{"save":1,"level":1,"time":"60","total":25,"point":5,"segment":[{"id":"1022","test_id":"286","question":"<p>Cho hình ph\u1eb3ng D gi\u1edbi h\u1ea1n b\u1edfi \u0111\u01b0\u1eddng cong <span class=\"math-tex\">$y=\\sqrt{2+\\cos x}$<\/span>, tr\u1ee5c hoành và các \u0111\u01b0\u1eddng th\u1eb3ng<\/p><p><span class=\"math-tex\">$x=0, x=\\frac{\\pi }{2}$<\/span>. Tính th\u1ec3 tích V c\u1ee7a kh\u1ed1i tròn xoay t\u1ea1o thành khi quay D quanh tr\u1ee5c hoành.<br \/> <\/p>","options":["<span class=\"math-tex\">$V=\\pi -1$<\/span>","<span class=\"math-tex\">$V=\\pi +1$<\/span>","<span class=\"math-tex\">$V=\\pi (\\pi -1)$<\/span>","<span class=\"math-tex\">$V=\\pi (\\pi +1)$<\/span>"],"correct":"4","answer":"<p>Th\u1ec3 tích kh\u1ed1i tròn xoay khi quay D quanh tr\u1ee5c hoành : <br \/><span class=\"math-tex\">$V=\\pi \\int\\limits_{0}^{\\frac{\\pi }{2}}{{{y}^{2}}\\text{d}x}=\\pi \\int\\limits_{0}^{\\frac{\\pi }{2}}{(2+\\cos x)dx}$<\/span><\/p><p><span class=\"math-tex\">$=\\pi \\left. (2x+\\sin x) \\right|_{0}^{\\frac{\\pi }{2}}=\\pi (\\pi +1)$<\/span><\/p>","type":"choose","user_id":"108","test":"0","date":"2020-03-28 09:44:26"},{"id":"1025","test_id":"286","question":"<p>Cho l\u0103ng tr\u1ee5 tam giác \u0111\u1ec1u ABC.A'B'C', AB=2a, M là trung \u0111i\u1ec3m c\u1ee7a A'B', kho\u1ea3ng cách t\u1eeb C' <\/p><p>\u0111\u1ebfn m\u1eb7t ph\u1eb3ng (MBC) b\u1eb1ng <span class=\"math-tex\">$\\frac{a\\sqrt{2}}{2}$<\/span> Tính th\u1ec3 tích kh\u1ed1i l\u0103ng tr\u1ee5 ABC.A'B'C'<br \/><span class=\"svgedit\"><svg height=\"300\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>\\n<title><\/title>\\n<rect fill=\"#fff\" height=\"302\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>\\n<title><\/title>\\n<image height=\"299\" id=\"svg_1\" width=\"304\" x=\"48\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAATAAAAErCAIAAADWiEj8AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAC0ISURBVHhe7Z1fiCTHnefDUs9Oz\/\/SaMbuk2x5Zm3ttu5stna1HHXN4utZbk2fj4XW3S4eMIjmYPrGsD76wbfTsHvby9q4BRJ0o9PQOqOjZRDXwjdcS2C6BSto2HkoWD2UQRy1Rz+MQQ9t0EMd+KEe5mHuW\/WL+nVUZkZWVmZEVlbm70PQMxGVVZW\/yPhG\/CIj8lfqiSAIhUEEKQgFQgQpCAVCBCkIBUIEKQgFQgQpCAVCBCkIBUIEKQgFQgQpCAVCBCkIBUIEKQgFQgQpCAXCiyCbzebyrVuL9Tr+Hh4e6lJBmEJybswJBXl8sL26sLCgNAsLqwfHveLt1e3evyZbP\/lJo1bbV+pIKfxdqtXu3r6tXxOEqSL\/xjxSkMcHqz0d9iXI2tOFYPVAFxFHR0eLtdoTpcy0cuXK7k9\/qo8QhClhIo05VpADMdJwGOBgtfdSYIBcajQOhw1Aail1RT2j1N9KkjRFqaa+HNmY6zdv6ubugRhB9hUXGgNPwetBPT6Zu3z5JGQDUp+gwZIkFTmdV2dtjVk399FETepisX308Tb5pFY59g8JvdqYn28Onz3SI6UuqvMBayVJKniqqWuRjfnGtWu6uY+iN6bFKCgKiyBHjY49osS\/8+abdy9dCtjwunrqgnr51M7aa3fv\/qLZ\/Ey\/RxAKw\/5+u9F4hxrqGfVvv6fOBhrz1szM2p07+uh4SEQuBJlgeLSDaeT6hQud\/tnjLwz451964dvf3mVBcpqff2tz8+HJyW\/0OwVhQnS7j3d2PrlxYzvQRL\/27O\/85bnzZmNuvPhit9vVb4tDj2mhWd0IogSZSY89Njc2zqoz+AT8RXfS6XRQ+OhRB\/IL24y0vPz+3t6n9F5ByBOMB+vrH8NrMxsksmtrH6HF4oDIxjwKSGhhe7snSQeCzKzHHmybzhscHT1aWflgdvbHfAwlcmVbrRN9nCD4pN3+PNwO5+be2NpqdjpDYyC\/qvOj6MvxmHQ0roomIEgCTsLubmtx8V0+khNcWVSKuLKCJw4Pj5eW3gu0unr9bTRIfcQwfIzOxwP99KXjWpDjjrXDJLcBjsHGxlGkK3v79gNxZQWHQHIQXqCZYcYEr00fEQUfqfNxHKwO1h76k8ixVRQ1h0xyi3UU49igQb8V6crCi4Ar225\/ro8ThDGBC7q5+RANyWxXaGlobzRRjIffovN2TuWYcoCMFGQCRY5c70xuQwDUHboxvvVsJriyOzufiCsrJAd6Q28enijCKUvekPiNOm8DcjxVhUtBDrxWfFyU6qDGkd+T1AY7qMr19Y9truz+flsfJwhRNJufoZ0EWg6aE7r7bvexPigZ\/Hadj2SgmSHGn\/dFCxIMto\/3NrKeqr7\/1Ee0TIdJZEMy4MqiZiNd2bW1j9riygrD7O19GvawFhffTd2J84fofASQ47D4SJ8OBdmDHrrq67LHwvAjH7EksGE84MrCX410ZTFNx0uBW9VC1bAt7mOimHEtjT9K50OE5DgQ5Ngea7wgMzDShtRgSIQrG5igI2EIxUCK4VQfJ1SGkYv7GeHP1Plhes9EhYWX7h7rNAqSIVeWv4gTtIrLA93q44TygqEPA2CgAWCQDC\/uZ4E\/WecNaGYXmsQNJpSOXdYMxNjgFnJlw4tLSPBvxZUtK7bFfR8L1\/z5Om\/Ql10Plt5Ai6eMpcqpFySDIREuSqQri05UXNlyQBu85uffClzlkYv7WeBv0XmflEeQDPrISFcWngxcWSeTCiF\/4OlELu7fvfsL39eUv07nfVJCQRKY6MNfDXelSHBl0cuKKzstOFnczwJ\/qc77pLSCZNrtz3E5ba6sPz9HyE6z+Rl80cCFQyebYnE\/C\/zVOu+T8guSgSsbvrpIcGXR14bdnlardXR0hL86L+SIbXF\/IvcC+AR03icVEiQBJ2drqxnpyuJ6U9d7cnKy1GjUr1xZrNXwtzE\/327LTr08wDwCV8fH4n4W+DR03ieVEySDCwxXNrCajDQ7+7dfvvhFM\/5fU6n5a9egUv1OwQO2xX0U5jNRjIHPR+d9Ul1BMvCOzBWtC+rl19VTrEZKe0rd\/s539BsEp+SzuJ8FPiud94kIUoNueHPzIVzZK+qZ1rAakTpK1c6d04cKjsCEMBwyAlNHH4v7WeBz03mfiCCDfLl29VFIkF2lZtRTcHElemV2ki3uHx9sDx5sSPR8kUf4DHXeJ9UTpH762mB4ZzBcUzioLEVKRxgh1RxZhJYk0SvTgUrb2DhKsrgfukrjPzfhDj5VnfdJNUfI072\/4a730aNH87WaGUMew+MfPHVOqRU2ihJmnnCu8lwQm15si\/vo2iImirg+elA8ZmWmeHLCFXzCOu+TirqsdJltve7R0dH89evfVzMbSuHvVXX2X\/3ef4SzurLyQfiuLErQ1CZ4U77gwAsde3H\/2HjqNv2DE87g09Z5n1RTkPF67NHpdJRaUmqx\/\/eH9frbVE7zH4lemQS4D+GncOBWjLm4TxcroMfBDyIubNMPtHlVK5+8zvukkoIcrccebAKmPeEBED4YysNL2EgYEIp2nzBPHC\/uR+mRL+Bg+PQ7w2QTdN4nVRRkMj0mNQEuGZpaYHaERK5su0rPScM7WFv7yO3ifv9iDclRi5CuX8JrmQ22Red9UkFBJr2GY5lArmxkyB+4sjtlj15pW9yH4ZluevXFN3yp6PLpQhKn7+klW6TzPqmeIBP3qaYJaFVocPBFw3vQA+AADAiRruztMgZi399ve1vc712qoNgmoEcRpE\/ogia5hqYJh4fH9H\/MG+nVkeAtka7sXCkCsZNHEO530Ok42jvRE5t5mY63tyFC7a\/SC\/rGzuoBveYNtk7nfVI1QSbX45AJcDjheWI6NO5tiY49EPuURq9EVSRc3M+CFp5J\/6IZgjw+7v\/eGzILY\/5s+LiwmTrvk4oJcgw9OjahbYleiYRRZSoCsUNv4THfurifBe2XDqEv2kCR8Fn1poGIGIyOYWN13ifVEuQ4evRlAlxZKDDSlYVioVt9XJGIWdzXR5QaNlnnfVJmQaIrHeo9deeatEONNAFDQeSy5Ljgc+CvRrqyKCyOKwvJuVjcn27YcJ33SZkFOay+odsBSYg0gW7uYzKp85lp26NXYiCdVLtHd7C11QxPFGE+TlgfVBm4BnTeJ+UWpB4gj083Wo3RviNNIM\/NoSAZTCOhQP5STuTKOrxfEg++yPni\/rTD9aDzPimzILUKe\/RuxI37TF2kCd3u483Nh9ldVhvkymJ6xt\/OCa4sHEh\/riyMCvcIDhb3px+uDZ33SbVu6ozFZE1ox0avdOvK2hb3p+Lebw5wnei8T0SQVgpiwp63QOwY9zD6+VzcLwlcMzrvExGklRgT0JQxgGCwyu2mC+ZvNleWo1fqQxMQubiPiaKr328rGVxFOu8TEaSVGBPQaukleI+6KC8w04MrG7jpgkSurBmIvdlsLt+6tViv4+\/h4SEVttuf4zAcbL4XynS\/uF8iuKJ03iciSCvxJmAwwdCE9q3zuQNXNrxYjwQXFKPf3\/yXv2nUavv9aED4u1Sr\/fs\/\/tPI32+ryOJ+Fri6dN4nIkgrU2ECnM+tiEDsK3U1CwPM9IqaPaP+lI+BOM3hVIiBK03nfSKCtDJdJjSbn7ErW1NfNiOvU2opdUU9E7W4H7VzFCz0Ak1NZl9CwcizJYggrSQxAfMu+IfFWR7odh\/Dlb08c86MmscJ2Bb3B9HdeGfToGCsvRQlJUlLcIUI0koSEzCTpGMKtYulMT\/fDKnxkVI3rl3TR4Qh\/Q3t8w1qtLIkaQmuEEFaSWIC5m84AI5ioW5R7rz55t1Ll0iHnLZmZtbu3NFHhKCdvsPaG3v3b1lJ0hJcIYK0ktAETN4KuHa31GisX7jQ6UsRf19XT\/3L3\/56t2vrNaL0KCPkgIQtwQkiSCvTbsLmxsZZdQaKwt8L6uX79\/9BvxBGxsdY8mwJIkgrZTIBaWnpPV0agrTH0js+PtDhhyf8IzdFgetQ530igrQylgm05r6+\/rHOFwM2AWl29seW7XV6LDQRKZpwHeq8T0SQVsYygY5cXHxX54sBm0ApOjRjeHxM8fBoqeEK1HmfiCCtjGUCPcHk7znJdLAJlG7ffqBfMAjokZBFSBOuQJ33iQjSSplMoFSrvRbyWiP1KIocgitQ530igrRSJhN4s2vweTGLHkWQJlyNOu8TEaSVFCZg\/Flefn9l5YOxnk70B5uwsXFE\/wk8LyZ6TAJXo877RARpJYUJu7stektBnmliE9rtz+k\/c3Nv6Nd6ROtxsI1VtgRouBp13iciSCspTGi1TjBPQ4IAdNFEMU3gUB381JUOxW\/Grh2sQPaKZXQcYFajb0SQVkpmwvr6x\/T\/u3d\/0X8pmgUK0CdiNDCr0TciSCslM6HZ\/Iz+j6GSXhUSYlajb0SQVrKY0Ol04RlO\/BGQgAkc1UqCyo1FoBq9IoK0ksUE2kk38Y07ARPgrFK2aFv8Ck6gGr0igrSSxQT6gRr81fkJETABgzZl5+ffohIhCYFq9IoI0koWEx496jj5kayMBEzodh9T0B2kdvV+Myc1gWr0igjSSilNWOn\/ehcS+gtdJIwiXI3+EEFaKaUJh4fHVNJovKOLhFGEq9EfIkgr2U2gnXRLS++1J+Qfhk3AKXHYcvnVgISEq9EfIkgr2U3gmyiT8g8jTeCf7tncfKiLhFgiq9ETIkgr2U3odLr1+tu12muTursTacLe3qdUWLTHqQtLZDV6QgRppawmoJtgr7VQ4WQLS2Q1ekIEaaXEJtC+BaSdnU90kWDHVo0+EEFacWhCt\/sY08j8N6zZTODHxGJC0QmMrRp9IIK04tAE+sUBOIo5u4g2E3AaVI5TKlTM9WJiq0YfiCCtODSBBFnL\/RcHYkxYXHyXXpLfhxxJTDU6RwRpxa0JR0eP8l\/3izEBs0d6KTIUnWASU43OEUFaKbcJ\/Kvs9gDKgiamGp0jgrRSehMajXfo1eL8vmUxia9Gt4ggrTg3AQMRaSA6grgH4k3Y3HxIrwZC0QkB4qvRLSJIK85NYC8xNwHEm9AehKKrRQRQFk6Jr0a3iCCt+DBhY+Moz18cGGmCNYCyYDCyGh0igrRSBRPQQdABFIpOiGRkNTpEBGmlCiZwKLrhAMrCECOr0SEiSCv+TOh0uhiacliRT2JCOICyECBJNbpCBGnFnwl8e9P37tYkJnAAZQlFZyNJNbpCBGnFnwn7+218LLxE31tbk5jAT1FLAGUbSarRFSJIK15NaLVOcthJl9AEDqA88TB5xSRhNTpBBGmlOiZwAOVJhRopOAmr0QkiSCs5mNDp\/+KAznggoQkcik4CKEeSsBqdIIK0koMJ9AyUv+ctEprQlQDKsSSsRieIIK3kYALFtvE3LiU3gQMoSyi6MMmrMTsiSCs5mAB\/FdM2f7dSkpvAoegkgHKY5NWYHRGklUqZAK+VQ9FJAOUAyasxOyJIK1UzgQMoSyi6AGNVY0ZEkFZyMwGjE6Zw0IPziDtjmcCh6CSAcoCxqjEjIkgruZnASnC+u3UsE9AdsNeaczCugjNWNWZEBGklNxPa7c\/n5t6o1V7Df3SRI8Y1gQMoSyg6k3GrMQsiSCsVNIFD0UkAZZNxqzELIkgrFTTBDKAsQT2YcasxCyJIK\/mbQDvpHD4CksIEDqCcWySu4pOiGlMjgrSSvwm08ODwMagUJvCzmhJAmUlRjakRQVrJ34Tl5ffxdZMVpARQDpOiGlMjgrSSvwlwWd3upEtnAgdQllB0RLpqTIcI0kplTeBQdBJAmUhXjekQQVqprAltI4CyLqo26aoxHSJIK5MyATM3OI0QQ3bfNbUJHEBZQtGB1NWYAhGklUmZwFGnsgfUSG0Ch6KTAMogdTWmQARpZVImdDpdTN4WF9\/N\/hhUahM4gLKEogOpqzEFIkgrFTeBAyj7Dh5bfLJU47iIIK1U3AQORScBlLNU47iIIK1M3IRu9zGmkVluq2Qxgaey4rVmqcZxEUFambgJa2sf0Qmk3t2a0QQOoNyudii6jNU4FiJIKxM3gRboa7XXUj8unNEEDkWX\/X7vVJOxGsdCBGmlCCbAb\/ynf\/r13t7exsbG7u7uycl4K5MZTeAAyvX627qokmSsxrEQQVrxYsLBqgqysG3fMdpqteovvHD78uUNpVYuXpx\/9tnDDz\/UryUgowmYxHIA5SqHostYjWMhgrTizYTjgSrjpAg6nc789ettpXAqlDpKLV671mw29RGjyG4Ch6KrcgDl7NWYHBGkFX8mHG8vjJbjkydrd+5szczgPMzUVKoxP6+PGEV2EziAcpVD0WWvxuSIIK14MyGhHp\/Ub95sDauR0uzMTLeb6DZPdhPgtXIoOt+\/ZllYsldjckSQVnyZkFSPTzASYjzEeZipq1RtdjY3QQIORVfZAMpOqjEhIkgrnkxIrMcnG\/fubczO4jzMdIRpZL2ujxiFExMkgLKTakyICNKKHxOS6xHuYrf+1a8eGmpsYwL5pS+12219xCicmNAZBFDG39QrolONk2pMiAjSihcTxtBjj5OTk6VGY7FWu3v+\/L+u1Z4\/d+1737uvX0uAKxM4FF01Ayi7qsYkiCCt+DCB9KhWD3Q+lm738ebmw\/399tHR0c7Ozp07byr11zif5LtbXZnAAZSXl9\/XRVXCVTUmQQRpxYMJY+nxdC8rhQ44PDyG0zg390byu52uTKh4AGVX1ZgEEaQV9yaMp8cnW1tNfHut9lrqXTIOTeBQdBUMoOywGkcigrTi3gTaoZNUjz2azc+y7FlzaAIHUK5gKDqH1TgSEaQV5ybE6PF4ewyZdvq\/OJDEdXRoAgdQxohdNa\/VYTWORARpxbEJMf7qwepCqDjmwY7+Sv1akvsrbk3gUHRVC6DsthrjEUFacWrCYEN5YMHj+PhgexVCNfWI8adef1upP3r11b\/URcPcuLGu1FySR6KcmnAaQLlqoejcVmM8IkgrDk3oa9HOsEoHzuEPL178YuQWuVu3lr773R8lidrq0ATQHgRQnpt7QxdVA7fVGI8I0soETdjcfAi\/9NVX\/9PW1pYuGgBX9saNG3nuZTXhUHRZIv1MHc6rMQYRpJWJmxCpvbW1tbBKbTg3gQMor619pIsqgPNqjEEEaaUIJiwvL+\/v7+vMsEQx1bx9+8Hy8vsx6yLOTahmAGXn1RiDCNJK\/iZAWvBUzWfzeyE8jGc71tfXNzc36f8c8CYmApUPEzgUXXUCKPuoRhsiSCv5m8BR3sxBjwdJDIwYHnk55OTkNxim4n+Tx4cJHEC5OqHofFSjDRGklfxNoCcP5+ffMp9y4kESU0dMIKkwIT5M4ADKOE9dVHZ8VKMNEaSV4piAQfLnP\/+5OTwmxIcJmLtyKLp2NQIo+6hGGyJIK8Ux4fDw8Jvf\/ObKyorOD4PhFN5jpOPqyQR2rSsSis5TNUYigrSSpwmYNMbfI3nppZd++ctf6swwJA+MWjpv4MkEvp\/UaLyji0qNp2qMRARpJTcToEZyAre2kgZcNVlefh\/vzVOQ8Fo5FF3Moktp8FSNkYggreRmArxN+qJ0e0QhD7iOebqsgAMop+tEpgt\/1RhGBGklTxN2d1uYBzoPIeXPhEoFUPZXjWFEkFbEhBjQd7DXWvoAyv6qMYwI0sp0mQDHtdF4ByIxH1b0agIHUC59KDqv1RhABGklBxMgHrh8ThYPHg2e6DdDbHg1gQMoQ5m6qKR4rcYAIkgrOZjA8U51Phtrax\/hA9vGYr1XE8xQdM5nv4XCazUGEEFaycEEGmT8jTC+TeAOpdyh6HxXo4kI0oqYMBIOoHz79gNdVEZ8V6OJCNLKlJpAO+n293u\/\/+HbBJ64ljuAsu9qNBFBWvFqQqt14ul5Qo53znM8TyYQHEC5xKHocqhGRgRpxZ8JvDXHx4IBxzvHUEnfgqRf88BmBQIo51CNjAjSij8TWJCe9p1xvHN\/JjDtQSg6dAFl9VpzqEZGBGnFqwmY4+WwC9SrCQwHUC5rKLp8qpEQQVoRExKyUfYAyvlUIyGCtDLtJvAioW8TOBRdWQMo51ONhAjSig8TaOEun\/BQfP5uTYiEAyiXMhRdbtUIRJBWfJhADTefoKa819StCZFwAGX8RxeViNyqEYggrfgwASJxtZs8CT5MiIRD0ZUygHJu1QhEkFbEhLHgAMrt0oWiy7MaRZBWymTCysoHvhcJSxxAmexC0nmfiCCtuDUBzqqPfTnxsAlIvr+dQ9GVL4Ay16HO+0QEacWhCfv7bfoo2vOdG2xCrfZa27MniRGYYuchlSwUHVejzvtEBGnFoQl8zyPnvSwOTUhCWQMo51mNIkgrbk1otU4iIzV6xa0JI+FQdCULoJxnNYogrZTMhE6ni\/HZa6wNeK2lDEVnVqNvRJBWSmYCBYlb9BxGlcKoI+3sfKKLph+yCEnnfSKCtOLEBFoMmNRKgGlCvf42\/oO\/9JIneHuQb+XnCVmEpPM+EUFacWICLZdPav+KacKjRx30C77nsXCJyWstUyg6sxp9I4K04sQE2iuX82oH48SEcSlfAOU8q1EEaUVMSAeHosN8UhdNOXlWowjSSilN6HYfQycYxPyt3ZsBlMsR1CNcjf4QQVrJYgIa4ubmw4n\/VFvYBN6i4PU+Ez8bXY4AymQLks77RARpJYsJHIst5605AcImdDrdev1t3zvp2PxyBFAOV6M\/RJBWsphAAxF8Nq\/tfiRZTMgCB1AuRyi6PKtRBGklowmt1slk1QgympAFWvZEKkEA5TyrUQRppdwmYODCNNJfCBx8OH11CQIox1Sjc0SQVtKZQFtGdWbSxJhAvzgAp9rTptP2IIByCULRkSFIOu8TEaSVdCaQq4bmrvMTJcYEEiTmeP7205QmgDJZgaTzPhFBWklnAm0cK8hOzngToBOvTxJzKLqCdE+pia9Gt4ggraQzAa08hy2jCUlngis4gPK0h6LLsxpFkFbEhOxQHFqkqQ6gnGc1iiCtVMGEbvcx\/cCjpy01HIpuqgMokwlIOu8TEaSVsUzAZGxp6b2iTZZGmsAr+J4WJ2iDBNJUh6IjE5B03iciSCtjmcDLboW6o5jEBJz54uK7\/ia9HIquPbUBlJNUoytEkFbGMgE6nJ39MaZMhYolM5YJnuBQdFC+Lpo28qxGEaQVMcEJHEB5ekPR5VmNIkgrlTKh0+liBPPxjH93+gMoJ6\/G7HgR5MnJiVKLl9WL+NtuTyZ6RXYSXgY0skLNG00SmgD4gSkf6xO3bz+gD5\/4A6IpyLkxuxfk4Ycfzj\/77IZSe0rhb\/3q1d379\/VrUwW1ISSdjwIDC3X\/xZwgJTGBoB87mJt7w8ccmAMoT10ouvwbs2NBogvBSXeUQlug1EXHUqsdHU3fhJ7aEJLOR4HmS3vlivnz+klMYFqtE08uJbxWqiWkQt30imcijdmxIG9\/5zvoS9gASk2lGvPz7fbna2sfmU\/HFbyEW3P8u372s182Gu88ePB\/dN7Rt4PUJegdKM4dm8AlBISXc8nv\/\/5\/pzPZ2fnE7Sf7K7n18rdsjVkf5wHHgpx\/7jm4PgEb0K\/81tNPf+tbu7ge6Cn5EXKKvFLYEvyfkvNPzqcE7jT+w4lK6Bia1EWW\/OpX\/4+mxDHHpCg5c+bv8Bdpaek9t5\/ssOTXv\/4N+gtMp\/\/8z\/8XSq584VJkY56dmaE3+sCxIOs3b7ZCNmDQP6vOnD37Ixj54ov\/TR862FdlxtIuVAn+T8n5JwPfJfQUIv7DyXwukZ7DiCwhPWPUjTlG58cp+eIXX8dfJLR7fHjCd3ktQReGM1lZ+eAHPzigEgyS+A\/SrVu9SriinolszLVz5\/RnxXG8vbp96rdojrcXlFKrBzobgWNBbty7tzE7G7Dhp+qpK+olMhVpfv4tdEI0l2g2P+OunShOCZ9w5DGYcaHt4opyCb1KFKSETcDZBo6xldDxGMe4hF4lspSQ1JF2d1tuP1ln+thKMB4uL7+PngtZKoGfT+eD1kgl+EsllGbVH91TM9yMKe2eObPyyiv6o+0crEbprlearyC73e7iN76Bk2YDDpX62uXrX\/mK9ljMhKu+t\/dpoPqKA5+nzg\/DG1Aw39BFxSPehEjgr274eXyMAyjDRdRF7kArwuRZZ\/pZ9PsYjXl2jU6Kvh0jJJXQDTkkctExPHKXMUh\/\/fzZ5\/7H06eaRGOuP\/\/8ycmoyiHhhXRH4+NCeOA0cCxI0Ol00IXMnT+\/WKvduHhxqdEgA1AjaMS8RswJJfCyfLSAjPAZ6vwwuNK4luhTCtuhgHgTcgYCoJNBvWWsNHwUunKeBOLT4HDik3mdk+WHpkUlOKbReAeH4SUqIX71qw5GbA5uwAnihERtjTkWPQ6Ghdd\/IV6PHgRJ4LyP0PM8Cq6Yo17o5y4C9iOhUlChxbktziem81NI0UygR72QzFuaI4GEMGizJ4ImBEnjQ\/gJFbxEH8slAOMwusuA\/EzQ0vCxpGQz4UMCw4OtMUeBUXBheztaedF+7DC+BDkSVCKqgx9gNRN8\/SJEvObz0fkpJLUJaPRol2jTPAo5gfcDmcoJgEuPBsBCYvmhE6cSnBKVmK4venkMhgmnDzgMB9OHcIKntrb2UcbxoC\/HY8utG3pRZ2xMTJAMuh5cnkDtIKHrQq21J\/fMDp+Jzg\/ACU\/LFjCbCSNB+6Y34j+6yAU8lKH1Q2koQU3CMzK\/hVoCCimLw2gQM+UHuULbKToLXDuonc6BE0YFnIaDrgeK66vQIsiD1VHDI5i8IAnUO64KuzRmwrXZ2fkkf1eWT0Dn++A0qMUUc69cgEgTkoB+EDKAbH72sw92dnbgsHW7adprwPdDpfEpQRsoIbGx\/ABNZ+j2NYGToYOzgNZVH8Ru5oT25s4XO1glOSabK9ooiiAZdKLr6x9HurLoI\/N0Zfl7db5PRQQJMGVqzM8v1mp3+7c06i+80GrFjZboUjEzNJ1GODj4anON1LysdLuFJBqoTIedL8Y9jH7h5oRxMrvITU7laBsgk+FKkMcH26sLC70T6bOAs+t1EEOro+Od6OHhsc2VRfeJXlMf5w3+Rp0f4KTDzgebCSPpdDr1559vDm73I7WVql+\/zjc20NDhNJpb9nCx8EW4OuSLAhrrMMxSFmCY+sM\/\/CmdEo7UpX5A14B2gm+nr6OE5pR8qjkGkGPadh4guyCPcTIDCZ6eExUOnZe+GzzeieLCw1+NdGXR9eIlB66\/Bf4inZ9CUpuwdufO1kxwTXxfqeVbt+gAkh\/aN9c\/\/BcqYUFipodCU7QEj1ee+jX4yXR6ZoL+MQ57aS0kwAApPdaMghyIkYbDAAFPmk477Xn2xiW4sjTlCCRc9bFuoyeEP1\/np5B0JqCq585dj9w1dmV2lo4hd9SUH\/xMtPiYZQaGNq8h8Rq9K6IW93sTVIzMfJ6uQbsebtTZGnoWQY4a8vC6cVpZZrom6HGhwEhXFhcYjUkflxn+ZMriouL\/tKdsWgiYQMBhM1snhin4dWi1PHpAbJdV9L7qM089jcEHb8fBeGO6yR5ES2eFoVIXZQPng6sTnihCnOHx2S0hOQ4EmdJjTS9I+trYL8Yhxqs9QaY9yzBoEPBXw\/fNkODfOnFl+QMpy10vZaeCgAkADRR9GRLPozDRomPYy8AxV57+F7shQR4pVVNzOBKtn45MDXs6GXdo0bAc9pvQa+Sw96vnIIabdLaRJ60gR42OPYJ3dBwMj2Ha\/QcCw5cEbS5yApMc\/ijKYkCAJp17WW6BVNAZ6YxhArdOXppn+eEl2EXjHpWAk5OT+tycOUieKPXNy1cuXfrPGE5R53QYVA09pJgKkseLFLi\/mhycA8454Cjh3HCBHN6kjYFma6HJ2mCgStvY0wkywfAYJNGqaBbQwui+QiCRK5vixhp\/gs4XDOgH6oJpLCTUAJ0wj2BsAssPjRXt2HyXjVarVX\/hhduXL28otXLx4vz16+En5eHA48OhCp1PDDRMJ2auQCYE77Ut7o80yiF9AfRg6Q1UcUoKVaYSZAo95gW5srjMgQuGBFcWLTW5K8tv1PmJgqYGIWEo49GJ2zRkSSU8N2P5URaJsuPS7Xb39vY2NjZ2d3c7nYgeDaeEDzdXGnFWOJ+RwsABvCCRvK\/E5fO8uD950giywHo8BQ0XflGkK4tmlMSV5begHSRpZBkxHS18F7SHk+fzZLHxFhYcTw6baQsOM7P0FiSddw3OEwrkPo5PiU8yBhIzEncoNvD5GP3Cl9Lc8loaSitIBt1npCsLJwcTmJjuOXD8yHaTHDRcsx2jWdMdQjQ7KmH5oU+hEhyDYR+jCt5IJQCfED+80Icg6bxnWJDmzBC28Khuwg42hjhdFALW5be4XwwyCNLLPRpfoK3YXFmMRRgDwwNg\/9W\/wF9qZDwxGxc0R4gZJ0BZfBF19jyMoG31v2to\/zT+j7PNOALQxyLpvH9grNlloNLw7ajAsCZRD1SxSq3\/4z\/+X106AIaHu1HUG2oy+aRjGkk1h0xyi7WotFon6F8DnS4SGgecKGpMmDut\/+AHsPA5dRZ\/\/8O\/+Xd\/\/\/enQeXiQcePzzeFRM0O\/hVl0Z4CJQBjI7KRI0kW2DqdDxO+EXF6WfVlNhn3ksMuOgG+zQvzUcnU\/f3Jn\/zksrp0Ts1c+63ZucuXDw8PUYgKRBfJZ04JfVPqDnG6SCXIBIqMDPFTKOi5u8CFR4L3+HtfeeknZ08jA+2eOdN48cXIxx0w6qL18E0UQFLn+xw8HprywzQv3lt2BRul8xYG+xwXtkM7rnAd+y+l94egSbN+aBckauPo6OgPLlzmlZUTfMXsheeufY\/PmdLS0ntJJvylIZ0gjWlkVF3hKk7L6AlPEl6Q6crOqG\/fUacxgShtzcys3bmDI6E3czJJ8sPbdf7JE7oNyHM\/gHEP4g+7xDnARum8BX01I68Z9b3upidU1b\/7u1s3rl6FCM1K7ip1teeS\/JDOGQ6Lc5eh+KQUJOBudWhTef+pj2iZFhs4meTK1tQ18ykHSmg68Kno1gtGPP2eJ09ojA3cVMw48XMItWwknbfQF1205kiPDrtX+K7wDu7f\/59LtZpZw5ReVWfOnXslt8X9ApJekD3ooaveJeuzMPzIxxSCceyfXXrmUaihIIHl5b2vf\/1NvhdafJIJMkaPNHa6v313797r3306GC4UaUOpv\/qr\/6oPqiTZBFlGlm\/d2g81lJZSV9Qz1Lgxq5mUCzouiQQZMwh60OOuXty\/e1NFCHL5ypX9\/X19aCURQQZpNpuL165hPmM2lD\/+wuwZ9Qq3byQ4t4G7qQWEz1bno8hHj53+A83m4v5V9dWfq6fNSu79bIbl5ll1EEFGsHv\/fv3q1Z3+8w27aCW12o\/uraNrp62bgTRvBGIvGnySOh8B6TGGrHqkxf3BkqNOyH7\/+w9e\/trv3D1\/\/rBfz2tnz9ZfeCFZqMUyI4KMpt1u33311cV6feXP\/gxjpi7tNy\/Ij+7uBNJyMaJXmvC56XwYn+NjksX9nZ2dpUYD9by1tVXxsZEQQabkyBK9klxZXgefLHxWOh\/Ckx7399u03mgmTB0rsrifBRFkJrqxgdh3JhG90oRPRueDONYjagMmh92Hqi3uZ0EE6Qa4shuWQOxw2yblyvI56HyAkXqMfi0C9Dvr6x\/TNglOcB+qubifBRGkYzAURLqymDvBlc25dfK36\/wwTvQIi2AvfxElKBPdUxrvgM6JGPHt5qFO7gQXgsoK0rychL7+ui0OSHepO50uXNnwPAqJXFm+q+EV\/lKdHyKrHtH1hG87w0eAddkWaQf7Z+Oqnq9SeaRIVHqEHFzVwKZqKl5YRWnmiw1XFr6cuf7GCa6suevaB\/xdOn\/KIHBuRJAmFoT18QD0NbQl1UyBTfZZ0J2lXWullaMIsndVh9rk8cH2Ql+LOu8KjCdQYKQru+YtEDt\/i84P6DdmA66BsN9gNPnw4j4l2OV0g8Rgl7RthMZl00Hyy6fHagsy6LT1hg2\/O+PRpuHRRbqy9br7QOz84TqfFozzmAAHehNMFNGV4CV9kCtwEVZpjI7UG+S4eqA7Dotip5kqC3JIj\/7FOASGxEhXFo0eA46rRQL+WJ0fnySL+27p6fFAzxrCguy\/qq9cGfVYZUEaeuw5QfmJcQjMu8ItHgmNHorN6Mryp+n8OOztfTqJxf3+ABjoLBmSY+RUoyxUV5B0yRe2e3PGic9FyJWlh5sDCapI7cryh+h8Arrdx1u5\/H5bNFqPfHXM66LlWGo9VleQ2uvpUaQriyERE7NIV3YlWfRKE367zsdShMX9gR616ExBQo6UK7UeKytI3QOvkiwnPkKGgccY6cpi7IJsEt5K4XfpvIWW\/ffb8t36x3ocXKBBDi8MrlG59VhVQZ56RPr6FvQCQw\/wV8OLfkhwZTGdi1+C54N1PoS3xf1UGHrU14VUaMgxqNTSUU1BnuoRFFuSGjiNd+2B2G2zOz5M5wdAbL4X91MwpLtTQQ4Vl12P1RTkkB57UIFZUljgylJkrUDCsBYILXlycqLU4mX1Iv6221pmnU4Xh4WFDVVP+pGxYeENlLdtjJogdOnKRhUFGXVRp2KYPAWu7NZWM9KVxSiH0e\/DB\/97\/tlnN5Ta60eOql+9+sbf9Xa357S4n4KAHqOvSOn1WEVB2i4qlU\/Z1cawBpkFbo0q9Rdf\/cL5jhGupgtNqlmlVvgYjKiQtKfF\/fE57tX+wrYhPhKkKcferkZ9iaaj20xD1QTJFzW0D2DQI4OICN7FBnNCuLJ8ewZuKgZGViOlZu\/3j6\/h1QI+ua\/rvQ93iLzO0f+\/ftWgnPPIaglSX0pmcMUNMZ4yXUMlAVd2c\/Ph1Zkr5o8fU8IgeeYLT+exuC9koJI3dcpO\/ebNVkiQ8GBr587pI4SiIoIsIRv37m3MBsMQ7545s\/LKK\/oIoaiIIEtIt9td\/MY3oEBW46FS9eefPzkpRCw8IQYRZDnpdDoYD+fOn1+s1W5cvLjUaIgapwIRZJmBCI+OjiQc+BQhghSEAiGCFIQCIYIUhAIhghSEAiGCLB9R+8xA9M9bh7eMCpNEBFlO+pu1TaUNCgIbAoOHCRNGBFlSSGlDQosQH42P07hrt6yIIMtJlCeqt9Cb8utrVPRYIESQpSRyZhgxQvaKAkcJE0UEWUYSjo+9Mhkei4UIsoSQ9lhqx8cH2\/3fr+ndZqUizcGqDI8FQwRZPvRYaBKSolBQRJClIzw+6p+CFOd0ChBBlo2AHgl9P0c0WXhEkCUjUo+iyKlBBFkuLHoUQU4LIshSIXqcdkSQZSJaj4NtrLIFYAoQQZaHY\/3L\/IbuBiuQvWIZHacBEWRJINWFWVhYWN2OeOxKKCYiSEEoECJIQSgQIkhBKBAiSEEoECJIQSgQIkhBKBAiSEEoECJIQSgQIkhBKBAiSEEoECJIQSgQIkhBKBAiSEEoDE+e\/H8uM4IrwqXJhAAAAABJRU5ErkJggg==\" y=\"0.5\"><\/image> <\/g> <\/svg><\/span><\/p>","options":["<span class=\"math-tex\">$\\frac{\\sqrt{2}}{3}{{a}^{3}}$<\/span>","<span class=\"math-tex\">$\\frac{\\sqrt{2}}{6}{{a}^{3}}$<\/span>","<span class=\"math-tex\">$\\frac{3\\sqrt{2}}{2}{{a}^{3}}$<\/span>","<span class=\"math-tex\">$\\frac{\\sqrt{2}}{2}{{a}^{3}}$<\/span>"],"correct":"3","answer":"<p> <br \/>G\u1ecdi J, K, H theo th\u1ee9 t\u1ef1 là trung \u0111i\u1ec3m c\u1ee7a BC, B’C’, KA’.<br \/><span class=\"math-tex\">$MH\/\/BC\\Rightarrow \\left( MBC \\right)\\equiv \\left( MHJB \\right)$<\/span><\/p><p><span class=\"math-tex\">${B}’{C}’\/\/\\left( MBC \\right)$<\/span><br \/><span class=\"math-tex\">$\\Rightarrow d\\left( {C}’,\\left( MBC \\right) \\right)=d\\left( K,\\left( MBC \\right) \\right)$<\/span><br \/><span class=\"math-tex\">$MH\\bot KA’,\\ MH\\bot JK$<\/span><\/p><p><span class=\"math-tex\">$\\Rightarrow MH\\bot \\left( JKH \\right)$<\/span><\/p><p><span class=\"math-tex\">$\\Rightarrow \\left( JKH \\right)\\bot \\left( MHJB \\right)$<\/span> <br \/>G\u1ecdi L là hình chi\u1ebfu c\u1ee7a K trên JH <span class=\"math-tex\">$\\Rightarrow d\\left( K,\\left( MBC \\right) \\right)=KL$<\/span><br \/>Tam giác JKH vuông t\u1ea1i K có \u0111\u01b0\u1eddng cao KL ta có <span class=\"math-tex\">$KL=\\frac{a\\sqrt{2}}{2},\\ KH=\\frac{a\\sqrt{3}}{2}$<\/span><\/p><p>Do \u0111ó <br \/><span class=\"math-tex\">$KL=\\frac{a\\sqrt{2}}{2},\\ KH=\\frac{a\\sqrt{3}}{2};\\ \\ \\frac{1}{K{{L}^{2}}}=\\frac{1}{K{{H}^{2}}}+\\frac{1}{K{{J}^{2}}}$<\/span><\/p><p><span class=\"math-tex\">$\\Rightarrow KJ=\\frac{a\\sqrt{6}}{2}$<\/span> là \u0111\u1ed9 dài \u0111\u01b0\u1eddng cao c\u1ee7a l\u0103ng tr\u1ee5. <\/p><p><span class=\"math-tex\">${{V}_{ABC.A’B’C’}}=KJ.{{S}_{ABC}}=\\frac{3\\sqrt{2}}{2}{{a}^{3}}$<\/span><\/p>","type":"choose","user_id":"108","test":"0","date":"2020-03-28 09:51:53"}]}