{"save":1,"level":1,"time":"15","total":10,"point":5,"segment":[{"id":"10413","test_id":"698","question":"<p>Cho tam giác MNP. G\u1ecdi H và K l\u1ea7n l\u01b0\u1ee3t là trung \u0111i\u1ec3m c\u1ee7a MN và MP. G\u1ecdi Q là giao \u0111i\u1ec3m c\u1ee7a NK và PH. Các kh\u1eb3ng \u0111\u1ecbnh sau \u0111úng hay sai?<\/p><p>(1) Q là tr\u1ecdng tâm c\u1ee7a tam giác MNP.<\/p><p>(2) Q cách \u0111\u1ec1u ba c\u1ea1nh c\u1ee7a tam giác MNP.<\/p><p>(3) <span class=\"math-tex\">$\\dfrac{NQ}{NK}=\\dfrac{2}{3}$<\/span> .<\/p><p>(4) G\u1ecdi giao \u0111i\u1ec3m c\u1ee7a MQ v\u1edbi NP là I thì IN = IP.<\/p>","options":["<strong>A.<\/strong> (1) \u0110úng. (2) \u0110úng. (3) Sai. (4) \u0110úng.","<strong>B.<\/strong> (1) \u0110úng. (2) Sai. (3) \u0110úng. (4) Sai.","<strong>C.<\/strong> (1) \u0110úng. (2) Sai. (3) Sai. (4) \u0110úng.","<strong>D.<\/strong> (1) \u0110úng. (2) Sai. (3) \u0110úng. (4) \u0110úng."],"correct":"4","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><strong>D.<\/strong> (1) \u0110úng. (2) Sai. (3) \u0110úng. (4) \u0110úng.<\/span><\/p><p><span class=\"svgedit\"><svg height=\"165\" width=\"270\"> <g>\\n<title><\/title>\\n<rect fill=\"#fff\" height=\"167\" id=\"canvas_background\" width=\"272\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>\\n<title><\/title>\\n<g id=\"svg_16\"> <g id=\"svg_4\"> <line fill=\"none\" id=\"svg_1\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"15\" x2=\"255\" y1=\"146\" y2=\"146\"><\/line> <line fill=\"none\" id=\"svg_2\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"15\" x2=\"86\" y1=\"146.25\" y2=\"17.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_3\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"86\" x2=\"255\" y1=\"17\" y2=\"146.25\"><\/line> <\/g> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_5\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"14.99999\" x2=\"167\" y1=\"145.25\" y2=\"79.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_6\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"253\" x2=\"51.00001\" y1=\"145.25\" y2=\"78.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_7\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"86\" x2=\"134\" y1=\"16.25\" y2=\"146.25\"><\/line> <ellipse cx=\"117\" cy=\"100.75\" fill=\"#ff0000\" id=\"svg_8\" rx=\"3\" ry=\"3\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"1.5\"><\/ellipse> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_9\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"80\" xml:space=\"preserve\" y=\"14.25\">M<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_10\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"1\" xml:space=\"preserve\" y=\"151.25\">N<\/text> <text fill=\"#000000\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_11\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"258\" xml:space=\"preserve\" y=\"148.25\">P<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_12\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"172\" xml:space=\"preserve\" y=\"78.25\">K<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_13\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"37\" xml:space=\"preserve\" y=\"82.25\">H<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_14\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"116\" xml:space=\"preserve\" y=\"91.25\">Q<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_15\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"132\" xml:space=\"preserve\" y=\"160.25\">I<\/text> <\/g> <\/g> <\/svg><\/span><\/p><p>(1) Q là tr\u1ecdng tâm c\u1ee7a tam giác MNP.<\/p><p>\u0110úng.<\/p><p>Vì H, K l\u1ea7n l\u01b0\u1ee3t là trung \u0111i\u1ec3m c\u1ee7a MN và MP nên NK và PH là các \u0111\u01b0\u1eddng trung tuy\u1ebfn.<\/p><p>Mà NK c\u1eaft PH t\u1ea1i Q nên Q là tr\u1ecdng tâm tam giác MNP.<\/p><p>(2) Q cách \u0111\u1ec1u ba c\u1ea1nh c\u1ee7a tam giác MNP.<\/p><p>Sai.<\/p><p>Q là tr\u1ecdng tâm, không ph\u1ea3i giao \u0111i\u1ec3m c\u1ee7a ba \u0111\u01b0\u1eddng phân giác nên Q không cách \u0111\u1ec1u ba c\u1ea1nh c\u1ee7a tam giác MNP.<\/p><p>(3) <span class=\"math-tex\">$\\dfrac{NQ}{NK}=\\dfrac{2}{3}$<\/span> .<\/p><p>\u0110úng.<\/p><p>Vì Q là tr\u1ecdng tâm giác MNP nên theo tính ch\u1ea5t tr\u1ecdng tâm ta có <span class=\"math-tex\">$\\dfrac{NQ}{NK}=\\dfrac{2}{3}$<\/span>.<\/p><p>(4) G\u1ecdi giao \u0111i\u1ec3m c\u1ee7a MQ v\u1edbi NP là I thì IN = IP.<\/p><p>\u0110úng.<\/p><p>Vì Q là tr\u1ecdng tâm tam giác MNP nên MQ là \u0111\u01b0\u1eddng trung tuy\u1ebfn th\u1ee9 ba. Mà MQ c\u1eaft NP t\u1ea1i I nên I là trung \u0111i\u1ec3m c\u1ee7a NP hay IN = IP.<\/p>","type":"choose","user_id":"126","test":"1","date":"2025-08-04 09:13:37"},{"id":"10414","test_id":"698","question":"<p>G\u1ecdi I là giao \u0111i\u1ec3m c\u1ee7a ba \u0111\u01b0\u1eddng phân giác trong tam giác ABC. Tính góc BAC khi bi\u1ebft góc BIC b\u1eb1ng 144°.<\/p>","options":["<p dir=\"ltr\"><b id=\"docs-internal-guid-48f4c844-7fff-fba7-4d67-23c01a1b0785\">A.<\/b> 108°<\/p>","<p dir=\"ltr\"><b id=\"docs-internal-guid-48f4c844-7fff-fba7-4d67-23c01a1b0785\">B.<\/b> 72°<\/p>","<p dir=\"ltr\"><b id=\"docs-internal-guid-48f4c844-7fff-fba7-4d67-23c01a1b0785\">C.<\/b> 36°<\/p>","<p dir=\"ltr\"><b id=\"docs-internal-guid-48f4c844-7fff-fba7-4d67-23c01a1b0785\">D.<\/b> 114°<\/p>"],"correct":"1","answer":"<p>Ch\u1ecdn <span style=\"color:#16a085;\"><b id=\"docs-internal-guid-48f4c844-7fff-fba7-4d67-23c01a1b0785\">A.<\/b> 108°.<\/span><\/p><p><span class=\"svgedit\"><svg height=\"140\" width=\"290\"> <g> <title><\/title> <rect fill=\"#fff\" height=\"142\" id=\"canvas_background\" width=\"292\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> <title><\/title> <g id=\"svg_20\"> <line fill=\"none\" id=\"svg_1\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-width=\"1.5\" x1=\"14\" x2=\"270.00001\" y1=\"129.25\" y2=\"129.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_2\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"14\" x2=\"108\" y1=\"129.25\" y2=\"14.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_3\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"107.99999\" x2=\"271\" y1=\"15.25\" y2=\"129.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_4\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"14\" x2=\"119\" y1=\"129.25\" y2=\"80.25\"><\/line> <line fill=\"none\" fill-opacity=\"null\" id=\"svg_5\" stroke=\"#000\" stroke-linecap=\"undefined\" stroke-linejoin=\"undefined\" stroke-opacity=\"null\" stroke-width=\"1.5\" x1=\"269\" x2=\"117\" y1=\"128.25\" y2=\"80.25\"><\/line> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_6\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"103\" xml:space=\"preserve\" y=\"14.25\">A<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_7\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"1\" xml:space=\"preserve\" y=\"135.25\">B<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_8\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"272\" xml:space=\"preserve\" y=\"133.25\">C<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_9\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"115\" xml:space=\"preserve\" y=\"76.25\">I<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_10\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-2 43.499999999998636,120.75000000000001) \" x=\"41\" xml:space=\"preserve\" y=\"126.25\">)<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_11\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(-41 39.5,106.75) \" x=\"37\" xml:space=\"preserve\" y=\"112.25\">)<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_12\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"229\" xml:space=\"preserve\" y=\"128.25\">(<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_13\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(28 227.50000000000009,105.74999999999996) \" x=\"225\" xml:space=\"preserve\" y=\"111.25\">(<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_14\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" transform=\"rotate(28 231.0000000000001,98.74999999999997) \" x=\"227\" xml:space=\"preserve\" y=\"104.25\">_<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_15\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"227\" xml:space=\"preserve\" y=\"120.25\">_<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_16\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"99\" xml:space=\"preserve\" y=\"102.25\">144<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_18\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"123\" xml:space=\"preserve\" y=\"94.25\">o<\/text> <text fill=\"#000000\" fill-opacity=\"null\" font-family=\"Helvetica, Arial, sans-serif\" font-size=\"15\" font-weight=\"bold\" id=\"svg_19\" stroke=\"#000\" stroke-opacity=\"null\" stroke-width=\"0\" text-anchor=\"start\" x=\"103\" xml:space=\"preserve\" y=\"35.25\">?<\/text> <\/g> <\/g> <\/svg><\/span><\/p><p>Áp d\u1ee5ng \u0111\u1ecbnh lí t\u1ed5ng ba góc trong tam giác BIC có<\/p><p><span class=\"math-tex\">$\\widehat{IBC}+\\widehat{ICB}+\\widehat{BIC}=180^0$<\/span> suy ra <span class=\"math-tex\">$\\widehat{IBC}+\\widehat{ICB}=180^0-\\widehat{BIC}=180^0-144^0=36^0$<\/span>.<\/p><p>Vì I là giao \u0111i\u1ec3m c\u1ee7a ba \u0111\u01b0\u1eddng phân giác nên BI là \u0111\u01b0\u1eddng phân giác c\u1ee7a góc ABC và CI là \u0111\u01b0\u1eddng phân giác c\u1ee7a góc ACB.<\/p><p>Suy ra <span class=\"math-tex\">$\\widehat{ABC}=2\\widehat{IBC}$<\/span> ; <span class=\"math-tex\">$\\widehat{ACB}=2\\widehat{ICB}$<\/span>.<\/p><p>Khi \u0111ó <span class=\"math-tex\">$\\widehat{ABC}+\\widehat{ACB}=2\\widehat{IBC}+2\\widehat{ICB}=2(\\widehat{IBC}+\\widehat{ICB})=2.36^0=72^0$<\/span>.<\/p><p>Áp d\u1ee5ng \u0111\u1ecbnh lí t\u1ed5ng ba góc trong tam giác ABC có<\/p><p><span class=\"math-tex\">$\\widehat{BAC}+\\widehat{ABC}+\\widehat{ACB}=180^0$<\/span><\/p><p>Suy ra <span class=\"math-tex\">$\\widehat{BAC}=180^0-(\\widehat{ABC}+\\widehat{ACB})$<\/span> <span class=\"math-tex\">$=180^0-72^0=108^0$<\/span>.<\/p>","type":"choose","user_id":"126","test":"1","date":"2025-08-04 09:14:55"}]}