Thành viên thường |
Thành viên VIP |
|
---|---|---|
Học và làm bài tập | 3 - 5 bài miễn phí (chọn sẵn) | Tất cả (không giới hạn) |
Xem đáp án, lời giải chi tiết | ||
Làm bài kiểm tra | Tất cả (không giới hạn) | |
Toán vui mỗi ngày | ||
Toán vui mỗi tuần | ||
Thi đấu kiến thức | Không giới hạn | |
Hỏi đáp nhanh | ||
Danh sách bạn bè | Tối đa 50 bạn | Tối đa 200 bạn |
Xem bài giảng video (Sắp ra mắt) |
Xem toàn bộ, không giới hạn |
|
Phí thành viên |
Free | 200.000 đ/năm |
ĐĂNG KÝ VIP |
Một đội tuyển tham dự kỳ thi học sinh giỏi 3 môn Văn, Toán, Ngoại ngữ do thành phố tổ chức đạt được 15 giải. Hỏi đội tuyển học sinh giỏi đó có bao nhiêu học sinh? Biết rằng:
Học sinh nào cũng có giải.
Bất kỳ môn nào cũng có ít nhất 1 học sinh chỉ đạt 1 giải.
Bất kỳ hai môn nào cũng có ít nhất 1 học sinh đạt giải cả hai môn.
Có ít nhất 1 học sinh đạt giải cả 3 môn.
Tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần.
Bài giải
Gọi số học sinh đạt giải cả 3 môn là a (học sinh)
Gọi số học sinh đạt giải cả 2 môn là b (học sinh)
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh)
Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải).
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. - Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. Do vậy b= 3. Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1. Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải.
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).
Đáp số : 10 bạn
10 bn
10
bo may
10
chúc bạn học tốt
10
10
10 bn đấy nha
10
Gọi số học sinh đạt giải cả 3 môn là a (học sinh)
Gọi số học sinh đạt giải cả 2 môn là b (học sinh)
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh)
Tổng số giải đạt được là:
3 x a + 2 x b + c = 15 (giải
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c.
Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên:
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ.
Do vậy b = 3.
Giải sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là:
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.
Ta có:
3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12.
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng).
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c).
Đội tuyển đó có số học sinh là:
1 + 3 + 6 = 10 (bạn)
Đáp số: 10 bạn
=10
10 bạn
10
10 bạn
10
10 bạn
10
10 bạn
10
Bài giải
Gọi số học sinh đạt giải cả 3 môn là a (học sinh)
Gọi số học sinh đạt giải cả 2 môn là b (học sinh)
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh)
Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải).
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. - Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. Do vậy b= 3. Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1. Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải.
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).
Đáp số : 10 bạn
Bài giải: Gọi số học sinh đạt giải cả 3 môn là a (học sinh) Gọi số học sinh đạt giải cả 2 môn là b (học sinh) Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh) Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. - Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. Do vậy b= 3. Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1. Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải. Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).
Bài giải: Gọi số học sinh đạt giải cả 3 môn là a (học sinh) Gọi số học sinh đạt giải cả 2 môn là b (học sinh) Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh) Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. - Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. - Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. Do vậy b= 3. Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1. Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải. Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).
thế thì chịuuuuuuuuuu
không có câu gợi ý
gợi ý : ?