Quyền lợi thành viên thường & thành viên Vip
Thành viên thường
Thành viên VIP
Học và làm bài tập 3 - 5 bài miễn phí (chọn sẵn) Tất cả (không giới hạn)
Xem đáp án, lời giải chi tiết
Làm bài kiểm tra Tất cả (không giới hạn)
Toán vui mỗi ngày
Toán vui mỗi tuần
Thi đấu kiến thức Không giới hạn
Hỏi đáp nhanh
Danh sách bạn bè Tối đa 50 bạn Tối đa 200 bạn
Xem bài giảng video
(Sắp ra mắt)
Xem toàn bộ, không giới hạn
Phí thành viên
Free 200.000 đ/năm
ĐĂNG KÝ VIP
Thành viên VIP sẽ được hưởng tất cả các quyền lợi VIP trong vòng 1 năm (365 ngày).
(học được tất cả các lớp, tất cả các môn có trên website)

Hỏi đáp Toán lớp 7 - câu hỏi số 32440

thành viên nguyenbaolinh12
nguyenbaolinh12
Gửi lúc: 21:25 28-03-2020

Cho tam giác BFC cân tại B . Kẻ FE vuông góc với BC tại E . CA vuông góc vs BF tại A 

a) Chứng minh : \(\Delta\)BEF = \(\Delta\)BAC 

b) FE cắt A tại D .Chứng minh BD là tia phân giác của góc ABC

c) Gọi M là trung điểm của FC . Chứng minh BM vuông góc vs AE

Câu hỏi Toán lớp 7
Học và làm bài tập Toán lớp 7
26 Trả lời
Theo dõi câu hỏi này
Chia sẻ Facebook
Trả lời câu hỏi này

Bạn tự vẽ hình nhaleu 

a.
Xét tam giác ABI và tam giác EBI có:
AIB = EIB ( = 900)
BI là cạnh chung
IBA = IBE (BI là tia phân giác của ABE)
=> Tam giác ABI = Tam giác EBI (g.c.g)
=> AB = EB (2 cạnh tương ứng)
b.
Xét tam giác ABD và tam giác EBD có:
BA = BE (theo câu a)
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
=> BAD = BED (2 góc tương ứng)
mà BAD = 900
=> BED = 900
=> Tam giác BED vuông tại E
c.
BA = BE (theo câu a)
=> Tam giác BAE cân tại B
=> BAE=1800−ABE2BAE=1800−ABE2 (1)
Xét tam giác ADF và tam giác EDC có:
ADF = EDC (2 góc đối đỉnh)
AD = ED (tam giác ABD = tam giác EBD)
FAD = CED ( = 900)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Ta có:
BF = BA + AF
BC = BE + EC
mà BA = BE (theo câu a)
      AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> BFC=1800−FBC2BFC=1800−FBC2 (2)
Từ (1) và (2)
=> BAE = BFC
mà 2 góc này ở vị trí đồng vị
=> AE // FC
Chúc bạn học tốtok
Báo cáo sai phạm
nguyenbaolinh12 đã chọn câu trả lời này

câu c you tự vẹo cổ như you từng nói

Báo cáo sai phạm
nguyenbaolinh12 đã chọn câu trả lời này
) Xét hai tam giác vuông ΔBEFΔBEF và ΔBACΔBAC có:
BF=BCBF=BC (do ΔBFCΔBFC cân đỉnh B)
ˆBB^ chung
⇒ΔBEF=ΔBAC⇒ΔBEF=ΔBAC (cạnh huyền-góc nhọn).
 
b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCAΔBEF=ΔBAC⇒BFE^=BCA^ (hai tương ứng)
Mà ΔBFCΔBFC cân đỉnh BB nên: ˆBFC=ˆBCFBFC^=BCF^
ˆBFC−ˆBFE=ˆBCF−ˆBCABFC^−BFE^=BCF^−BCA^
⇒ˆEFC=ˆACF⇒EFC^=ACF^ hay ˆDFC=ˆDCF⇒ΔDFCDFC^=DCF^⇒ΔDFC cân đỉnh D⇒DF=DCD⇒DF=DC
Xét ΔBFDΔBFD và ΔBCDΔBCD có:
BF=BCBF=BC (giả thiết)
BDBD chung
DF=DCDF=DC (cmt)
⇒ΔBFD=ΔBCD⇒ΔBFD=ΔBCD (c.c.c)
⇒ˆFBD=ˆCBD⇒FBD^=CBD^ (hai góc tương ứng)
⇒BD⇒BD là phân giác ˆFBCFBC^.
 
c) ΔBEF=ΔBAC⇒BE=BAΔBEF=ΔBAC⇒BE=BA
⇒BF−BA=BC−BE⇒BF−BA=BC−BE hay AF=ECAF=EC
Xét ΔAFMΔAFM và ΔECMΔECM có:
FM=CMFM=CM (do M là trung điểm cạnh FC)
ˆAFM=ˆECMAFM^=ECM^ (giả thiết)
AF=ECAF=EC (cmt)
⇒ΔAFM=ΔECM⇒ΔAFM=ΔECM (c.g.c)
⇒MA=ME⇒MA=ME lại có BA=BE⇒MBBA=BE⇒MB là trung trực của AEAE
⇒MB⊥AE⇒MB⊥AE.
Báo cáo sai phạm
) Xét hai tam giác vuông ΔBEFΔBEF và ΔBACΔBAC có:
BF=BCBF=BC (do ΔBFCΔBFC cân đỉnh B)
ˆBB^ chung
⇒ΔBEF=ΔBAC⇒ΔBEF=ΔBAC (cạnh huyền-góc nhọn).
 
b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCAΔBEF=ΔBAC⇒BFE^=BCA^ (hai tương ứng)
Mà ΔBFCΔBFC cân đỉnh BB nên: ˆBFC=ˆBCFBFC^=BCF^
ˆBFC−ˆBFE=ˆBCF−ˆBCABFC^−BFE^=BCF^−BCA^
⇒ˆEFC=ˆACF⇒EFC^=ACF^ hay ˆDFC=ˆDCF⇒ΔDFCDFC^=DCF^⇒ΔDFC cân đỉnh D⇒DF=DCD⇒DF=DC
Xét ΔBFDΔBFD và ΔBCDΔBCD có:
BF=BCBF=BC (giả thiết)
BDBD chung
DF=DCDF=DC (cmt)
⇒ΔBFD=ΔBCD⇒ΔBFD=ΔBCD (c.c.c)
⇒ˆFBD=ˆCBD⇒FBD^=CBD^ (hai góc tương ứng)
⇒BD⇒BD là phân giác ˆFBCFBC^.
 
c) ΔBEF=ΔBAC⇒BE=BAΔBEF=ΔBAC⇒BE=BA
⇒BF−BA=BC−BE⇒BF−BA=BC−BE hay AF=ECAF=EC
Xét ΔAFMΔAFM và ΔECMΔECM có:
FM=CMFM=CM (do M là trung điểm cạnh FC)
ˆAFM=ˆECMAFM^=ECM^ (giả thiết)
AF=ECAF=EC (cmt)
⇒ΔAFM=ΔECM⇒ΔAFM=ΔECM (c.g.c)
⇒MA=ME⇒MA=ME lại có BA=BE⇒MBBA=BE⇒MB là trung trực của AEAE
⇒MB⊥AE⇒MB⊥AE.
Báo cáo sai phạm

sai òi bạn ạ linhlonglanh123

Báo cáo sai phạm
Bạn tự vẽ hình nhaleu 
a.
Xét tam giác ABI và tam giác EBI có:
AIB = EIB ( = 900)
BI là cạnh chung
IBA = IBE (BI là tia phân giác của ABE)
=> Tam giác ABI = Tam giác EBI (g.c.g)
=> AB = EB (2 cạnh tương ứng)
b.
Xét tam giác ABD và tam giác EBD có:
BA = BE (theo câu a)
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
=> BAD = BED (2 góc tương ứng)
mà BAD = 900
=> BED = 900
=> Tam giác BED vuông tại E
c.
BA = BE (theo câu a)
=> Tam giác BAE cân tại B
=> BAE=1800−ABE2BAE=1800−ABE2 (1)
Xét tam giác ADF và tam giác EDC có:
ADF = EDC (2 góc đối đỉnh)
AD = ED (tam giác ABD = tam giác EBD)
FAD = CED ( = 900)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Ta có:
BF = BA + AF
BC = BE + EC
mà BA = BE (theo câu a)
      AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> BFC=1800−FBC2BFC=1800−FBC2 (2)
Từ (1) và (2)
=> BAE = BFC
mà 2 góc này ở vị trí đồng vị
=> AE // FC
Chúc bạn học tốtok
 
Báo cáo sai phạm
Bạn tự vẽ hình nhaleu
a.
Xét tam giác ABI và tam giác EBI có:
AIB = EIB ( = 900)
BI là cạnh chung
IBA = IBE (BI là tia phân giác của ABE)
=> Tam giác ABI = Tam giác EBI (g.c.g)
=> AB = EB (2 cạnh tương ứng)
b.
Xét tam giác ABD và tam giác EBD có:
BA = BE (theo câu a)
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
=> BAD = BED (2 góc tương ứng)
mà BAD = 900
=> BED = 900
=> Tam giác BED vuông tại E
c.
BA = BE (theo câu a)
=> Tam giác BAE cân tại B
=> BAE=1800−ABE2BAE=1800−ABE2 (1)
Xét tam giác ADF và tam giác EDC có:
ADF = EDC (2 góc đối đỉnh)
AD = ED (tam giác ABD = tam giác EBD)
FAD = CED ( = 900)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Ta có:
BF = BA + AF
BC = BE + EC
mà BA = BE (theo câu a)
      AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> BFC=1800−FBC2BFC=1800−FBC2 (2)
Từ (1) và (2)
=> BAE = BFC
mà 2 góc này ở vị trí đồng vị
=> AE // FC
Chúc bạn học tốtok
Báo cáo sai phạm
Xét tam giác ABI và tam giác EBI có:
AIB = EIB ( = 900)
BI là cạnh chung
IBA = IBE (BI là tia phân giác của ABE)
=> Tam giác ABI = Tam giác EBI (g.c.g)
=> AB = EB (2 cạnh tương ứng)
b.
Xét tam giác ABD và tam giác EBD có:
BA = BE (theo câu a)
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
=> BAD = BED (2 góc tương ứng)
mà BAD = 900
=> BED = 900
=> Tam giác BED vuông tại E
c.
BA = BE (theo câu a)
=> Tam giác BAE cân tại B
=> BAE=1800−ABE2BAE=1800−ABE2 (1)
Xét tam giác ADF và tam giác EDC có:
ADF = EDC (2 góc đối đỉnh)
AD = ED (tam giác ABD = tam giác EBD)
FAD = CED ( = 900)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Ta có:
BF = BA + AF
BC = BE + EC
mà BA = BE (theo câu a)
      AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> BFC=1800−FBC2BFC=1800−FBC2 (2)
Từ (1) và (2)
=> BAE = BFC
mà 2 góc này ở vị trí đồng vị
=> AE // FC
Báo cáo sai phạm
Xét tam giác ABI và tam giác EBI có:
AIB = EIB ( = 900)
BI là cạnh chung
IBA = IBE (BI là tia phân giác của ABE)
=> Tam giác ABI = Tam giác EBI (g.c.g)
=> AB = EB (2 cạnh tương ứng)
b.
Xét tam giác ABD và tam giác EBD có:
BA = BE (theo câu a)
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
=> BAD = BED (2 góc tương ứng)
mà BAD = 900
=> BED = 900
=> Tam giác BED vuông tại E
c.
BA = BE (theo câu a)
=> Tam giác BAE cân tại B
=> BAE=1800−ABE2BAE=1800−ABE2 (1)
Xét tam giác ADF và tam giác EDC có:
ADF = EDC (2 góc đối đỉnh)
AD = ED (tam giác ABD = tam giác EBD)
FAD = CED ( = 900)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Ta có:
BF = BA + AF
BC = BE + EC
mà BA = BE (theo câu a)
      AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> BFC=1800−FBC2BFC=1800−FBC2 (2)
Từ (1) và (2)
=> BAE = BFC
mà 2 góc này ở vị trí đồng vị
=> AE // FC
Báo cáo sai phạm
Xét tam giác ABI và tam giác EBI có:
AIB = EIB ( = 900)
BI là cạnh chung
IBA = IBE (BI là tia phân giác của ABE)
=> Tam giác ABI = Tam giác EBI (g.c.g)
=> AB = EB (2 cạnh tương ứng)
b.
Xét tam giác ABD và tam giác EBD có:
BA = BE (theo câu a)
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
=> BAD = BED (2 góc tương ứng)
mà BAD = 900
=> BED = 900
=> Tam giác BED vuông tại E
c.
BA = BE (theo câu a)
=> Tam giác BAE cân tại B
=> BAE=1800−ABE2BAE=1800−ABE2 (1)
Xét tam giác ADF và tam giác EDC có:
ADF = EDC (2 góc đối đỉnh)
AD = ED (tam giác ABD = tam giác EBD)
FAD = CED ( = 900)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Ta có:
BF = BA + AF
BC = BE + EC
mà BA = BE (theo câu a)
      AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> BFC=1800−FBC2BFC=1800−FBC2 (2)
Từ (1) và (2)
=> BAE = BFC
mà 2 góc này ở vị trí đồng vị
=> AE // FC
Báo cáo sai phạm

bt thì bt nhưng lười chả mún làm

Báo cáo sai phạm

bt thì bt nhưng lười chả mún làm

Báo cáo sai phạm

bt thì bt nhưng lười chả mún làm

Báo cáo sai phạm

b) từ a=> BE=BA

xét t.g BAD và BED có:

BA=BE(cmt)

góc BAD=BED=90o

BD: cạnh chung

=>= nhau(cạnh huyền-cạnh góc vuông)

=>BD là tia phân giác của góc ABC

Báo cáo sai phạm

a) ΔBEF và ΔBAC có:

góc BEF=BAC(=90o)

BF=BC(t.g BFC cân tại B)

góc A: góc chung

=> ΔBEF = ΔBAC (g.c.g)

 

Báo cáo sai phạm

thì tôi  đang cố để lm you hiểu

Báo cáo sai phạm

thì tôi  đang cố để lm you hiểu

Báo cáo sai phạm

-_-" đầu óc quay cuồng chỉ để đọc bài của you mak ko hỉu

Báo cáo sai phạm

đầu quay 180 độ mak ko hỉu á

Báo cáo sai phạm
Xem câu hỏi của:
Lọc câu hỏi
Bảng xếp hạng tuần
Xem bảng xếp hạng
Bạn hãy đăng ĐĂNG NHẬP mới được thực hiện tính năng này