{"segment":[{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua hai \u0111i\u1ec3m $A (0; -2)$ v\u00e0 $B (-1; 3)$ c\u00f3 d\u1ea1ng: ","select":["A. $y=-2x +5$","B. $y=2x - 5$","C. $y=-5x - 2$ ","D. $y=5x - 2$"],"hint":"Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$ c\u00f3 d\u1ea1ng: $y = ax + b\\, (a\\ne 0)$.<br\/>Thay t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $A$ v\u00e0 $B$ v\u00e0o \u0111\u01b0\u1eddng th\u1eb3ng. ","explain":"<span class='basic_left'> Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$ c\u00f3 d\u1ea1ng $y= ax + b\\, (a \\ne 0)$.<br\/>$A\\left( 0;-2 \\right)\\,\\,\\in AB$$\\Rightarrow -2=a.0+b\\Leftrightarrow b=-2 $<br\/>$B\\left( -1;3 \\right)\\in AB$$\\Rightarrow 3=a.(-1)+b$$\\Leftrightarrow a=b-3=-2-3=-5$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$ l\u00e0: $y= -5x - 2$.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C.<\/span><\/span>","column":4}]}],"id_ques":71},{"time":24,"part":[{"title":"V\u1ebd \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y= \\dfrac{x}{4}$","title_trans":"","temp":"coordinates","correct":[["2,0.5","4,1","-2,-0.5","-4,-1"]],"list":[{"point":5,"toa_do":[["0","0",""]],"is_click":1,"name_toado_click":"A","draw_line":1,"ques":"Cho s\u1eb5n \u0111i\u1ec3m $O(0; 0)$. (H\u00e3y click th\u00eam m\u1ed9t \u0111i\u1ec3m thu\u1ed9c \u0111\u1ed3 th\u1ecb \u0111\u1ec3 v\u1ebd \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 )_inputduongthang_ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>X\u00e1c \u0111\u1ecbnh t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $A$ (kh\u00e1c $O$) thu\u1ed9c \u0111\u1ed3 th\u1ecb: Cho $x$ m\u1ed9t gi\u00e1 tr\u1ecb b\u1ea5t k\u00ec, thay v\u00e0o h\u00e0m s\u1ed1 v\u00e0 t\u00ecm $y$. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>V\u1edbi $x=4\\Rightarrow y=\\dfrac {4}{4}\\Rightarrow A(4;1)$ thu\u1ed9c \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1.<br\/>\u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y=\\dfrac{x}{4}$ l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $O(0; 0)$ v\u00e0 \u0111i\u1ec3m $A (4; 1)$.<br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB15.png' \/><\/center>"}]}],"id_ques":72},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua hai \u0111i\u1ec3m $A (1; 4)$ v\u00e0 $B (-1; 0)$ c\u00f3 d\u1ea1ng:","select":["A. $y=2x +2$","B. $y=-2x +2$","C. $y=-2x+4$ ","D. $y=2x-4$"],"explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$ c\u00f3 d\u1ea1ng: $y = ax + b\\, (a\\ne 0)$.<br\/>Thay t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $A$ v\u00e0 $B$ v\u00e0o \u0111\u01b0\u1eddng th\u1eb3ng. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$ c\u00f3 d\u1ea1ng $y= ax + b \\,(a \\ne 0)$<br\/>$A\\left( 1;4 \\right)\\,\\,\\in AB$$\\Rightarrow 4=a.1+b\\Leftrightarrow a+b=4\\,\\,\\,\\,\\left( 1 \\right) $<br\/>$B\\left( -1;0 \\right)\\in AB$$\\Rightarrow 0=a.(-1)+b\\Leftrightarrow a=b\\,\\,\\,\\,\\left( 2 \\right) $ <br\/>Thay (2) v\u00e0o (1) ta \u0111\u01b0\u1ee3c: $a +a = 4\\Leftrightarrow a=2$ <br\/>Suy ra $b=2$.<br\/>Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$ l\u00e0: $y= 2x + 2$.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A. <\/span><\/span>","column":2}]}],"id_ques":73},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-1"],["1"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/4.jpg' \/><\/center> <span class='basic_left'>Cho h\u00e0m s\u1ed1 $y=(m-1)x+ m$ c\u00f3 \u0111\u1ed3 th\u1ecb l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng $(d)$. T\u00ecm t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh $I$ m\u00e0 \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 lu\u00f4n \u0111i qua v\u1edbi m\u1ecdi $m$. T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $I$ l\u00e0 (_input_ ; _input_)","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: G\u1ecdi $I(x_{o},y_{o})$ l\u00e0 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh thu\u1ed9c $(d)$. Thay t\u1ecda \u0111\u1ed9 c\u1ee7a \u0111i\u1ec3m $I$ v\u00e0o \u0111\u01b0\u1eddng th\u1eb3ng $(d)$.<br\/>B\u01b0\u1edbc 2: \u0110\u01b0a ph\u01b0\u01a1ng tr\u00ecnh v\u1ec1 d\u1ea1ng $a.m + b= 0$. Khi \u0111\u00f3 $a=0$ v\u00e0 $b=0$. <br\/>B\u01b0\u1edbc 3: Gi\u1ea3i h\u1ec7 ph\u01b0\u01a1ng tr\u00ecnh t\u00ecm $x_0,y_0 $ v\u00e0 k\u1ebft lu\u1eadn. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> Ta c\u00f3 : $y=(m- 1)x+m\\,\\,\\,\\,\\,\\,\\,$ (d)<br\/>G\u1ecdi $I \\left( {{x}_{o}};{{y}_{o}} \\right)$ l\u00e0 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh thu\u1ed9c $(d)$<br\/>$\\Rightarrow I\\left( {{x}_{o}};{{y}_{o}} \\right)\\in \\left( d \\right)\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\forall m$ <br\/>$\\begin{aligned} & \\Leftrightarrow {{y}_{o}}=\\left(m- 1 \\right){{x}_{o}}+m\\,\\,\\,\\forall m \\\\ & \\Leftrightarrow m{{x}_{o}}-{{x}_{o}}+m-{{y}_{o}}\\,\\,\\,\\,=0\\,\\,\\forall m \\\\ & \\Leftrightarrow \\left( {{x}_{o}}+1 \\right)m-{{x}_{o}}-{{y}_{o}}=0\\,\\,\\forall m \\\\ \\end{aligned}$<br\/>$ \\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{o}}+1=0 \\\\ & -{{x}_{o}}-{{y}_{o}}=0 \\\\ \\end{aligned} \\right.$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{o}}=-1 \\\\ & {{y}_{o}}=1 \\\\ \\end{aligned} \\right. $ <br\/>$\\Rightarrow I\\left( -1; 1 \\right)$ l\u00e0 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh $\\in \\left( d \\right)$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-1;1$.<\/span><\/span>"}]}],"id_ques":74},{"time":24,"part":[{"title":"V\u1ebd \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y= \\dfrac{3x}{2}$","title_trans":"","temp":"coordinates","correct":[["1,1.5","2,3","3,4.5","4,6","-1,-1.5","-2,-3","-3,-4.5","-4,-6"]],"list":[{"point":5,"toa_do":[["0","0",""]],"is_click":1,"name_toado_click":"A","draw_line":1,"ques":"Cho s\u1eb5n \u0111i\u1ec3m $O(0; 0)$. (H\u00e3y click th\u00eam m\u1ed9t \u0111i\u1ec3m thu\u1ed9c \u0111\u1ed3 th\u1ecb \u0111\u1ec3 v\u1ebd \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 )_inputduongthang_ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>\u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y=ax$ l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $O(0; 0)$ v\u00e0 \u0111i\u1ec3m $A (1; a)$. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>\u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y=\\dfrac{3x}{2}$ l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $O(0; 0)$ v\u00e0 \u0111i\u1ec3m $A (1; 1,5)$<br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB1.png' \/><\/center>"}]}],"id_ques":75},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"Cho h\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t $y= (1-3m)x+m+3$. T\u00ecm $m$ \u0111\u1ec3 h\u00e0m s\u1ed1 ngh\u1ecbch bi\u1ebfn.","select":["A. $m >\\dfrac{1}{3}$","B. $m < \\dfrac{1}{3}$","C. $m = \\dfrac{1}{3}$ "],"hint":"Tr\u00ean t\u1eadp s\u1ed1 th\u1ef1c $\\mathbb{R}$, h\u00e0m s\u1ed1 $y= ax + b$ \u0111\u1ed3ng bi\u1ebfn khi $a> 0$ v\u00e0 ngh\u1ecbch bi\u1ebfn khi $a < 0$. ","explain":"<span class='basic_left'> H\u00e0m s\u1ed1 ngh\u1ecbch bi\u1ebfn $\\Leftrightarrow 1 - 3m < 0 \\Leftrightarrow m > \\dfrac{1}{3}$ <br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n l\u00e0 A.<\/span>","column":3}]}],"id_ques":76},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/9.jpg' \/><\/center>Cho h\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t $y= (1-3m)x+m+3.$ <br\/> \u0110\u1ed3 th\u1ecb c\u1ee7a h\u00e0m s\u1ed1 l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 khi $m=$ _input_","hint":"<br\/><b>C\u00e1ch 1<\/b>: \u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y= ax + b$ l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 khi $a\\ne 0$ v\u00e0 $b=0$<br\/><b>C\u00e1ch 2<\/b>: \u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $(d): y= ax + b$ l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $\\Rightarrow O(0;0)\\in (d)$","explain":"<span class='basic_left'> <br\/><b>C\u00e1ch 1<\/b>: \u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y = (1- 3m)x+m+3$ l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng \u0111i qua g\u1ed1c khi: <br\/>$\\left\\{ \\begin{aligned} & 1-3m\\ne 0 \\\\ & m+3=0 \\\\ \\end{aligned} \\right.$$\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne \\dfrac{1}{3} \\\\ & m=-3 \\\\ \\end{aligned} \\right.\\Leftrightarrow m=-3$ <br\/><b>C\u00e1ch 2<\/b>: \u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $(d):\\,y = (1- 3m)x+m+3$ \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9.<br\/>$\\Rightarrow O(0; 0) \\in (d) \\Leftrightarrow 0= (1-3m).0+m+3=0 $$\\Leftrightarrow m=-3$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-3$.<\/span><\/span>"}]}],"id_ques":77},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $I(\\dfrac{1}{3};\\dfrac{10}{3})$","B. $I(\\dfrac{2}{3};\\dfrac{8}{3})$","C. $I(\\dfrac{1}{3};\\dfrac{11}{3})$"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/2.png' \/><\/center> <span class='basic_left'>Cho h\u00e0m s\u1ed1 $y= (1-3m)x+m+3$ c\u00f3 \u0111\u1ed3 th\u1ecb l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng $(d)$. T\u00ecm t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh $I$ m\u00e0 \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 lu\u00f4n \u0111i qua v\u1edbi m\u1ecdi $m$. T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $I$ l\u00e0 (?;?) <\/span>","hint":"G\u1ecdi $I \\left( {{x}_{o}};{{y}_{o}} \\right)$ l\u00e0 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh c\u1ee7a $y= (1-3m)x+m+3$.<br\/>$\\begin{aligned} & \\Leftrightarrow {{y}_{o}}=\\left( 1-3m \\right){{x}_{o}}+m+3\\,\\,\\forall m\\\\ & \\Leftrightarrow \\left( 1-3{{x}_{o}} \\right)m+{{x}_{o}}-{{y}_{o}}+3=0\\,\\,\\forall m\\\\ \\end{aligned}$ <br\/>","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: G\u1ecdi $I(x_{o},y_{o})$ l\u00e0 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh thu\u1ed9c $(d)$. Thay t\u1ecda \u0111\u1ed9 c\u1ee7a \u0111i\u1ec3m $I$ v\u00e0o \u0111\u01b0\u1eddng th\u1eb3ng $(d)$.<br\/>B\u01b0\u1edbc 2: \u0110\u01b0a ph\u01b0\u01a1ng tr\u00ecnh v\u1ec1 d\u1ea1ng $a.m + b= 0$. Khi \u0111\u00f3 $a=0$ v\u00e0 $b=0$. <br\/>B\u01b0\u1edbc 3: Gi\u1ea3i h\u1ec7 ph\u01b0\u01a1ng tr\u00ecnh t\u00ecm $x_0,y_0 $ v\u00e0 k\u1ebft lu\u1eadn. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> G\u1ecdi $I \\left( {{x}_{o}};{{y}_{o}} \\right)$ l\u00e0 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh c\u1ee7a $(d)$.<br\/>$\\Rightarrow I\\left( {{x}_{o}};{{y}_{o}} \\right)\\in \\left( d \\right)\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\forall m$ <br\/>$\\begin{aligned} & \\Leftrightarrow {{y}_{o}}=\\left( 1-3m \\right){{x}_{o}}+m+3\\,\\,\\forall m \\\\ & \\Leftrightarrow {{x}_{o}}-3m{{x}_{o}}+m+3-{{y}_{o}}\\,\\,\\,\\,=0\\,\\,\\forall m \\\\ & \\Leftrightarrow \\left( 1-3{{x}_{o}} \\right)m+{{x}_{o}}-{{y}_{o}}+3=0\\,\\,\\forall m \\\\ \\end{aligned}$<br\/>$ \\Leftrightarrow \\left\\{ \\begin{aligned} & 1-3{{x}_{o}}=0 \\\\ & {{x}_{o}}-{{y}_{o}}+3=0 \\\\ \\end{aligned} \\right.$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{o}}=\\dfrac{1}{3} \\\\ & {{y}_{o}}=3+\\dfrac{1}{3}=\\dfrac{10}{3} \\\\ \\end{aligned} \\right. $ <br\/>$\\Rightarrow I\\left( \\dfrac{1}{3};\\dfrac{10}{3} \\right)$ l\u00e0 \u0111i\u1ec3m c\u1ed1 \u0111\u1ecbnh $\\in \\left( d \\right)$ <br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0 $I(\\dfrac{1}{3};\\dfrac{10}{3})$<\/span><\/span>"}]}],"id_ques":78},{"time":24,"part":[{"title":"V\u1ebd \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y = -\\dfrac{1}{2}x+ 2$","title_trans":"","temp":"coordinates","correct":[["0,2","1,1.5","3,0.5","4,0","5,-0.5","-1,2.5","-2,3","-3,3.5","-4,4","-5,-4.5"]],"list":[{"point":5,"toa_do":[["2","1","A"]],"is_click":1,"name_toado_click":"B","draw_line":1,"ques":"Cho s\u1eb5n \u0111i\u1ec3m $A (2; 1)$. H\u00e3y click th\u00eam m\u1ed9t \u0111i\u1ec3m thu\u1ed9c \u0111\u1ed3 th\u1ecb \u0111\u1ec3 v\u1ebd \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1.<br\/>_inputduongthang_ <br\/> ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>+ Cho $x = 0 \\Rightarrow y= b \\Rightarrow B(0;b)$<br\/>\u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 l\u00e0 \u0111\u01b0\u1eddng th\u1eb1ng qua hai \u0111i\u1ec3m $A;B$. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>+ Cho $x= 0 \\Rightarrow y=2\\Rightarrow B (0,2)$<br\/> \u0110\u01b0\u1eddng th\u1eb3ng \u0111i qua hai \u0111i\u1ec3m $A$ v\u00e0 $B$ l\u00e0 \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $y = -\\dfrac{1}{2}x+ 2$<br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/D922_TB4a.png' \/><\/center>"}]}],"id_ques":79},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["3"],["0"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Cho h\u00e0m s\u1ed1 $y=f(x)=(m^2-3m)x+m+2$. T\u00ecm $m$ \u0111\u1ec3 h\u00e0m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn.<br\/> <br\/> \u0110\u00e1p \u00e1n: $m >$ _input_ ho\u1eb7c $ m <$ _input_","hint":"Tr\u00ean t\u1eadp s\u1ed1 th\u1ef1c $\\mathbb{R}$, h\u00e0m s\u1ed1 $y= ax + b$ \u0111\u1ed3ng bi\u1ebfn khi $a> 0$ v\u00e0 ngh\u1ecbch bi\u1ebfn khi $a < 0 $.","explain":"<span class='basic_left'> H\u00e0m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn $\\Leftrightarrow m^2 -3m > 0 $$\\Leftrightarrow m(m -3)>0$<br\/>$\\Leftrightarrow \\left[ \\begin{aligned} & \\left\\{ \\begin{aligned} & m>0 \\\\ & m-3>0 \\\\ \\end{aligned} \\right. \\\\ & \\left\\{ \\begin{aligned} & m<0 \\\\ & m-3<0 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned} \\right.$$\\Leftrightarrow \\left[ \\begin{aligned} & \\left\\{ \\begin{aligned} & m>0 \\\\ & m>3 \\\\ \\end{aligned} \\right. \\\\ & \\left\\{ \\begin{aligned} & m<0 \\\\ & m<3 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned} \\right.$$\\Leftrightarrow \\left[ \\begin{aligned} & m>3 \\\\ & m<0 \\\\ \\end{aligned} \\right.$<br\/>V\u1eady v\u1edbi $m > 3$ ho\u1eb7c $m < 0$ th\u00ec h\u00e0m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn<br\/><span class='basic_pink'>Do \u0111\u00f3 hai s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $3$ v\u00e0 $0$.<\/span><\/span>"}]}],"id_ques":80},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-4"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":" <span class='basic_left'> Cho h\u00e0m s\u1ed1 $y=f(x)=(m^2-3m)x+m+2.$ T\u00ecm $m$ \u0111\u1ec3 \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 c\u1eaft tr\u1ee5c tung t\u1ea1i \u0111i\u1ec3m c\u00f3 tung \u0111\u1ed9 b\u1eb1ng $-2$. <br\/> <br\/> \u0110\u00e1p \u00e1n $m =$ _input_ <\/span>","hint":"Thay $P(0; -2)$ v\u00e0o h\u00e0m s\u1ed1 $y=f(x)=(m^2-3m)x+m+2$ ","explain":"<span class='basic_left'> $y=f(x)=(m^2-3m)x+m+2\\,\\,\\,\\,(d)$<br\/>\u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 c\u1eaft tr\u1ee5c tung t\u1ea1i \u0111i\u1ec3m c\u00f3 tung \u0111\u1ed9 b\u1eb1ng $-2 \\Leftrightarrow P (0,-2) \\in (d)$<br\/>$\\Leftrightarrow -2=(m^2-3m).0+m+2 \\Leftrightarrow m=-4$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-4$.<\/span><\/span>"}]}],"id_ques":81},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/10.jpg' \/><\/center> Cho h\u00e0m s\u1ed1 $y=f(x)=(m^2-3m)x+m+2$.<br\/>T\u00ecm $m$ \u0111\u1ec3 \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 \u0111i qua \u0111i\u1ec3m $A(1; 1)$.<br\/>\u0110\u00e1p \u00e1n: $m =$ _input_","hint":"Thay t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $A$ v\u00e0o h\u00e0m s\u1ed1 \u0111\u1ec3 t\u00ecm $m$.","explain":"<span class='basic_left'> $y=f(x)=(m^2-3m)x+m+2\\,\\,\\,\\,(d)$<br\/>Theo \u0111\u1ea7u b\u00e0i ta c\u00f3: $\\,\\,A (1,1) \\in (d)$<br\/>$\\begin{align} &\\,\\,1=\\left( {{m}^{2}}-3m \\right).1+m+2 \\\\ & \\Leftrightarrow {{m}^{2}}-3m+m+2=1 \\\\ & \\Leftrightarrow {{m}^{2}}-2m+1=0\\\\&\\Leftrightarrow (m-1)^2=0 \\\\ & \\Leftrightarrow m=1 \\\\ \\end{align}$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $1$.<\/span>"}]}],"id_ques":82},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"\u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u1edf h\u00ecnh v\u1ebd d\u01b0\u1edbi l\u00e0 \u0111\u1ed3 th\u1ecb c\u1ee7a h\u00e0m s\u1ed1:<br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB10.png' \/><\/center>","select":["A. $y= \\dfrac{x}{4}$","B. $y= -\\dfrac{x}{4}$","C. $y= \\dfrac{3x}{4}$"],"hint":"\u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $O(0;0)$ c\u00f3 d\u1ea1ng $y= ax$. ","explain":"<span class='basic_left'> \u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $O(0;0)$ c\u00f3 d\u1ea1ng $y= ax$. <br\/> Theo h\u00ecnh v\u1ebd ta c\u00f3: $A (4; 1) \\in (d) \\Rightarrow a.4=1 \\Rightarrow a= \\dfrac{1}{4}$<br\/>$\\Rightarrow (d): y= \\dfrac{x}{4}$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span>","column":3}]}],"id_ques":83},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"\u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u1edf h\u00ecnh v\u1ebd d\u01b0\u1edbi l\u00e0 \u0111\u1ed3 th\u1ecb c\u1ee7a h\u00e0m s\u1ed1:<br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB11.png' \/><\/center>","select":["A. $y= -3x+1$","B. $y= -x - 3$","C. $y= -x +3$"],"hint":"$A(3,0)$ v\u00e0 $B(0, 3)$ thu\u1ed9c \u0111\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $(d): y=ax+ b$ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/>B\u01b0\u1edbc 1: T\u1eeb h\u00ecnh v\u1ebd x\u00e1c \u0111\u1ecbnh t\u1ecda \u0111\u1ed9 giao \u0111i\u1ec3m c\u1ee7a $(d)$ v\u1edbi $Ox$ v\u00e0 $Oy$.<br\/>B\u01b0\u1edbc 2: Thay t\u1ecda \u0111\u1ed9 giao \u0111i\u1ec3m ph\u01b0\u01a1ng tr\u00ecnh $y=ax+b$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> \u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $(d)$ c\u00f3 d\u1ea1ng: $y= ax+ b$. <br\/> Theo h\u00ecnh v\u1ebd ta c\u00f3: <br\/>$A (3, 0) \\in (d) \\Rightarrow a.3+b=0 \\Rightarrow 3a= -b$<br\/> $B (0, 3) \\in (d) \\Rightarrow b=3\\Rightarrow a=-1$<br\/>$\\Rightarrow (d): y= -x +3$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C.<\/span>","column":3}]}],"id_ques":84},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["-2"],["3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Tr\u00ean c\u00f9ng m\u1ed9t h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 $Oxy$ cho c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng: <br\/>$\\begin{matrix} y=x+5\\,\\,\\,\\left( d \\right)\\,\\,\\,;\\,\\,\\,\\, & y=-x+1\\,\\,\\,\\left( {{d}_{1}} \\right) \\\\\\end{matrix}$ <br\/><br\/><b>C\u00e2u 1:<\/b> Bi\u1ebft $\\left( d \\right)\\cap \\left( {{d}_{1}} \\right)=M$. T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $M$ l\u00e0 (_input_;_input_)<\/span>","hint":"X\u00e9t ph\u01b0\u01a1ng tr\u00ecnh ho\u00e0nh \u0111\u1ed9 giao \u0111i\u1ec3m gi\u1eefa \u0111\u01b0\u1eddng th\u1eb3ng $(d)$ v\u00e0 $(d_{1})$. ","explain":"<span class='basic_left'> Ta c\u00f3: $\\left( d \\right)\\cap \\left( {{d}_{1}} \\right)=M$. <br\/> Ho\u00e0nh \u0111\u1ed9 giao \u0111i\u1ec3m $M$ th\u1ecfa m\u00e3n ph\u01b0\u01a1ng tr\u00ecnh:<br\/>$x+5=-x+1\\Leftrightarrow 2x=-4\\Leftrightarrow x=-2$ <br\/>Thay $x=-2$ v\u00e0o $y= x+ 5$ ta \u0111\u01b0\u1ee3c: $y=-2+5=3$<br\/>V\u1eady t\u1ecda \u0111\u1ed9 c\u1ee7a \u0111i\u1ec3m $M(-2;3)$.<br\/><span class='basic_pink'> Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-2; 3$.<\/span><\/span>"}]}],"id_ques":85},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["-5"],["0"],["1"],["0"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Tr\u00ean c\u00f9ng m\u1ed9t h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 $Oxy$ cho c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng: <br\/>$\\begin{matrix} y=x+5\\,\\,\\,\\left( d \\right)\\,\\,\\,\\,;\\,\\,\\, & y=-x+1\\,\\,\\,\\left( {{d}_{1}} \\right) \\\\\\end{matrix}$ <br\/> <br\/><b>C\u00e2u 2:<\/b> Bi\u1ebft $\\left( d \\right)\\cap Ox=A; \\,\\,(d_{1})\\cap Ox=B$. <br\/> T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $A$ l\u00e0 (_input_;_input_); $B$ l\u00e0 (_input_;_input_)<\/span>","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>\u0110\u1ed3 th\u1ecb $y= ax+ b\\, (a \\ne 0)$ l\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng c\u1eaft tr\u1ee5c tung t\u1ea1i $A (0;b)$ v\u00e0 tr\u1ee5c ho\u00e0nh t\u1ea1i \u0111i\u1ec3m $B(-\\dfrac{b}{a};0) $. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>$(d) \\cap Ox =A \\Rightarrow A (-5;0)$<br\/>$(d_{1})\\cap Ox= B \\Rightarrow B(1;0)$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u1ea7n l\u01b0\u1ee3t l\u00e0 $-5;0;1;0$.<\/span>"}]}],"id_ques":86},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"<span class='basic_left'>Tr\u00ean c\u00f9ng m\u1ed9t h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 $Oxy$ cho c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng: <br\/>$\\begin{matrix} y=x+5\\,\\,\\,\\left( d \\right)\\,\\,\\,\\,;\\,\\,\\, & y=-x+1\\,\\,\\,\\left( {{d}_{1}} \\right) \\\\\\end{matrix}$ <br\/><br\/><b>C\u00e2u 3: <\/b> Bi\u1ebft $\\left( d \\right)\\cap Ox=A; \\,\\,(d_{1})\\cap Ox=B;\\,\\,(d)\\cap (d_{1})=M$. <br\/> Khi \u0111\u00f3 $\\Delta AMB$ l\u00e0 tam gi\u00e1c g\u00ec?<\/span>","select":["A. Tam gi\u00e1c c\u00e2n","B. Tam gi\u00e1c vu\u00f4ng c\u00e2n","C. Tam gi\u00e1c \u0111\u1ec1u "],"hint":"H\u1ea1 $MH \\bot AB$ t\u1ea1i $H$. So s\u00e1nh $AH , HB$ v\u00e0 $MH$. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: V\u1ebd tr\u00ean c\u00f9ng m\u1ed9t h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng v\u00e0 giao \u0111i\u1ec3m m\u00e0 \u0111\u1ec1 cho. D\u1ef1a v\u00e0o h\u00ecnh v\u1ebd nh\u1eadn d\u1ea1ng v\u00e0 ch\u1ee9ng minh <br\/>B\u01b0\u1edbc 2: H\u1ea1 $MH$ vu\u00f4ng g\u00f3c v\u1edbi $AB$ t\u1ea1i $H$. T\u00ednh $AH, BH$.<br\/> B\u01b0\u1edbc 3: D\u1ef1a v\u00e0o d\u1ea5u hi\u1ec7u nh\u1eadn bi\u1ebft tam gi\u00e1c vu\u00f4ng c\u00e2n, ta k\u1ebft lu\u1eadn. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> H\u1ea1 $MH \\bot AB$ t\u1ea1i $H$. <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB12.png' \/><\/center><br\/>Theo h\u00ecnh v\u1ebd ta c\u00f3 $AH= 3; HB= 3; MH =3$.<br\/>X\u00e9t tam gi\u00e1c $AMB$ c\u00f3 $MH$ v\u1eeba l\u00e0 \u0111\u01b0\u1eddng cao, v\u1eeba l\u00e0 trung tuy\u1ebfn \u1ee9ng v\u1edbi $AB$ n\u00ean $\\Delta AMB$ c\u00e2n t\u1ea1i $M$.<br\/> L\u1ea1i c\u00f3 $MH=\\dfrac{AB}{2}$ n\u00ean $\\Delta AMB$ vu\u00f4ng t\u1ea1i $M$ (D\u1ea5u hi\u1ec7u nh\u1eadn bi\u1ebft tam gi\u00e1c vu\u00f4ng). Suy ra $\\Delta AMB$ vu\u00f4ng c\u00e2n t\u1ea1i $M.$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B.<\/span>","column":3}]}],"id_ques":87},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank_random","correct":[[["9"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Tr\u00ean c\u00f9ng m\u1ed9t h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 $Oxy$ cho c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng: <br\/>$\\begin{matrix} y=x+5\\,\\,\\,\\left( d \\right)\\,\\,\\,\\,\\,\\,\\, & y=-x+1\\,\\,\\,\\left( {{d}_{1}} \\right) \\\\\\end{matrix}$ <br\/> <br\/><b>C\u00e2u 4:<\/b> $\\left( d \\right)\\cap Ox=A; \\,\\,(d_{1})\\cap Ox=B;\\,\\,(d)\\cap (d_{1})=M$. <br\/> Di\u1ec7n t\u00edch $\\Delta AMB$ l\u00e0 _input_ (\u0111\u01a1n v\u1ecb di\u1ec7n t\u00edch)<\/span>","hint":"","explain":"<span class='basic_left'>H\u1ea1 $MH \\bot AB$ t\u1ea1i $H$. <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB12.png' \/><\/center><br\/>Theo h\u00ecnh v\u1ebd ta c\u00f3 $MH= 3; AB= 6$<br\/>${{S}_{\\Delta AMB}}=\\dfrac{1}{2}MH.AB=\\dfrac{1}{2}.3.6=9$ (\u0111\u01a1n v\u1ecb di\u1ec7n t\u00edch)<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $9$.<\/span>"}]}],"id_ques":88},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"\u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u1edf h\u00ecnh v\u1ebd d\u01b0\u1edbi l\u00e0 \u0111\u1ed3 th\u1ecb c\u1ee7a h\u00e0m s\u1ed1:<br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB13.png' \/><\/center>","select":["A. $y= \\dfrac{x}{5}$","B. $y= -3x$","C. $y= 5x$"],"hint":"\u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $O(0,0)$ c\u00f3 d\u1ea1ng $y= ax$ ","explain":"<span class='basic_left'> \u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u0111i qua g\u1ed1c t\u1ecda \u0111\u1ed9 $O(0;0)$ c\u00f3 d\u1ea1ng $y= ax$. <br\/>Theo h\u00ecnh v\u1ebd ta c\u00f3: $A (1; 5) \\in (d) \\Rightarrow a.1=5 \\Rightarrow a= 5$<br\/>$\\Rightarrow (d): y= 5x$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C.<\/span>","column":3}]}],"id_ques":89},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"\u0110\u01b0\u1eddng th\u1eb3ng $(d)$ \u1edf h\u00ecnh v\u1ebd d\u01b0\u1edbi l\u00e0 \u0111\u1ed3 th\u1ecb c\u1ee7a h\u00e0m s\u1ed1:<br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai10/lv2/img\/\/D922_TB14.png' \/><\/center>","select":["A. $y= 2x -1$","B. $y= 2x + 1$","C. $y= 2x + 3$"],"explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>X\u00e1c \u0111\u1ecbnh hai \u0111i\u1ec3m $A(2;3)$ v\u00e0 $B(0;-1)$ thu\u1ed9c \u0111\u1ed3 th\u1ecb.<br\/> B\u01b0\u1edbc 2: Thay t\u1ecda \u0111\u1ed9 hai \u0111i\u1ec3m $A$ v\u00e0 $B$ v\u00e0o ph\u01b0\u01a1ng tr\u00ecnh t\u1ed5ng qu\u00e1t $y=ax+b$. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>\u0110\u1ed3 th\u1ecb h\u00e0m s\u1ed1 $(d)$ c\u00f3 d\u1ea1ng: $y= ax+ b$. <br\/> Theo h\u00ecnh v\u1ebd ta c\u00f3: <br\/>$A (2;3) \\in (d) \\Rightarrow a.2+b=3 \\Rightarrow a=\\dfrac {3-b}{2}$ (1)<br\/>$B (0; -1) \\in (d)\\Rightarrow b=-1$<br\/>Thay $b=-1$ v\u00e0o (1) $\\Rightarrow a=2$<br\/>$\\Rightarrow (d): y= 2x -1$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span>","column":3}]}],"id_ques":90}],"lesson":{"save":0,"level":2}}