaaPMsvoW33owf96jIyKz5IsweUaz8iUQphafcwyPi3vvZZpttttlmm223dm\/5j3v3JpPJZDKZ7AFE\/P6f\/9yNpf\/ZXM2+q3++\/25S4fROfzdx8NG9e+\/fvfvu\/fv3kxofffTR+z+\/+0fijZsoH\/3ko\/f\/+Md\/61\/3E+EnP\/nJFPGttSliH1PEfqaI\/UwR+5ki9jFFfINtitjHFLGfKWI\/U8R+poh9TBHfYJsi9jFF7GeK2M8UsZ8pYh9TxDfYpoh9TBH7mSL2M0XsZ4rYxxRxpd2\/f395tq+++koP7daOJOJvX325PA\/zxVefr87bg6OJ+O3rp6vvyj7T8\/bgqCJ+8+ab9x99dPqunj17vDq+B0cS8b\/+4rPVOwX+z8un7797t75mJEcT8a9\/\/fXyvx++o4cP\/\/0QzzdFXGjPnz8\/\/w82Rbzm4aOfr\/7PDz65\/\/Hq\/NGc3um1dPbg1bfrHyzAjun5ozmqiB88+On5e5oiXsNSUaaIL\/n005+tviPjk0\/u7\/6MU8SZ9urVq4v\/saaIL3nx5pvzd2NCxudPnj8+f27\/Xa8byemdXktnD\/Cd3P\/k4+Jne3FEET9\/\/vgcDRtTxJc8ffv6LOLHz377\/rsDPJNyFBFzJPyXv\/zf5bPPPvvf7+\/dO3329OnL9\/\/4x7vVdaOYIk60R48enf\/PD6aIL2HhWnqaj+FzFvQenN7ptXRG8+bFhx8tHP1+9cXn58\/3TlEfUcQa7U0RX\/Ll3749f0e\/\/\/tfVsePwFFEvIju3r33v\/rVb87C\/eMf\/7Z8f3tL2JgiloYxYWWK2A++syniMo8efkjtTxFf8vXXpx8p9+9\/fP6Opogv+V9f\/\/r9vR8zBkd4nhRHEPGLF2\/ef\/TRScRHkG6KKWJpELFFxW\/evJkiDsLFW1PEeThKNiHr8dEcScQo0DIJv3z55SzWypAr1Pr5o4eHeD7jCCL+3e\/+dM4cmIg508IR8p5MEUszEZuArU0Rx3j99rIqWFPWozm902vp7A1HwkcYHzaOJGIUaJmEX72aIs6hqXvm4\/ufHOMZDybiFEeonJ4iLrQp4hj6guvx0Zze6bV09sbky9\/TrJr+AAq0Hj36+fI8U8Rpvnnz4iyXz3\/zxfl5Tunq0+e\/PEAB1xFF\/P33\/7V8zgVce6esp4gLbYrYD4vFsKpqPWc0p3d6LZ2jwMValqrW4yM5gojfvn16lu4PP\/xh+WyKOI7Jz76vI0TFRxMxp6Jfv357HjveO0U9RVxoU8Q+bM4wS3jvlDQ4uoh5gY+9x4mPIOJf\/OKUsmfhThHH+emDT8\/v1Z\/\/e9\/nPJqIf\/vbZxfCRTX13unpKeJCmyKuoxLee+4wc3qn19I5EvjepojX05Vy2NixXjuSKWI\/RxAxpinZ9zFFXGHp\/2BtiriMLWXJf0EeScLG6Z1eS2c0z598mHPN48EzIr5kitjP4z\/97jwWrCtoITV9hOrpI4iYU9As3JmaTrD0f7A2RZxHK6SPsr40c3qn19IZDU9V4ipprp7eu2DrCCJOMVPTabhYy0gVa6mg9+AIIjZShVmp1bb2Yoq40KaI82g0nGLv9aZP7\/RaOnvAhVmKHdPzRzNF7OcIIjZ4QQ\/l89\/86hDPeBQRG0hDK3tHw8YUcaFNEecpbfgApogv4cgY7F0tDaaI\/RxFxIZGxsYRImFwJBEbvL60sfe0JTBFfIPNvqv1Kz9RjibiI3NUER+RI4n46BxNxEdlivgG2xSxjyliP1PEfqaI\/UwR+5givsE2RexjitjPFLGfKWI\/U8Q+LkQ8mUwmk8lkByDilaYHsvQ\/m6vZd7X+7TlRTu\/0OvqbrJkRsZ8ZEfuZEbGPmZq+wTZF7GOK2M8UsZ8pYj9TxD6miG+wTRH7mCL2M0XsZ4rYzxSxjyniG2xTxD6miP1MEfuZIvYzRexjivgG2xSxjyliP1PEfqaI\/UwR++gq4udPniz3ablXq4htxSu7trTyFc65f\/++HtqsvX379vxdvHr1KnuspbWKGMtSltaFxjkjVsVKLZOpWyjymtZ6fY3l+01IxwOWpCwtP4lzeP3orbC1qPl7sj7fyTm2iYQJ1Y7rsRqtIv7qx\/8N7Z96DHz99Y\/f0\/2Pm\/po5U9\/enxelevvf\/\/9+fPTvsen1ZXevfvz6roarSL+\/MclKT\/\/zRfvv8tcj3NG7CWMzSFS\/OG\/vl\/Oefr29fm8lp2cWkWMdaBLy0\/inE8+ud\/UR5R\/+ZefXXxHupOTbSKBZTT\/8z9jz9NNxG9fv754SD1eY7km2FhothxlqvEylSNF\/OjRo3O\/KmI+XvoBkWt23fqVL8NCe\/Hmm9Vxwz7HOVuLmN8VRX8oYDlN\/byGXaPC8cC7IuWWoMxt5LAFpXWqf3j99OJcbCRR+gGRokXEJ6GdnuPvf\/9mddx48+ab8zkjRcyyPT3fBxEb2PvYfkBEn6lFxIvQfnye3\/\/9L6vjBi9XubWIU0tjMhCx8a+\/+Gz5rGX96hYR865Iuc0YXrx4cz5naxGzYBX9oWBLaNZ+QKToJmJ9QD1eY7km2GqRLou6dF7vhucCKRE\/f\/78w3cVbHbN+pUvU4t0dTel3Hk9sO0S0Q9vncjrV\/OPBT5f71Vi+W4T0qlRi3RZ1KXzesDCh1xTnwHecjESFbeIGNFwTrAs6tJ5WwDRAhUxR8vRqLhFxLVIl0Vt5M7rxZd\/+7b6wwDYlos4NxoVt4i4FumyqI3ceb3gSBiRLov5P\/7jv87n\/u53fzp\/V5Go+GoRv\/r224sXHuh5NZZrgg19paJKFh0YIWLt00iJmH8k2LNGml2zfuXLoK9UVMmiA1uKmIVrPwDwOUfkLGj+kRDZ89jOV+F4QF8qOYNFB7YUMffH0e+DTz4+983C5fS0Xav3y9EiYogslZZ+nninRon4FIVfRnsqYo6YbTOJyHO1iBh9pdLSvLcw2FrEvF1iTa6cnv7ls9+unr9Ei4ghuVRUyaIDW4r4xYv\/d5Y+bxCBHwssYYOjZ01dl7hKxDwmrOi5NZZrAs3khr5UdBqRgoiIozsvafTN6POh2fPYcUtTR5pds37l89i4K55Fx2BT47RGRMQs0JToveREbNjz2Ocmcb0uh52vwqnBY7G6R3AuRRwRcSmajQDZqogNSNrS1HpdjqiIbVek8\/f06suLYxgTViIi5pR2NH384MFPz\/2hbxUxn\/fo0c9D94+K+MtXH6LPZWckOoZIWb+riIg5zWyi91z30wefLuf\/\/NFD3\/k\/i50PoiL+4x\/\/dv6z6M5IvH8wExExp7RToldY\/CrdHIig\/+3f\/t39XN1EbGPE9z\/55Pzvem6N5ZpAY9maBHPHrOG\/jxKxRbgckedErM\/pbXb++pXPw7LlCFSP2b\/jv+8hYn4WFbE+p4fle01IpwTL1qLL3DH7d\/z30SLmKDkV9fJzqqRzREWMtLTxww9PL46xiC3ti7\/IRojYInG7zq7hZ0yJWJ9Tj+eIiphl+4cfPoy96jG7J76rrUWcK9TKRbyRCFr78crIYNl+\/\/2l+PiYpX0ReW4pYoz52vn2w4B\/COgPBaDPqcdTXC3ir7744vzvI0WMaDJ1nQmO0704b4SI0Twi5nNyxWapZuevX\/k8iCZT15ngWHo4b7SIOWo39AcDp89zxWaKnavCqWFSRT96zATH4sN5I0WMSLh0PYs6V2ymREX84MGH70mvM8GZEFlcy\/e0sYg53fzDD3+4EG1KxLmq6hpRESP6NPQ6E\/Hj50\/O8hsh4lqhVqooi8eJa2PKTFTEn366Ho8FJrgnT56f5TdaxClS6WeOok\/FZuU+jKtErIwUMfrxyDVybq\/mEXEpvV5qdv76lc+DPjxyjZzbCxa5kUo\/l9LrOexcFU4N9OGRa+TcHvD4L9CqaaOUXs8RFXGkErpFxC2gQAtjvjURW0odf46XLy\/T6yWiIo7INXJuKyzVJVX+7vQ5\/2BQ2XJxF19TIyriSCV0i4ijsIitH\/w44AIuTVmf0usYV\/7rStQpbl7EnvFVnHtkEUcKtuz89SufB32kBKfg3FEiVgnn\/mwsYk1b57BzVTg10IdnfBXnjhIxg3FgQ9PPLOJU6jpFq4g946sjRAypnvo4pZkjIo4UbLWK2DO+OkLEOS4j68uomEWcS1+naBXxw4c2vloW2GgRcyq6NJbNIk5FzCmmiDdqU8R1dMqUoSlpMEV8SUm2pWM5bl3E6IPnM08Rx+ApVPqsU8SXaWauplbZThFnGs6dIj6OiFMSLo39ThFfwmPNKtu7JmIeT65hY8e4bor4kiniNVx4NUWcaCjW8sgVz+Q5t1eLijh3TqrZ+etXPg+KtTxyxfN4zr0GLiAzShI2Ro0Ro1jLI1c8j+fcVrBSlsHjwSXZjhgjRrGWR663IOItx4gx9uqR6wgRY6Usg6u4OTWtsh01RoxiLY9cR4iYU9AsVW9q+v\/7MWJeQrLWcF5ExNGqaW0eEY+qmuYFNPSYgvMiIo5WTWuFtEeso6qmWXx6TMF5ERFHq6a5AprP56ItLdgaUTXNK1fVrmsRcUvVtFJLTY+qmmbx1a5rEXG0apqLtTjy5WItXuJSr9FCrhJREX\/22S\/e37t36kerppUWEUerpo1UYVZqtS1wp6qmS\/OIteG8o4n4CPOIFZy3pYg1Gk6h9znCPGIF520pYoMLs5RUxLv3PGLlqCI+wjxiZYSIDZaukop4jzCPWBklYk5DKxoNG8PnESsjRcyirEWTOO9oIh61shaLshZN4rwtRYxzS+h9IG\/PODf3o8KpwaKsRZM4b2sRG6mlNXOSHbGyFosyt+EDOKqIR62sxaKsRZOjRGxwlAtyPxRGrazFosxt+ABGiRigP6DTlsDwlbV6svQfbPhCIoVO0Way3OL+pW0Sa82uWb\/yZdCXt9CpBZPlFvfnwi5PGhuc3um1dGqc3ytnoVMLJu8t7s9zjVPRco6oiE9Cwv\/\/Pize0RuT5Rb358U\/IuPDRlTEBvp6HCh0imJR7uNnHxYH6QWvNZ2KlktERWxAeN5CpxZsLHqL+\/Na097xYeOmRVzbfenahmKqWuq7pXGhVrTZNetXvgxSu5FINwLGfWup7xZ4TFmPlTi902vp1EBqNxLpRkAxVS313QIXauUi5hQtIq7tvnQtKKbiAqtecKFWJC1ttIi4tvvStaCYKhfRXgMXakXS0kaLiGu7L10LCq1qqe8WuFDLm5Y2blrEHFX2liXu3fu+aHvuR9xblrh37\/uCPfcj7i1L3Lv3fcFe+xHXxomjIGLdQsLGnvsR95Yl7t37vmDP\/Yh7yxL37n1fsPt+xNey9N\/QEBVvkT7eql37A8KuW7\/ydRAVb5E+3oprfkCc3um1dDwgKt4ifbwVnJbWSuoaLSI2EBVvkT7eCl2TWo\/XaBGxgah4y\/R0bzgtrZXUHlpEbCAq3iJ9vBWcls6NH+e4EPFkMplMJpMdgIhXmh7I0v9srmbf1fq350Q5vdPr6G+ypjUivou0RsR3kdaI+K5x86npu9imiH1MEfuZIvYzRexnitjHFPENtiliH1PEfqaI\/UwR+5ki9jFFfINtitjHFLGfKWI\/U8R+poh9TBHfYJsi9jFF7GeK2M8UsZ8pYh9dRGzXKnpOjVYRY\/qSzsflKUJgq4U\/Uq20chYfa2l23fqVr4PpSzofN7Ul4VYLfzC8fjTQlbP42fT6Gsv3m5COB0xf0vm4PMcYbLXwB8MLdaBPXbCDpy\/psRqtIsb0Jfsnf85zjM\/PvNHCHzlymzrw9KXoYh5Gq4gxfcmWoeTpSzzHGGy18AeDaUkpMFWJpy9FF\/NAHy0ixvQlnY\/Lc4zBVgt\/KLzRg6FTq3j6UmQxD+MqEb\/69tvV\/4DMmxcvVtfkWPoPNhYarzfN6zynaJm7G228O5SKmI\/rDwhPs+vWr3wZFhqvN827GqWIzt31ov0w+kNhzwU9eL3p1HrPzFaLdPAmDorOF95rQQ9eb9rmFOtzXjxz58U\/UrBsT893udb0ngt68HrTtt4zNlNIsdUiHbw+dQqeM7zngh683jTvapRiq0U6WLCK\/lDYZUEP3uTh7evXy2f2T3xmx\/WaHEv\/wZZb4pK\/KDTexCG6yUK08a5KRkrE\/GMh2uya9StfJrfEJT8nPuNNHCKbLHhh+fPiIrxdY+7Hgt6rxPLdJqRTI7fEJX9X+Iw3cYhssuAltUlE6jPAPxYiUXGLiHNLXPJflog4eROH6CYLLfA2jYaKmKPlaFTcIuLcEpf8XeFzlmR0kwUvvGxlbSMK3hwiGhW3iDi3xCXLEBEnb+Lw8KFtsuCXn5fUlof8LLx4B\/9YiETFzSJm4T56+PDi2FdffHE+BkHXWPoPNvTBUWVp16TIHsatDfdnUiLmaD66Kphds37ly6AvjipLuyZF9jCOwvfmiJufhwXN0XxkVTA7X4XjAX2x5Eryi+xhHIXFytEvdljSFDWnpyOrgrWImHdHwmelXZMu9zCOyS\/C6RkuIycVMUfMz549Dv3ZW0SMvjgtrbsmcbo6sodxC5FtDTk9\/cvgqmAtIobkOKos7ZoU2cM4Cm+ByFse4seCrqDF0bOmrks0i7jECBHzpgkp0aVaRMQloadaaky69nyjtkHkTRN0DDZHRMQloUfIidgYtQ0ij8V6dy+KiLgk9AiQrYrYGLENom2acP6eXvl2L4qIuCT0Gtje0CJ19Kci5vOiEXpUxF+++hB9LrsXJc5RIiJWodfON7AfsTfiHrUNIjZksL5Se\/2miIi4JPQUHOGqdHMcZhtEvEDGViLm9K9nzFdFWWvXiNgiXM9+xPxniDQ7f\/3K5+GiKM+YrxZv6XGll4j5OVXEfEyvy7F8rwnplODxWM+YrxZv6XGlh4g5Sk5FvfxnUEnniIoYaWnDM+arxVtbidjGp+06u4afMSVi3q+49jxMVMRIS1s\/njFfLd6q9dUi4lyhVi7ijUTQ2o9XRgYiTevHM+arxVu9RYwxXzvffhjw\/y65Hwr8Z6g9D+guYktT40E1ZV1i6T\/QEE16r+PzPWJtFTGaR8R8Dheb1Zqdv37l8yCa9F7H53vE2kPEHLUb+oOBx4l5\/LiEnavCqWERJvrRYyn4fI9YrxUxIuHS9SxqLjYrERXxgwcf\/tye6\/h8j1hbRKybObBoUyLOVVXXiIoY0afhuY7P94g1KuJaoVaqKIvHiWtjykxUxLZPMJ7DIzE+3yPWa0ScIpV+5ij6VGxW7sPoKmJOSRtWVa3n5Fj6DzT0oYVaqcYpaSMivdbmEXFLet2anb9+5fOgDy3USsEpacMrvWtgkRup9HNLet3OVeHUQB9aqJWCU9KGV3qt8Pgv0KppoyW9HhUxBKaFWinWhVMfKqx7gn4w5lsTMe9J\/PKlL71uREWMv5S1UCsFp6SNiPS8sFSXVPm70+f8A0D75eIuvqZGVMSQpBZqpeCUtMEV1r1gEdsz4ccBF3Bpypr3JH769K8rUafoJmKVsP27nlNi6T\/Q0E9tfFUlHC2Mam1REUeey85fv\/J50EdKcIxKWNPDW6ASzv3ZWMTe57JzVTg10EdtfFUlnEoRbwnGgQ1NP7OIvc\/VKuLa+KpKeKvtEiHV0w+DU5o5IuJIwVariGvjqyrh0dslXkbWl1ExiziXvk7RKuJaBbRKOBWZ9kBT0+ijNJbNIvY+VxcRP3\/y5OIFiqSkwdJ\/oJ37KohYpxF5Usy92q2JWBfXaE0xR9CxaENT0uBIItZ5vbkU8ZaUZFs6lmMLEbMIl+\/JmWJuAX8pcrR9SyLmcWTDk2LuDY9N67MeScQ8Bmt4UsytsIg5zczV1CrbXUSsEo7MHWaW\/gMN\/eVErBLOnbdVuyURq4Rz5\/UkJeFSGvwoIlYJ587bGh5rVtkeQcQq4dx5PeDx5Bo2dozrjiJilXDuvK25BRGrhHPn9YL7O6yIbeUsfslbJWws\/Qcaiq9SY8QsOGO0hK1FRZw7J9Xs\/PUrnwfFV6kxYi2SGiFhgwvCjJKEjVFjxCi+So0R6zKTIyTMKXAeDy7JdsQYMYqvUmPELLjle9pQwkYPEW85Royx19QYMU9tMlSAW8ApcK7i5tS0ynbUGDGKr1JjxJwONraWsMF9slS9qekhY8RcId1yPbNcH2ilOcFcIZ0StadFq6a1eUQ8qmq6NCeYhZgStYdo1bTK3yPWUVXTpTnBXCGdErWHaNU0V0Dz+Vy0pQVbI6qmL+cEXx7jCumUqD20VE0rtdT0qKrp0pxgLpBKidpDtGqai7VY\/PwsvMSlXqOFXCWiIi7NCeYK6ZSoPUSrpo1UYVZqtS0wtGpao+Ec3vWml\/4DLTePWKPhHLW5xyNEvPc8YhVijty4LYiKWKPhFHqfvecRazScozb3OCpigwuzlFTEu+c8Yo2Gc9TmHo8Q8d7ziDUazlGbexwVscHSVVIR797ziDUazlGbe9wiYk5DKxoNG0PnEdc2fABbiZhFGdnwARxBxKNW1mJRcjRZ2\/AB9Bax3j+F3mfUylosysiGD2ALERup\/nOSHbGyFosysuEDOIKIR62sxaKMbPgAthAx+le55foatbIWizKy4QPYQsSA15c2dNoSOMzKWi0s\/QcbvpBIoVO0mSy3uH9pm8Ras2vWr3wZ9OUtdGrBZLnF\/bmwy5PGBqd3ei2dGuf3ylno1IKltre4P881TkXLOaIiPgkJ\/\/\/bZkqSYbLc4v68+EdkfNiIithAX1tOSbIo9\/GzJ93vz2tNp6LlElERGy1rNUexNPcW9+e1pr3jw8ZNixip3dZx4FpDmrsWPbc0TqFHm12zfuXLILXbOg5cA2nuWvTcAqfQ9ViJ0zu9lk4NpHZbx4FrIM1di55b4BR6LmJO0SLi3O5LvUCamwusesEp9Eha2mgRcW73pV6gmCoX0V4DF2pF0tJGi4hzuy\/1AmnuWvTcAhdqedPSxk2LmKPK3rLEvXvfF23P\/Yh7yxL37n1fgGIzTVfXOL3Ta+nU4PWje8sS9+59X7DXfsS1VHMURKxbSNjYcz\/i3rLEvXvfF+y5H3FvWeLeve8LuuxHPJlMJpPJZAcg4pWmB7L0P5ur2Xe1\/u05UU7v9Dr6m6xpiYjvKi0R8V2lJSK+i9x0avqutiliH1PEfqaI\/UwR+5ki9jFFfINtitjHFLGfKWI\/U8R+poh9TBHfYJsi9jFF7GeK2M8UsZ8pYh9TxDfYpoh9TBH7mSL2M0XsZ4rYRxcR65rTtiOTnlOjVcSYS5yaBsRrThvRhTOuaaUFO\/hYS2sVMeYSp6YB6bKTkYUzWtFdn1L98rQrvb7G8v0mpOMBc4lT04B4zWkjsnBGK7rEpj2DzhPmxTz0WI1WEWMusf1Tj\/Ga00Z04Yxrya0lzYt5ROcQG60ixlxiW\/1KF93QJSejC2e0gEU6UmCtaV7MIzqHGH20iBhziVPTgHjNaSO1zOQW8PrShi4Iwot5ROYQG1eLWP8HBNE9iZf+g42Fxstc8udKSthbNN6UQkXMx1uex65bv\/JlWGi8zGVqO0KQEnYvtK9Sv3vOI+ZlLvlzJSXsXujWi4xu+LDXPGJe5pI\/V1rm7bbAsj093+USl3vOI+ZlLvlzJbJcZRReFjMFb\/qw5zxiXuaSP1dSwu4FC1bRfrvMI14drfDVF1+cHwhrSqc+87D0H2y5lbVYgliQI\/XZVk33Qk6JmNeijja7Zv3Kl8mtrMU7M2FBjtRnPeE1rnlJTO43tya23qvE8t0mpFMjt7IW78yEBTlSn\/UktTZ16jPAa1JHouIWEedW1uKdmbDQR+qzLeH+DBUxR8vRqLhFxLmVtVJbEqY+6w2vllXbTYnXpI5GxS0izq2sxTszYUGO1Ge9Se20xGLmNad5TexIVHyViG3\/YbuOo1\/elSmSol76Dzb0o1Fl6vPWvX+jDX0wqf44ao+uZW3XrF\/5MuhLo8rU5y17\/0bIiZ43j2BBc9QeWcvazlfheEBfKrnU5y17\/0ZgsXL0i40dNEXN6enIWtYtIuZNGVRU+Bz3bN37t4XThhGX0Z6KmCPmZ88eh\/7sLSJGX5qWTn3euvdvhMhuSpye1n2Ka7SIGJLTqDL1eWlf4B7wzkt8f\/xY0I0fOHrW1HWJq0Scgndl2lLEUbF6dkPiFt19qZQOz\/U3avelqFg5AvWcH919KUdOxMao3ZeiYmVRes4vRbMRIFsVsTFi9yUT6\/nP\/aouVt6VySPia3Zfwq5KFqmjTxUxn7f17ku83eEi1sQ5DO\/K5BFxy+5LGJP27qY0avelqFg5AvWcH919ie+v0s1xiN2XECUbb1+\/Xh3PsfQfaLn9iHMN53r7uUbEJn2P+PfejzgHf1d6LEUvEfNzqoj5mF6XY\/leE9IpweOxnlQzf1d6LEUPEbP8U1Ev\/xlU0jmiIs7tR5yDI1RPKrhVxCZ8u86u4WdMiXjv\/Yhz8Hfl6adFxLlCrVzEG4mgtR+vjIzcfsQ5OEXsSQVHRYwxXzvfRM\/\/2+TEP3Q\/YkX3J46MDxtL\/4HGFdGlpvsTe6RtrVXEaB4R8zlcbFZrdv76lc\/DFdF6jNH9iT3SNnqImKP2VN\/8bDx+XMLOVeHU4IpoPcbo\/sAeaRvXihiRcOl6fjYuNisRFTFXRJeu0\/2JPdI2WkTM6WbbLKK2H3GuqrpGVMRcEV26Tvcn9kjbiIq4VqiVKsriceLamDITFTFXRJckpvsTe6RtXCPiFKn0Mz\/bqdis3IfRTcSWhuYH3LpqGv1ooZY2LZzySLVH84g4ml5Hs\/PXr3we9KGFWopOJ2qVahQWuZFKP0fT64adq8KpgT60UEvRSuacFHvC479Aq6aNaHrdiIoYAtNCLYVluHxPTqm2gAItjPnWRNw6bh0VMf5S1kIthSNnwyPVFliqnPrmHwwq29Zx66iIIUkt1FI46jQ8Um2BRWzPhB8HXMClKWveCtG7J3E3EQMu1rIKaj2eY+k\/0NCHd3yVpRctjmppURFHnsnOX7\/yedBHSnApWHqaIu6NSjj3Z2t5JjtXhVMDfXjHV1l6qTTxVmAc2ND0c8sztYrYO77K0rMoWY9fC+5\/+mFwSjNHRBwp2GoVsXd8laX3OJMq3oLLyPoyKuZnyqWvU7SK+OFDG1+tC4zHlFPR6bVoatpTJMYi9j5TdxEbvMCHd5x46T\/QcH+viK1509k92i2L2PCms68hNYdZU9LgqCI2vOnsnpRkWzqWY2sRG5fpbP+YrAf8pcjzmW9VxIY3nd0TntOsz3pUERvedHYLLGJOM3M1tcr2MCLmucRHEjHPJd663bqIeYqRHutBSsKlsd8ji5jnEuuxreCxZpXtUUXMc3t7ipjHk2vY2DGuO7KIeS6x95pruVUR81zi3iLmFPghRWyCxYui48EjImJEtzpGXCqyOnJEnDsn1ez89SufB9GtjhGXiqy2joh1Sc2ShI1RY8SIbnWMuFRktWVEzJLn8eCSbEeMESO61THiUpHVVhFxDxFvOUaM6FbHiLXIiuW2ZUScWzCEn0dlO2qMGNGtjhGXiqy2jIhzqW9vanrIGDFPVUKVNFdPq6BLLP0HWim6xecGqqRZjCroVCsJ3dM8Ih5VNV2Kbvm7QlqYK5RV0ClKQk+hFdIesY6qmi5Ft\/zMqJLmCmUVdIqS0FPk7s9FW1qwNaJq+jK6XYvq\/Gw\/Vklz9bQKOkVJ6F5qqelRVdOl6Ja\/K0iRq6c9BVsq9Nr5XKzFkS\/Ln5e41Gu0kKtEVMSl6JanKqFKmiuUVdApSkLPkSrMSq22BYZXTXNhVgo9v8RyfqCV5hFzpKloBJ1rI0R8hHnEKkVGI+gcURFrNJxC73OEecS68QKjEXSOqIgNLsxSUhHv3vOIOdJUNILOMULER5hHzIt9KBpB54iK2NBNJphUxHuEecQchSoaQedoETGnoRWNho3d5hFzZGxEqqXB0n+gsShz0aR+aZFx2BEiHrWyFosyF03qd+Udh9X7q0BTaF8p9D6jVtZiUeaiSX1WTQ2XaBGxofOWjZxkR6ysxaLkAikV1sX3FKiWHiHiUStrsShz0aR+V5Fq6RYRGxzlAv2hAEatrMWi5A0fGI6MDe84rN7fK2Kg\/eq0JXCIlbVaWfoPNnwhEcFGm8lyi\/uXtkmsNbtm\/cqXQV8RwUYxWW5xfy7s8qSxwemdXkunxvm9Cgg2ikXQW9yf5xqnouUcURGfhIT\/\/\/kFG8VkucX9efGPyPiwERWxgb4igo1iUe7jZ0+635\/Xmk5FyyWiIjYgvIhgo9i48hb357WmvePDxk2LGKldb7o52pDi1tR3j8bp82iza9avfBmkdr3p5ihIcWvquwecPtdjJU7v9Fo6NZDa9aaboyDFranvHnD6PBcxp2gRcW73pV4gxc0FVr3g9HkkLW20iDi3+1IvUEyVi2ivgQu1Imlpo0XEud2XeoEUt6a+e8CFWt60tHHTIuaosrcsce\/e90Xbcz\/i3rLEvXvfF+y5H3FvWeLeve8L9tqPWMeJrwUR6xYSNvbcj7i3LHHv3vcFe+5H3FuWuHfv+4Jd9iPuydJ\/Q0NUvEX6eKt27Q8Iu279ytdBVLxF+ngrrvkBcXqn19LxgKh4i\/TxVnBaWiupa7SI2EBUvEX6eCt0TWo9XqNFxAai4i3T073htLRWUntoEbGBqHiL9PFWcFo6N36c40LEk8lkMplMdgAiXml6IEv\/s7mafVfr354T5fROr6O\/yZrWiPgu0hoR30VaI+K7xs2npu9imyL2MUXsZ4rYzxSxnyliH1PEN9imiH1MEfuZIvYzRexnitjHFPENtiliH1PEfqaI\/UwR+5ki9jFFfINtitjHFLGfKWI\/U8R+poh9dBcxlru0f+qxEq0ixvSl2nxcO8eILifZ2korZ\/GxltYqYkxfqs3HxbNFlpNsgdePBrpyFk9f0utrLN9vQjoeMH2pNh8XzxZZTrIFXefaFhvRBTt4+pIeq9EqYkxfsn\/qMQbThaLLSV5DblMHnr4UXczDaBUxpi\/pTksKni26nGQUTEtKgalKPH0pupgH+mgRMaYv1ebjYrpQZNvEVnijB0OnVvH0pchiHkZXET9\/8uT8kCNEzELLrTdtjTdXGCVi3h1KRczHaz8gUs2uW7\/yZVhoufWmDZbjliJGHyn0h8KeC3rk1ps2eHOFLUXM\/Sg6X3ivBT1y600bvObzKBGzbE\/Pd7nW9J4LeuTWmzZ4g4gtRczrU6fgOcN7LuiRW2\/a4M0VthQxC1bRHwq7L+jB+xMbI0TsWeKSN28wRoiYxW+kRMybQkSbXbN+5ct4lrjkzRuMrUTMWxry4iK8XSP\/WODz9V4llu82IZ0aniUuefMGYysRpzaJSH0GeHOISFTcImLPEpe6V\/AoEfM2jYaKmKPlaFTcImLPEpcqxy1FzMtWln4YGLw5RDQqbhGxZ4lL3rzB2FLEqS0PWcy8eAdvgRiJiruJ2HZc4hd\/hIjRVymq5MjU2FrE3BdIiZij+eiqYHbN+pUvg75KUSWL0NhKxNwPr5bFPwRY0BzNR1YFs\/NVOB7Ql0qO4X2Lja1EzGLl6Bc7LGmKmtPTkVXBWkTMuyPpMaBCHCHik\/wvoz0VMUfMz549Dj1Ti4jRVyktzfsWG1uKOLKtIaenfxlcFaxFxJBcKarkfYuNrUTMWyDylof4saAraHH0rKnrEl1EjH2JeTvErUXMmyakRGcN52C7QcMr4ug2iCxWJfd8o7ZB5E0TdAxWz+G9gr0ijm6DmCMnYmPUNog8FpvbvQjnmARxrlfEpWg2AmSrIjZGbINomyacv6dX6d2LsLGCRczn78kp4mu2QcT2htyvipjP8z4TiIqY9xxedi8qnGMRM57ZK+KWbRCxH7G3j1HbIPKew6m9fvkci5jxXXlFHN0GkSNclW6O3bZBhIAhZGNrEXP6N7deM46zVL3Su0bEFuF69iPmP0Ok2fnrVz4Pj\/vm1mvGcZahV3q9RMzPqSLmY3pdjuV7TUinBI\/H5jZmwHGWqld6PUTMUXIq6uU\/g0o6R1TESEsbuQ0f8BeYjR9Dql7ptYrY1ry26+wafsaUiHnsOpKejoqYx31zGzPgu7I0Mf67V3otIs4VauUi3kgErf14ZWTwuG9uYwZEnDZ+DKluJWKM+dr59sMA\/x3\/nrqe\/wze9PTVIkaB1qOHD5d\/x0NuLWKOclONq6lZkluLGM0jYj6nVGymzc5fv\/J5OMrVYwZXU3MaeKSIOWo39AcDjxOXis0YO1eFU4OjXD1mcDU1F3WNEjEi4dL1LOpSsZne1ys748GDD99T6jpIzmTIRV1bilg3c2DRpkScq6quERUxok8jdR1XUz\/94UNR11Yi1rFoJVWUxePEtTFlJipi2ycYz5GSGFdTf\/\/9D0NFnCKVfuYo+lRsVu7DuErEXKBl\/90+w79vLeJzP4lCLZaotRYRX9s8Ivak11PNzl+\/8nnQR6pQiyVq\/94i4mvxFIl50uuKnavCqYE+UoVaLFH79xYRXwOP\/wKtmjY86XUlKmIILFWoxRK1SLNFxC1gPBpjvjUR857EL1+m0+spoiLGX8qpQi2Woh3j6mqviKOwVJdU+bvT5\/yDQWXLxV18TY2oiCHJVKEWS9QkzdXVXhFHYRHbM+HHARdwacqa9yR++vSvrue6SsQWBdt1FhXjMzzcKBGnxIpoGXK7BRFHCrbs\/PUrnwd9pASHaBlyGy1ilXDuz8Yi1rR1DjtXhVMDfaTEimgZchstYgbjwIamn1nEqdR1ilYRp8SKaBlyGyFiHo9Gmjki4kjBVquIU2KF\/DB2PELEOS4j68uomEWcS1+naBVxSqyIlpESHi1iTkWXxrJZxKmIOUWziF99++1yjQoXL75+XmPpP9DQj4oVAuTPp4hPfahYke7lz0eKmPsCmpIGe4sY6V7+fE8Rl2RbOpajl4htjFY\/HyFi\/KXI85mPLmKLTG3clT\/fU8SlvvcWMdK9\/PloEXOamaupVbZDRazTlXJg7LjG0n+gne8vYtXpSjk8477XtFsQsU5XytE67lsiJeHS2O\/eItbpSjly47a94TS5ynZPEet0pRzecV8POle5hI0d47q9RazTlXJ4xn17cGQR63SlHJ5x3whceDVFnGhIP+sY8a2KOHdOqtn561c+D9LPOka8p4i5gMwoSdgYNUaM9LOOEe8lYu6Xx4NLsh0xRoz0s44R36qItxwjRvpZx4j3EjH3y1XcnJpW2Y4aI0b6WceI9xIxp6BZqt7U9JAx4hT4QrZOTbNwa60lNR2tmtbmEfGoqmkWrh5TWlLT0apprZD2iHVU1TSLT48pLanpaNU0V0Dz+Vy0pQVbI6qmWbi161pS0y1V00otNT2qaprFV7uuFJXmiFZNc7EW98HFWrzEpV6jhVwloiJm4aaqppmW1HS0atpIFWalVtsCw6umU+DhthaxZx4x2lFFfKR5xGCEiDUaTqH3OdI8YjBCxAYXZimpiPco84jBUUV8pHnEYISIDZaukop4jzSPGIwSMaehFY2GjV3mESt4wK1FzKKsRZNHFfGolbVYlLVocoSIcW4Jvc+olbVYlLVocpSIDY5yQU6yI1bWYlGWNnwwjiriUStrsShr0eQoERsc5YLcD4VRK2uxKEsbPhijRAx4fWlDpy2B3VbW6sHSf7DhC4kUOkWbyXKL+5e2Saw1u2b9ypdBX95CpxZMllvcn38ceNLY4PROr6VT4\/xeOQudWrAx6C3uz3ONU9FyjqiIT0LC\/\/8er471wmS5xf158Y\/I+LARFbGBvh4HCp2iWJT7+NmT7vfntaZT0XKJqIiNlrWao9hY9Bb357WmvePDxk2LGKldLdjq1VBMVUt9tzQu1Io2u2b9ypdBalcLtnqBcd9a6rsFHlPWYyVO7\/RaOjWQ2tWCrV6gmKqW+m6BC7VyEXOKFhF7dl+6BhRTcYFVL7hQK5KWNlpE7Nl96RpQTJWLaK+BC7UiaWmjRcSe3ZeuAYVWtdR3C1yo5U1LGzctYo4qe8sS9+59XzQUm7WkvaNCMjiq7C1L3Lv3fQGKzTRdXeP0Tq+lU4NTzr1liXv3vi9AsVkk7W20iJhTzrVx4iiIWLeQsLHnfsS9ZYl7974v2HM\/4t6yxL173xd02Y94MplMJpPJDkDEK00PZOl\/Nlez72r923OinN7pdfQ3WdMSEd9VWiLiu0pLRHwXuenU9F1tU8Q+poj9TBH7mSL2M0XsY4r4BtsUsY8pYj9TxH6miP1MEfuYIr7BNkXsY4rYzxSxnyliP1PEPqaIb7BNEfuYIvYzRexnitjPFLGPq0WM7RBTeDd8MFpFjLnEOg2IV7ZS9NwtWmnBDj7W0uy69StfB3OJdRoQr+Os6Lk94WUrgS7YwdOu9Poay\/ebkI4HzCXWaUCpFa6AntsTnh9s2BxnnSfMi3nosRqtIsZcYvsnf47tEFO0TBlqIbeWNC\/mEZ1DbLSKGHOJbfUrXnQD2yHq92REVsqKgkU6UmCtaV7MIzqHGH20iBhziXUaEK\/jrOi5veH1pQ1dEIQX84jMITauFnFpF6atRcxC02UuS7swjRAx968i5uMtz2LXrV\/5Miw0XeaytAvTViLWfkp97jmPWJe5LO3CtJWIee1oRTd82GsesS5zWdqFaYSIWban57tc4nLPecS6zGVpF6atRMzLYqbgTR\/2nEesy1yWdmHaSsQsWEX77DKPeHXUgcnWro2uLa0s\/QdbaWWt1nWcezTezMFIiZgj9miza9avfJnSylot6zhfA0fgvCQm\/yDgHwt8vt6rxPLdJqRTo7SyFrZJjKzjfA2ptalTnwGO2CNRcYuISytrYZvE6DrOvdAfAipijpajUXGLiEsra2EDhug6ztfAq2XpDwOF16SORsUtIi6trIVtEr1rS\/cgtdMSi5nXnOaIPRIVXy1iPIxFxnoswtJ\/sJ37lqiSI+Ut1okuNfTLpER8zTPaNetXvgz60qiSI+Ut1olOwcLl1bh48wh+ltZntPNVOB7Ql0qOI+Ut1olOwWLl6BcbO2iKmtPTkWdsETFvysCfc6S8xTrRNU4bRlxGTSpijpifPXsc+rO3iBh9aVqaI+Ut16FWIrspcXpa9ymu0SJiSE6jSo6UNS28FbzzEu+0hB8LuvEDR8+RZ7xKxG9evDi\/6DZWrMcjLP0HGq\/VrKLjY5qy9rbo7kssVkWfD601ardr1q98Hl6rWcdg+ZimrL1Ed1\/KkROx0RK12\/kqnBo8FqubJvAxTVl7KUWzESBbFbExYvclW6v5\/D29utw0gddx1pS1l2t2X8KuShap4xlVxHxeNGqPivjLVx+iz2XThMyxWmSao2X3pWgUPmr3JawDbX3pFoN8TFPWXqK7L3GEq9LNMXz3pVKh1tvXr1fnl1j6D7TSfsSlQi1vu0bE1r9nG8Qj7EdcKtTS++ToJWJ+ThUxH9Prcizfa0I6JXg8VteDLhVq6X1y9BAxP0cq6uU\/g0o6R1TEpf2IS4Va3jRwq4itb7vOruFnTIn4CPsRlwq1vH20iDhXqJWLeCMRtPbjlZFR2o+4VKjlTQNHRYwxXzvffhhw\/\/pDAQzfj7hUqGVYxKzX5Fj6DzREk6nrSoVahoo71VpFjOYRMZ8Tidzt\/PUrnwfRZOq6UqGWoeJO0UPEHJmn+uUfDN7I3c5V4dTAGHDq2lKhlqHiTnGtiBEJl65nUXsj96iIMQZs6HU6PquouFO0iJjTzbZZRG0\/4lxVdY2oiBF9GnpdqVDLUHGniIq4VqiVKsriceJI5B4VMcaADZVYqVDLUHGnuEbEKVLpZ\/7BcIrcy30YV4nYCrTwQPiM09WRAq7lHoF27iNRqJU6xunqaCq4pXlEXEqvl5qdv37l86CPVKFW6hhLMZIKboVFnuuzlF7PYeeqcGqgj1ShVuoYp6sjqeAWePwXaNW0UUqv54iKGAJLFWrhLyE+xunqaCrYC34AYMy3JmJ+psiexFER4\/tIFWqljnEhVTQV7IGlyvsL8w8GlS0\/U2RP4qiIIclUoRbGXvkYp6u3KOBiEVu\/+HHABVyasuatEL17El8l4hwcKXuj4qX\/QMP9I1LlSNkTFV\/ToiKOFGzZ+etXPg\/6SAkuR66gqjcq4dyfjUWsaescdq4Kpwb6iEiVI2VPVNwDjAMbmn5mEadS1ylaRRyRKkfKnqg4AqR6kv8pzRwRcaRgq1XEEalypOyJintwGVlfRsUs4lz6OkWriCNS5UjZExVH0NQ0nqk+lh0r2NpExM+fPDm\/RN4irqX\/QMP9IyLmMdlIKril3bqIeUzWmwqOwtXQICf9I4uYx2S9qeBrKcm2dCzHCBFfirGtiCsH\/lLk+96yiE9jsqdn0+h0K7iCW5\/1yCLmMdnWIq4cLGJOM3M1tcp2irjSpoiPI+KUhEv9TBFfwmPNKtu7JmIeT65hY8e4bor4kiniNet7H0zEVhWNl1tX0OLUtLd6euk\/0FCspWPEpSIrTk1v3aIizp2Tanb++pXPg2ItHSMuFVlxalrv1wMuIDNKEjZGjRGjWEvHiEtFVpya1vtdC9+bx4NLsh0xRoxiLR0jLhVZcWo6UqVco4eItxwjxtirjhFrkRXLjVPTkb485NLe\/Dwq21FjxCjW0jHiUpEVp6a1wOtaOAXNUvWmpoeMEXOxFiJfLtZSQZdY+g+0klTxuYHIl6Wngk61ktA9zSPiUVXTJanydwUZsvRU0ClKQk+hFdIesY6qmi5JlZ8ZkS9LTwWdoiT0FFwBzedz0ZYWbI2omr6U6lpUOIbIl6Wngk5RErqXWmp6VNV0Sar8XSHyZelFq6A953OxFke+XKzFS1zqNZEIPSriklR5NStEvixEFXSKktBzpAqzUqttgeFV0yzdFHp+ieX8QCvNI2bpKhpB59oIER9hHrFKkdEIOkdUxBoNp9D7HGEesW68wGgEnSMqYoMLs5RUxLv3PGKWrqIRdI4RIj7CPGJe0EPRCDpHVMQGS1dJRbxHmEfM0lU0gs7RImJOQysaDRvD5xEDjoyNSCQMlv4DjUWZiyb1S4sIdYSIR62sxaLMRZP6XakIS0RFrH2l0PuMWlmLRZmLJvVZvULV+0euSy0mkpPsiJW1WJS58V79SzMi1BEiHrWyFosyF03qd+UVqt4\/ch1HuUB\/KIBRK2uxKHPjvRwZG16h6v0j1xnar05bAsNX1urJ0n+w4QuJFDpFm8lyi\/uXtkmsNbtm\/cqXQV\/eQqcWTJZb3J8LuzxpbHB6p9fSqXF+r5yFTi1YBL3F\/XmucSpazhEV8UlI+P\/fdutJmyy3uD8v\/hEZHzaiIjbQ15brSVuU+\/jZk+7357WmU9FyiaiIDQjPW+jUgo1Fb3F\/XmvaOz5s3LSIkdr1ppujDSluTX33aJw+jza7Zv3Kl0Fq15tujoIUt6a+e8Dpcz1W4vROr6VTA6ldb7o5ClLcmvruAafPcxFzihYRl3Zf6gFS3Fxg1QtOn0fS0kaLiEu7L\/UA48q5iPYaeMw6kpY2WkRc2n2pB0hxa+q7B1yo5U1LGzctYo4qe8sS9+59X7Q99yPuLUvcu\/d9wZ77EfeWJe7d+75gr\/2IdZz4WhCxbiFhY8\/9iHvLEvfufV+w537EvWWJe\/e+L9htP+JeLP03NETFW6SPt2rX\/oCw69avfB1ExVukj7fimh8Qp3d6LR0PiIq3SB9vBaeltZK6RouIDUTFW6SPt0LXpNbjNVpEbCAq3jI93RtOS2sltYcWERuIirdIH28Fp6Vz48c5LkQ8mUwmk8lkByDilaYHsvQ\/m6vZd7X+7TlRTu\/0OvqbrGmNiO8irRHxXaQ1Ir5r3Hxq+i62KWIfU8R+poj9TBH7mSL2MUV8g22K2McUsZ8pYj9TxH6miH1MEd9gmyL2MUXsZ4rYzxSxnyliH1PEN9imiH1MEfuZIvYzRexnithHFxGn1pz27roEWkWM6Uup+bipNadHtdLKWXyspdl161e+DqYvpebjptac1nN6w+tHA105i6cv6fU1lu83IR0PmL6Umo+bWnNaz+mN9mmLjeiCHTx9SY\/VaBUxpi\/ZP\/VYas3p6OIZ15Db1IGnL7U8T6uIMX1Jd1oyUmtOt\/QRAdOSUmCqEk9fii7mgT5aRIzpS6n5uKk1pyOLZ7TCGz0YOrWKpy9Fn+dqEfPew4oJWs\/PsfQfbCw0XW+aN1RQWubuRhvvDqUi5uOpHxC1ZtetX\/kyLDRdbzolRBCdu+tF+2H0h8KeC3roetO8oYKy1SIdpT51vvBeC3roetO8zrPSe\/GPFCzb0\/NdrjW954Ieut40bwqhbLVIB69PnYLnDO+5oIeuN80bKihbLdLBglX0h8IuC3pwJGx7ENtnth0iPots\/rD0H2y5JS45EsZCH7wJQ4v8Ik1\/BKREzM8TbXbN+pUvk1vikiNhLPTBWw5G5eeB78+Li\/B2jfxjgc\/Xe5VYvtuEdGrklrhM7QGc26awF6lNIlKfAX6eSFTcIuLcEpccCWOhD\/vn+Zkb5BeFt2k0VMQcLUej4hYR55a45EgYC33YZgzY6SiyiUMEXrZSfxgovDlENCpuEXFuicvU3sC85WBUfl5SWx6ymHnxDn6eSFR8lYhNvngY\/tz+PSJhXBNt6FvFimiTBY3oWc\/t3fBMTErEHM1HVwWza9avfBn0pWKF\/FjQiJ713F6wcDni5l2cWNAczUdWBbPzVTge0JdKDtEmCxrRs57bCxYrR7\/YYUlT1JyejqwK1iJi3h2JP4cEWdCInkdI+LRz02XUpCLmiPnZs8ehZ2oRMfrStDSiTRY0ouetJGxEtjXk9PQvg6uCtYgYklOxYq9iFjSiZz23F7wFIm95iB8LuoIWR8+aui5xlYix\/WFUuimW\/gONo14VHT6\/RrrRbRBZrIo+H9qobRA56tUxWHx+jXSj2yDmyInYGLUNIke9unsRPr9GuqVoNgJkqyI2RmyDaFHv+Xt6dbl7EaRzjXSv2QYR2xvaDwE8o4qYz9t6G0SOepfdi+hYTtARWrZBxH7E3m0NR22DyFGv7vWbE3SE6DaIHOGqdHMM3QbRirHwkpuIOTqO3stYrgk0Tv\/ymK8KlMdqNYVdanqfWtMI17MfMf8ZIs3OX7\/yeXgMOBeB2jkcqWoKu4TeR4974edUEfMxvS7H8r0mpFOCx2N5zFcFiujY0BR2Cb2PHvfAUXIq6uU\/g0o6R1TESEsbPOarAjXJnb+nwC5Neh\/vdZYCR+TNz5gSMY9jR9LTURHzGDCP+apATXJ4Hk1hl9D7eK7LFWrlIt5IBK39eGVk8Bgwj\/mqQB8+tL\/XT+dpCruE3qcmYoz52vn2wwD\/Hf+eup7\/DN70dBcR54hUTi\/9BxqiSb2OBZrD01pFjOYRMZ+jxWalZuevX\/k8iCb1OhZoDr1Xih4i1qptLRLjcWItNsth56pwaphU0Q9\/zgLNofdKca2IEQmXrmdRa7FZjqiIHzz48D3xdSzQHB7ptYhYN3Ng0aZEnKuqrhEVMaJPg6+rFUzp+TmiIq71myrK4nHi2pgyExWx7ROM52CJsUBzeKR3jYhTpNLPHEWfis3KfRjdRGzV0\/Y5F3BFUtZL\/4GGPjTKVRFDgpzK9oj12uYRcSm9Xmp2\/vqVz4M+NMpVESNtzVJsFWsEfY5U+rmUXs9h56pwaqAPjXJVxEhbcyo7J8Ze8Pgv0Kppo5RezxEVMQSmUa6K+OXLU9qaC7i8Yo2CsWmM+dZEzM+E5\/QQFTH+UtYoV4WItDUXUnnEGoWluvT57vQ5\/2BQ2fIz8TU1oiKGJDXKVREjGuVUtkesUVjE9kyQPRdwacqa9yR++vSvrmfqJmI+ZgJOfV5iOTfQcH8dX2URq6QRRevnW7SoiCMFW3b++pXPgz5UcCxAlTSiaP28Nyrh3J8tVd1dw85V4dRAHzq+yiJWSSOK1s+3BOPAhqafU9XdNVpFrOOrLGKVNKJo\/bwHkOrp3qeIOyLiSMFWq4h1fJVFrJKGFPXzLbmMrC+jYhZxLn2dolXEDx\/a+OoHgbGIVdKIovXzHmhqGs9UGstmEaci5hRdRGxFW3yMx4u96eml\/0DD\/Usi1mM8Xrx1uzUR6zEeL9b79YKroYGmpMGRRKzHeLxY77cVJdmWjuXYQsR6jKcUedLTEfCXIs9nviUR6zFUUxuRvq6B5zrr8xxJxHoM1dR2zJOejsAi5jQzV1OrbIeK2MCLciQRc9GUHpsivpQti1CPbS3ilIRLY797i5gX+dBje4iYfxiobPcUMS\/yoce2ErGmw0vY2DGu21vEJfFNEV\/Klhf50GNbipgLrw4rYk5Bs3BHpKZLaeZcIVfpmt4tKuLcOalm569f+TylNHOukKt0TQ+4X6MkYWPUGHEpzZwr5Cpdcy0seR4PLsl2xBhxKc18Wcj1Qbila66hh4i3HCMupZlzhVyla66FJZ+r4lbZjhojLqWZc4VcpWuuJbWIiH5eSk1vPkZspAqzUqtteVj6D7RSdJsqzIpGn9GqaW0eEY+qmi5Ft6nCrGj0Ga2a1gppj1hHVU2XottUYVZJiCmiVdO5lbu4aEsLtkZUTV9Gt5fHUoVZqdW2SrRUTSu11PSoqulSdMtzjDGXmKWH1bb0nky0apqLtTjy5R8FvMSlXqOFXCWiIi5Ft6nCrJwoc0Srpo1UYVZqtS0wtGoa6PxhRs8tsZwfaLl5xGgsasYbDY8Q8d7ziAGLmvFGw1ERazScQu+z9zxiwKJmvNFwVMQGF2YpqYh3z3nEQJeYBN5oeISI955HDFjUjDcajorYYOkqqYh373nEgEXNeKPhFhFzGlrRaNgYOo+Y4fWljci0JbD0H2gsylw0yTI0IkIdIeJRK2uxKHPRJEechoqwRFTE3E8Ovc+olbVYlLlokiNOwytUvX\/kOu3TyEl2xMpaLErd8AHw+tLLnzcg1BEiHrWyFosyF03y+tKGV6h6\/8h1HOWC1A8FY9TKWixK3fABcMRpeIWq949cZ\/D60oZOWwJDV9bqzdJ\/sOEL8aSaW5vJcov7l7ZJrDW7Zv3Kl0FfnlRzKybLLe7PhV2eNDY4vdNr6dQ4v1eOVHMrFkFvcX+ea5yKlnNERXwSEv7\/V081t2Ky3OL+vPhHZHzYiIrYQF+eVHMrFuU+fvak+\/15relUtFwiKmKjZa3mKDauvMX9ea1p7\/iwcdMiRmrXm26ONowrp1Lf1zYes442u2b9ypdBatebbo6Ccd9U6vtaeExZj5U4vdNr6dRAatebbo6CceVU6vtaeMw6FzGnaBEx0tPedHMUjCtzgVUveMw6kpY2WkSc232pFxhXzkW018Bj1pG0tNEi4tzuS73AuHIq9X0tXKjlTUsbNy1ijip7yxL37n1ftD33I+4tS9y7930BxrA1XV3j9E6vpVODpyr1liXu3fu+YK\/9iFPjxNeAiHULCRt77kfcW5a4d+\/7gj33I+4tS9y7931Bl\/2IJ5PJZDKZ7IBGXLPNNttss80227g2RTzbbLPNNttsO7b\/AeXgIrIw1XNSAAAAAElFTkSuQmCC\" y=\"-0.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>S\u1ed1 ph\u1ea7n t\u1eed c\u1ee7a kh&ocirc;ng gian m\u1eabu l&agrave; n(<span class=\"math-tex\">$\\Omega$<\/span>) =&nbsp;6 . 6 = 36.<\/p><p>C&aacute;c ph\u1ea7n t\u1eed c\u1ee7a bi\u1ebfn c\u1ed1 E l&agrave; (5 ; 6) v&agrave; (6 ; 5). N&ecirc;n n(E) = 2.<\/p><p>X&aacute;c su\u1ea5t c\u1ee7a bi\u1ebfn c\u1ed1 E l&agrave; P(E) =&nbsp;<span class=\"math-tex\">$\\dfrac{2}{36}=\\dfrac{1}{18}$<\/span>.<\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2025-03-05 09:46:45","option_type":"math","len":0},{"id":"10464","post_id":"7971","mon_id":"1159278","chapter_id":"1159332","question":"<p>C&oacute; hai t&uacute;i I v&agrave; II. T&uacute;i I ch\u1ee9a 3 t\u1ea5m th\u1ebb, \u0111&aacute;nh s\u1ed1 2; 3; 4.&nbsp;T&uacute;i II ch\u1ee9a 2 t\u1ea5m th\u1ebb, \u0111&aacute;nh s\u1ed1 5; 6. T\u1eeb m\u1ed7i t&uacute;i I v&agrave; II, r&uacute;t ng\u1eabu&nbsp;nhi&ecirc;n m\u1ed9t t\u1ea5m th\u1ebb. T&iacute;nh x&aacute;c su\u1ea5t c\u1ee7a bi\u1ebfn c\u1ed1 D: &quot;T\u1ed5ng hai s\u1ed1&nbsp;ghi tr&ecirc;n hai t\u1ea5m th\u1ebb l&agrave; m\u1ed9t s\u1ed1 nguy&ecirc;n t\u1ed1&quot;.<\/p>","options":["<strong>A.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{6}$<\/span>","<strong>B.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{2}$<\/span>","<strong>C.<\/strong> <span class=\"math-tex\">$\\dfrac{1}{3}$<\/span>","<strong>D.<\/strong> <span class=\"math-tex\">$\\dfrac{2}{3}$<\/span>"],"correct":"1","level":"3","hint":"","answer":"<p>Ch\u1ecdn&nbsp;<span style=\"color:#16a085;\"><strong>A.<\/strong>&nbsp;<span class=\"math-tex\">$\\dfrac{1}{6}$<\/span>.<\/span><\/p><p><span class=\"math-tex\">$\\Omega$<\/span>&nbsp;= {(2;5), (2;6), (3;5), (3;6), (4;5), (4;6)}. n(<span class=\"math-tex\">$\\Omega$<\/span>) = 6.<\/p><p>D = {(2;5)}. n(D) = 1.<\/p><p>V\u1eady&nbsp;<span class=\"math-tex\">$P(D)=\\dfrac{1}{6}$<\/span>.<\/p>","type":"choose","extra_type":"classic","time":"0","user_id":"127","test":"0","date":"2025-03-05 09:51:28","option_type":"math","len":0}]}
Giới thiệu  |   Câu hỏi thường gặp   |    Kiểm tra   |    Học mà chơi   |    Tin tức   |    Quy định sử dụng   |    Chính sách bảo mật   |    Góp ý - Liên hệ
Tiểu học
  • Lớp 1
    • Toán lớp 1
    • Tiếng Việt lớp 1
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt lớp 4
    • Soạn Tiếng Việt 4
  • Lớp 2
    • Toán lớp 2
    • Tiếng Việt lớp 2
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt lớp 5
    • Soạn Tiếng Việt 5
  • Lớp 3
    • Toán lớp 3
    • Tiếng Việt lớp 3
    • Soạn Tiếng Việt 3
  • Trung học cơ sở
  • Lớp 6
    • Toán lớp 6
    • Vật Lý 6
    • Soạn văn 6
  • Lớp 7
    • Toán lớp 7
    • Vật Lý 7
    • Soạn văn 7
  • Lớp 8
    • Toán lớp 8
    • Vật Lý 8
    • Hóa Học 8
    • Soạn văn 8
  • Lớp 9
    • Toán lớp 9
    • Hóa Học 9
    • Soạn văn 9
  • Trung học phổ thông
  • Lớp 10
    • Toán lớp 10
    • Vật Lý 10
    • Hóa học 10
  • Lớp 11
    • Toán lớp 11
    • Vật Lý 11
    • Hóa học 11
  • Lớp 12
    • Toán lớp 12
    • Vật Lý 12
    • Hóa học 12
  • LuyenThi123.Com - a product of BeOnline Co., Ltd. (Cty TNHH Hãy Trực Tuyến)
    Giấy phép ĐKKD số: 0102852740 cấp bởi Sở Kế hoạch và Đầu tư Hà Nội ngày 7/8/2008
    Giấy phép cung cấp dịch vụ mạng xã hội học tập trực tuyến số: 524/GP-BTTTT cấp ngày 24/11/2016 bởi Bộ Thông Tin & Truyền Thông

    Tel: 02473080123 - 02436628077  (8:30am-9pm)  | Email: hotro@luyenthi123.com
    Địa chỉ: số nhà 13, ngõ 259/9 phố Vọng, Đồng Tâm, Hai Bà Trưng, Hà Nội.