Ôn thi tốt nghiệp THPT môn Toán - Lớp 12 - Đề thi thử tốt nghiệp THPT môn Toán năm 2025 của Quảng Bình
{"save":1,"level":1,"time":"90","total":34,"point":5,"segment":[{"id":"3791","test_id":"489","question":"<p>\u0110i\u1ec3m ki\u1ec3m tra 15 phút c\u1ee7a l\u1edbp 12A \u0111\u01b0\u1ee3c cho b\u1edfi b\u1ea3ng sau :<\/p><p><span class=\"svgedit\"><svg height=\"87\" width=\"373\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>\\n<title><\/title>\\n<rect fill=\"#fff\" height=\"89\" id=\"canvas_background\" width=\"375\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>\\n<title><\/title>\\n<image height=\"81.648\" id=\"svg_1\" stroke=\"null\" width=\"377.99999\" x=\"-2\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfQAAABsCAIAAAAT9tdHAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACkzSURBVHhe7Z17vE1l\/sdjcMRQGpdUBrkcNRrTySUGGSkq9yFyi5QilxJDSWTmlNxvkUIkKndmkEtShBKVyL0oQu6DMDnO721\/n9Zvtfc6+6y993rsvep5\/3Fez\/e7nr3Os571fT7P91lr7b2uSDcYDAbDrw4j7gaDwfArxIi7wWAw\/Aox4m4wGAy\/Qoy4GwwGw68QI+4Gg8HwK8RB3I8cOXLQz9B+vx\/CiRMnVMlvJHLL\/R4Yx48fP3TokDJ8CO1XpcTj6NGjP\/zwgzJ8CIGt5NuGg7hfccUVycnJRf1JiRIlsgagoFx+g8736SlI5Jb7PTBKly5N3xYpUqRYsWLK5R9o84033piwsVGqVCnaljdvXhqpXL5Cxp2SbxvO4q5K\/mTEiBEjR45Uhj\/x7ylI5JYTGKAMH1K4cGFV8idJSUmqlHi0atVq1apVyvAhvxVx\/+c\/\/\/mvf\/1LGf7EiLsOCAxQhg\/5wx\/+8N\/\/\/lcZPuR3v\/udKiUef\/\/73\/\/9738rw4cYcfcNRtx1YMQ9vhhx14cRd99gxF0HRtzjixF3fRhx9w1G3HVgxD2+GHHXhxF332DEXQdG3OOLEXd9GHH3DUbcdWDEPb4YcdeHEXffYMRdB0bc44sRd30YcfcNRtx1YMQ9vhhx14cRd99gxF0HRtzjixF3fSSQuC9cuJAzzT+CTz75RHk9woh7HEnklhtxjy9G3PXhOO7iI+4WVatW3blzpzI8woh7HDHirg8j7vow4u4lGzduzJ49u+OPmcWIEfc4YsRdH0bc9WHE3TN++umnNm3a5MuXb+DAgcrlHVGI+7Rp09q1a0eTatWq9e233+JJS0ubNWtWt27dHn300Tlz5kg1N7z55puDBw+m8O67786bN0+ckeL+FJw5c+bll19+6KGHWrRoUaNGDeW1MWrUqN69eysjA1JTUx9++OHHArCr8ePHr1ix4p133lGbIyF8y3fs2NGzZ89HHnmkXr16zz33nDgPHDjQpUuXDh06SAOaN2\/u5krdZ599Nm7cOMbk8OHDFy5c+MUXX6gNGROpuO\/atatly5Z0SN26dadPn05IqA0BPv\/8czqqcePG9LBy2SDC+QhBJQclPPjggxMmTJgyZcq+fftUvUiISNxp7ezZs9u2bdu6deu77rrrm2+++d\/\/\/jd69Oj27dur1jz2GLHNeSdQ1Wd+ydmzZ4mBRo0aNWnS5Pnnn2cPOPfs2cNOpEKkhBd3+rNjx46057777nv11VfFyWl94oknGjRoQLMzFV\/yRQKpWbNmr732mpysw4cPcxb27t0rFcLgRtzZT9++fYnehg0bdu7cWZwnT5586aWXaCFdtHv3bnGGZ9WqVbTq+PHjyg7w448\/Esnsp0ePHtZZJlrWrl0r5fB4L+4MsAoVKtxyyy1\/\/etfK1euXLRo0eLFi5cuXZpWqhoBSM\/pCzZZjZ4xY0bXrl1PnDihYyKJQtwZdbTk3nvv5QTTy3huv\/12PAIrDMJFaobnq6++oj5dwcDYvn17+fLlGT9qWySwE1XKjKNHj9asWZP6Tz755IIFC5T3ZzhBbCpQoICynaCpWbNmpZoFYfrdd99Vr14dbVKVXMPHVcmJ995778orr6TOkiVLPv74Y3GOHDky8G8VSMBHH30kmxxhwN99993sB83q378\/fc40fNtttxFUqkYGRCruH3zwAe25\/vrrJ02aZB+3W7Zsueeee2jAnXfe2adPn61bt6oNNo4dO0Y4yRHZYUJiYCPTX375parqmojE\/cKFCwwx\/iN6gcpzlg8ePCi\/u2snV65cjqLGP6pfvz4VkLO5c+dWrVq1YMGC6C+bGCyYiJrUdE94cZ85c6Y0afHixfQwHgKDf0qbmX6Q+Ny5cxOZQVOsBWc\/b968RCyfoqMqVap08eJFplimonLlymUqkW7EnYgtVKgQLeR\/yU9IcurvuOOOYsWKEdj8F5oaJhFEWF5\/\/XWC9qqrriJyvv\/+e7UhkN8wYRDVHDvJBMGMeuBftmwZsulmNqVVqmTDyeVaWcgFwApiPEzvtF5M65LLpk2b0Bc8TKSYHOTYsWNXrlxJmVh\/++23A7U8IwpxR4Jp3oABA8REMoYMGUI7J0+enD9\/\/sDRuOoTOfecpFOnTmGSVmN26tRJtrrH5b8D5n8yHeovX75cuWyUKFGCTfxVthMTJ06kjp01a9bgP3ToEMOJ\/E6quYSPq5ITyKVEgrIDlC1bNvBvFaw\/UEa1LYTVq1dTJykpicXW+fPnlTc9neULczCDQdlORCru8r+qVauGMipXevqnn36KM1u2bAzUc+fOKW8IDE4k5tLx2EhJSZEskvjEjPRuU6SZO4sk\/sugQYPEs23btkArfgFpGdOAVLDTr18\/qSAm0xvlxx9\/nDLjgokf3DdGCC\/uLHP5F6zmxURJJHqJT0xmJvQak7CUCnY4EWxiGiZ5x6xSpQomhy9bKWTJkuXrr78W0xE34s6pl9lRTPqN5SYmsYfJxykTvfv375cKQQwdOlSOCBB3+4Gw+MMpyRmiT5n2yKZ169Zh0v9iZgR1VMmGkyvs+AzlgQce4CP2TzEL2T2SC1vQKeTsRAYnDFP+Mp4FysxjFGREUZNJQvwuiVrcCWgx7Q1mncgmhEPZ6eloCu0JzSCaN29ONSpb4g5MD3jefPNNMV1idV2mWOIetLimedJysIs7kzGN56+yA9rqOGCAeZePo2LKdgH1VcmJUHGfP39+mKtGp0+fJkMkBROTYcNnSXyQXfHYqV27NlvthxZEdOKO\/BGE4qHr8Pz+979fsWKFeCxoJE2lwWKSu9StW9cKA6hXr17Tpk2VEeioIkWKBA2N8EQn7i+88IJ4pk6dSlYoZYFcxLo4FhQYzZo147PA0hCT6KLMSJeZgIwVk8VioK5b3Ij71VdfLSYdKKEi\/4UcnCUIppXw0rdWb7CwZlPp0qVZqmKitpikJlZ+WbRo0fC\/Jh+FuLOOIWfHFOWl92T4M+SlArkdkRMkFCI1tWrVsgYdR1SxYkWcLGfFQ5k9WxcnW7ZsiYcUWUxHqKBKNpxcrpVFaN26NR+xf4owktU3uTBnxdJ6WW7jEd3JkydPzZo1iScU6m9\/+5vUIdGQHixZsiQh1bhxY\/HLSs0NUYu7FegW+\/btq1y5MpvWr18vHs4WcYCHhbl4hFdffZWZWa6Q2MWdKQoPJy+iZSwfUaXMyEjcWRuxziWm2WQXd2l8nTp1xOSMSIJZuHBhpIcBZpeb3bt3o6Q03r6EDE\/4loeKe7du3TChTJky9L\/9YsUPP\/zAgGQTxyIeychIpVlls6sdO3aIX5DLO0899ZSyQ4hd3BmTeEghaQDqI2tnYcKECWxieEvihvzJRWoBZ44cOWbNmqXs9HQ0l\/pWWu2GGMU9aFnDqWer1YdBgUFHYUJycjJDD4Wl\/dbrLBAyplImuQ0bNojHDRGJ+65duwgJaQNyuXDhQmSha9euqAdbET7ZtGjRIkxZZ9BUufUye\/ZsTMT9\/fffv7Sv9PTu3bvjCXNxNQpxJzxYZ2CKmtMnxYsXx3zmmWekAv2DadciTkqrVq1w2sWdFZXUtIYwZQJpypQpYtLJeJo0aSKmI1RQJRtOLtfKgvYhan\/605\/4CDBh9u3blwggGq677jo8zD9UY4qT9Ygsmjp27EhZoopCmzZtKKCeMuw5f5hS5lNIP+kG5fr16+N3A3EZu7iToZBu33LLLfhvuukmS9xZVletWhWntX4EDpkZjkKFChXYZBd3uPbaa4MGdqawE1XKDEdxR3oQTQ5Bhocl7qQSt912Gx78lPFY2b3FI488IpuA+JNJV4aQG6isSk4EiTsxIG+PsyhYsODcuXNlKwNVnE8\/\/TSmpO1Zs2Zlvm\/fvj1lKltZEixdujRv3rz4lR1CQNujF3dpAJCs0EsU8ufP\/8orr7CJQWtdx3C8G8yAJwysvB7oUiqzc3uohCdGcQ+CKCUYpMwZL1++PJUJDGkk\/0iOERDlm2+++a233pLKwKh8\/PHH2RTR5BSRuMOMGTMk8wDChpWxlSERJOKXW69vvPEGZRIUUXPGGib5pRW3NB4PuY6YoUQh7qTS8n4+6WFGoiTykl4wdihDhw4dZEICR3G3Jiq7uIP9xGHyr0U\/HaGCKtlwcoUdn3YQdybDIHH\/8MMPyVluuOEGPOTmVFuzZo2kkHJDhgL5IItWuPSxwL\/jU9dccw1lJkBMUaWXXnqJcufOnSnzXyi7wUNxty4H0zbrZCD0I0aM+Oqrr8SkwUxIsii59dZbqRwk7nJPIjU1VdkuoL4qZUaouONh+pQol1i0Z+6sW2m8CNDFixcXLFgwevToPn36oJiy2ALrOgxjvm3btnhYlIgnU6isSk4EiTtySXoyZMgQZEhmHSD9IWuTCnPmzJk4caKsG2TwE1HvvfceJrmk1Lf0jjya4Y3nu+++E08QMYq7XFTNmTOndHXv3r0v\/fufG0B4sDwnZ7z0yRCIH+ZRZQSQqYK8wf2dVW\/FnU1oojICj5pYgSEQHhLPQHbSrFkzQkttS09nbOInp7Gu5GRKpOIOclVTIIytxcf58+fR66lTp0qHMNykDhk6Jn7KzPTWM1QcHR5yeZaD4gkiCnHnwGV0kMgi3wSJZLTWYJk\/f\/748eP37NkjJjiKO7vFA0Hibt0CBJawEOYBNuqrkg0nl2tlEUIvy+zcufOPf\/wjHmY2TEvciWN0nwI517Bhw1asWMFoB+rwV8RdRqYkdM8\/\/zzlTp06US5SpAhlN3gi7sLRo0cRvmzZsrG1f\/\/+yvtLmNKmT58uZXnGJmiRIXddyIOsCTxTqK9KmREq7kgMwS1lmSNREDHDwCBhfpVrf9WrV5d7lcxwsp4liF02PnzLOct2cbeDgiMubALH20fTpk1jE2mBXO8mKZPFrJXpHzlyRMIsoycWYhR3hhZmrly55NooQiOr8pkzZwaqZ8iBAweoJnFuBydaFvqMU0Z4KO78UzaF0WU6s1GjRsy45KeiaPDiiy+qzT9fhiKjd7\/yiFTcSTuQEYKZMRj4\/5eWyxn9O8JALg8QvXfccQcFe55OdOFhipLMIJQoxB3IQlq0aIEH7ZIclAwpo38BEWXu9sfE6Wc8drkPgq2qZMPJ5VpZBJZLl9pi+xTRz0nCI89EWuK+efNmWWuznmXkSGVh5cqV4cXdfqrC46G4CykpKWxFo5Vtg0TgzjvvZCtJgWiNQLZuXaeWSx9MgdbljkyhviplRqi4lyxZEjOoPQSTLInCQ4LD0pIIlrvZCLokyIS+ywSNyqrkRBhxF1jms9VxocB6gk3ElSxKGEJyEca6WX348GEJs4weLYhR3GXtj7hL\/sixyEWDTG84o4lUU4YNnGiB\/XJHeDwUd4K2SpUqynBCBrWMCKJCclLU03pwSO5hXn\/99dI5bohI3Jm8mcjxUGYNIdIJYS5vnjt3Thojl5jkIRZh3759eMjSyKaV65dEJ+5AP588efLHH3+URzlr164d5hw5ivuWLVskfbSLO3k62YyYIFlar169lB0CW1XJhnPMqZI75Gau9SkUgfFg9zA1ydUouZTB8KAs19ZBnpax7uzJMcvByKWMLl26UJbL926IXdxRTPtTbvQpW62bM2yiAueJMuLesGHDrFmzMkozEnd5iJ7sQ0w3UF+VMiNU3FlKEytB7bHEXR71kWcegLFqH5ycu2rVqlmPPyLo8qy0e02ksio5ESrujARLL4AKNJs1hJikadZQkVvTOXPmlEsf5O8i7laiRCDJetG6YhZEQNujF3d53i579uzy8C6NlIgVrSceqOb49AunY8yYMcr4GbqazyKXSIZyZYZX4k7Q4rfujgr2wOBAJPm1HgqSXZE3WCdr3LhxeMjuZZHnhojEnbQd07oYu27dOpb7eCxxpyscs3h5rDBo6tqzZw9OlMd+l9tO1OIusMTHX7hwYdqpXIHoDXqMglmqTZs21Lz77rvluXDgs\/Kg19KlS8VDuVy5cvbrOaKfYdIItqqSDSdXJMqCcMtdRFi\/fj0JuHz3gdRb6nA8ZFKMSZwSZ5KCwbBhwxg\/fBwn0S9OEhlWgjJuWfLs3btXjhy1suQyPAzgWMSdEKdMq6wrvxyRdWWDFEDivnHjxuKx43hZRm4\/jB8\/XtkuoL4qZUaouNsJuixDqMnzPMzH4pGTxQpJJrPt27fjsQLUWpfYL86Gh8qq5ESQuJMSIuXFixdfuHCheCZOnPjEE09wUJTlIQGwYpoRiElUUBYtSE5Olk2AyEqul9EiI0ZxB0m7UDTKtJmyXC1ESUlEMAsVKiTfcLZgFYvfPoEJnC\/8zMQZ3SEIxStxZ3XPfKOMAASGnGgrMORaq6xWke\/7778f07osgEdS6e7duzPAxZkpkWbu9tvjc+bMoYw6i6CLyQ4tQaSHmdQlFyHIgzpcHurNnz+\/ldYEEZ24c+yMESIBdWKYW88yAmFA86gc9I3Opk2b4qxYseKBAweU62dJlKupZLeU5SsFFngILetgQ6GCKtlwcoUdn3Z27Njx0EMPEQfyVWaCHpo0abJ48WJVI6CVLEvJXqlz1113iZO+ZgZr1qwZpwGTwdO3b9927doRTFRjnFCfHUK\/fv34i59\/5FIfYxR3Al3uo+bLl49dvfLKKxyg9cDs2rVr5a4dWAsrC7nqV7lyZWvGlgQNkXX51WSBj6hSZoQXd0kt0VMxt27dKt\/JYq6VhQjdmzt3bjyk9ij42LFj7U9wM7MSzSzJ3X\/dJnzLg8Sd0VinTh1MQCYY3iz2rdxKLoMAQSLzOr1KCDGKCH1SM9I6+7dDp0yZQmVyImWHEND2mMSdxJwG0yEdO3asXr36zTffLLfsaJj1YDiRLJWFevXqWYmOHeKKyqxKle0CT8QdP\/1GSCs7AN0o54XAkJUQ0zxJVVJS0tNPP83oK1WqFKpkzVsorIiUdYfTDRGJOwwcOJDZmsikQG+TBFj3V0hHqAzM9Cgso7JBgwZVq1ZNSUnp379\/6PqJTqAyeYOyQ4hC3Mmse\/Towfll1KNX27ZtE79AzwQaeClNlLE\/f\/58ZkRJcwGdlO9nAf3ZrVs3Fs0IF8P5gQcesC9Kvv76a+oz+4amCBZUUCUbTi7XypKYMIBjvCxDZE+YMGHIkCHMuoimfbYnKyT633zzTeqHjrQZM2awHFmwYIGVPK5Zs4aaET0qA+5PQXhxp50jRoywrkoD1aZNm4ZMyNUAUrDly5ezbBo8ePA777zDukSqCazD2HNo6heG8C0PvSxD3jp9+nQaCXSsPek+ffo0mzg1ZAzW5HrmzBkyA05x0HMIIJe\/wkyiAW2PSdyBAcZZZj+os\/1Lj5s3b541axY6zoEoVwCmKPnGbxC33XYbQhbRlO+JuLOHyZMnB31FAKzAsJ763b9\/Pwky2frQoUORKvtznPR8njx5mM8cL0NlRKTiDqg2A4rhzMxt7yvSXsK1bt268vXvjz76iMMkfuQrV6HIt1szStshCnEndEePHv3WW285fgWH\/0V\/cgoQZRlWdCZz0siRI0mhGHE02PoJHaAnpbdR\/CAR5\/D5p2xVthNWq+w4uVwrS2LCwItO3K1vqGbKU089xUeUERayPJbe9oHhBvenwBJ3+5IwPPSP\/auSYUDX\/vznP9vXj5kSvuWh4h4e1rwtW7bM9I4lIEksjeWJ+Iy4JO1Ribu1DgsP+lijRg033SVXnDK68ZsR0Ym7\/RGX8LgPjF69erGulfzAPVGIexhY9pGtO\/7qRhDyaFCYbzBBjNfcHSERadeuHZOTsqOCSYL\/SPOUnQGOrXJyuW59YkKMRiru8kCLG3E\/fPgwGSKZeJgsQGBhxYqSYHV\/x8nC\/Sk4duyYXNlwKe7lypVzuYy44447ChYsKLe73RO+5SwF5PFBZYeFGZHK9stEGfHxxx8jfCRxKJpyORHQ9gjEfdWqVTS1cuXKyg4Li7x77703aOnjiKyHrK\/duidScScF4R+5PN0EhstRI88X2O8cuiS8uMtldPlmTKags2XKlHHz\/dj58+dnyZKFVbiyM8CNuJNAyB17ZWcGx2t9iyo6vv\/+e8ZgmCuNFo6tcnK5bn1iEoW4d+vWzfplROuLDzFCPFnXeSLF\/SlA3Mm25FEq95\/KFNaGYb7HH4bwbSAXLlGiBCk21cqXL6+8sUFaTcKe6ciESMVdLqnJD4bQG5lO525A\/VnzyU+gREpE4k5rn332WXSNxoP1G5wxgp42adIkuq4IL+6cwauuuiop8IMTUfwcqSN79uzhxLlZYbgR940bNzIFykXzwoULK69O2rdv7\/JZBpqkSjacXL89cU80\/HsKErnlkYp7ohGRuCcg4cU9vrgR90TGiLtvMOKuAyPu8cWIuz6MuPsGI+46MOIeX4y468OIu28w4q4DI+7xxYi7Poy4+wYj7jow4h5fjLjrw4i7bzDirgMj7vHFiLs+jLj7BiPuOjDiHl+MuOvDiLtvMOKuAyPu8cWIuz5+K+I+YsSIkSNHKsOfGHHXQeAHbH7xwy\/+4vJ8cUYfSWFfUR1fWrVqFfQbyP4iAnFPTk4u6k9KlCiRNwAF5fIbdL5PT0Eit9zvgSGvrykWQLn8A22m2xM2NkqVKpUjR46CBQveeOONyuUrZNwp+bbhLO78PRgDhw4dsn7lQ7kuF6dPn+7du\/fTTz996tQp5fIbdFrspyAuJHLLJTCAgnL5igsXLuTPn3\/Xrl2HDx9WLv+AINDs7NmzIwvKlUicPXu2Xr16U6dOPXHihHL5CmvcBZGhuMeI\/MZmrly5lH0ZSU1Ndf9LeImJJ6cgLiRyywkMl7+ilZgUKFAgop\/YTTSC3hCSUDRt2jTGH\/mKL5dP3Ldv396mTRtlXHbMDdU4ksgtNzdU44u5oaqPyyfu8+fPHzx4cOiLii4PRtzjiBF3fRhx14cRd1ecPXu2cePGV155pfXGxcuMVnHfvXv3iy++2KFDhx49esirPnWgSSI3btzYs2fPRo0atW7deunSpZ78hm0QXrWcdj7yyCOP2WjZsmWMv1urQ9znzp1rf9GVsGTJkqeeeqpz585s8rCTNYk7qVjbtm1VLwfADH0fUOx4K+5HjhwZNWpURi9Dj5TLIO4bNmxw\/zqgSPFS3L\/\/\/vvChQvfcMMNFStW3L9\/\/0cffbR3717ZNHv2bLT1xIkTjvu5ePHi0KFDk5OTy5UrN23aNOX1FH3ivmDBAusViFChQgXrFebews5VyTsmTJiQL1++m266admyZc8880yWLFn467m+e9LyU6dOya+oB5HRq+td4qG479u3b9CgQZUqVUpKSmrevLnyBujfv79qbuANznSy2hAzOsQ9LS2tXbt2qrk2dMiQV+JOjsLEWbJkSdo5b9485Y0NfeLOKUPoatasWahQIdRDeb2GrlAlG06uzMYnsyV1UlNTT58+vXXr1pSUFEx5VfHJkyeHDx\/+ySefUGZedez6PXv2VK5cWfagXJ6iSdwPHTrEiuSzzz6jcM8999B+6NOnj9rsKexZlTxix44dt9xyC7tF4jHPnDlTtmxZtN6rdzhYeNLy5cuXX+rcX1KtWjW1OVq8Endyxu7du8urxsF+e4ksp1atWgcOHHj\/\/ffllWwQ6evoMkKHuJOZybMPdooUKbJ27VpVwzu8Enf64eqrr5amkm8pb2zoE\/eRI0fSYGmty\/dMRQE7VyUb0Yj7rbfeGlQHmdi0aZMyAi97PXjw4Llz5wgd5bJx7NgxEUfUn3Fy\/Phx+6u+AemRR3zYg3L9jDxTFf56iCZxB5YdUmDFKqklqxDxeEumpyBS1qxZc9VVV7Hbf\/zjH+KpX78+h4AGiekVnrS8V69eQc87IZTWq+KjxitxFwiGUqVKcbwPPvigcqWn\/+c\/\/1Gl9PRFixbJi5BmzpypXLGhQ9xXr1790EMP7dq1S9np6c8+++xdd92l47EcDy\/LfPvtt3QseKXIui\/LVK9endbmzZtX2V7DzlXJhpMrs\/FZpkwZ6kydOtV6h\/qUKVPkVfREvMxU8rLBIUOG2N9nLyDo8trPrl27Sgp\/zTXXWLr53XffXXvttewhd+7cFSpU2LZtm\/ipQLpEZfz8DZMN6RN3i7feeos21KtXT9lew85VySO2b99Oqs5uYfz48Zs3b86RI0eXLl2ieL9reDxp+eLFi614gNdff52UJ\/b7896K+w8\/\/FCsWDGO1y7udt577z0CmwrWFcsY0SHu33zzjf29kmRORYsWfeGFF5TtKR6K++eff34plP0j7rI88oG4v\/vuu5f69YorChYsiJTbV0byCvMnn3yS8oQJEyiHvpDeEndWf5iyvB08eDDltLS066+\/HpPyvn37ChQoQMomefozzzyDf\/r06WQZFJgAcDqiVdy3bt2KJubKlYs2PP\/88zruSYL0gLfMnj2bTmPPwNqLxZPnSgGet5yQqFu3bsOGDWOfhy6zuM+YMYOtDRo08CpIdIh7EHPnzk1KSvryyy+V7SlG3H0g7jBu3Li\/\/OUvl3r3iity5swpOSxJ+v3334+HrZhyAkqWLBmUc1niPnr0aEy5XCCvYyZHo4yHMp+qXbs2przXnwJzibwLf\/LkyYwcCo5cBnEn7aU90K1bN7XBU9izKnnK2LFjCS9pOcuvWbNmqQ3e4XnL6XBCiKWSsmPgcoo7Y6FFixYkLl69bx0ug7g3bdq0Zs2ayvAaI+6JLu6nTp0SUSCzZvks11VArj7ffvvtlBFfyjt27KBMJr5u3bpLn\/wZS9wHDRqEab8W3K9fP8qMGcpHjx4lZcMkqSemKZB4Ll269NIuwqJV3OHixYubNm2S38q44YYbrGtTHsKeVck7WEjR2rfffnvAgAHsH8qWLSu3wT3E85ZPmjSJEPLkibfLKe5r164tVKjQnDlzlO0Fl0HcORxJuXRgxD3Rxf3s2bMkfcoIQJ6eLVu23LlzU65QoQIff+ONNyjL9RMGwObNmwMVFWHE\/dlnn6WMblI+duxY\/fr1McePH49JIU+ePLNnz6YcHt3iLnz66ac06brrrvP8gRNgz6rkEStXrpTWIkmYjz76KCbINOwh7FOVvID8t2XLlgy80Ds3UXA5xZ2B8MorryjDI3SL+7JlyzgcTU\/3ghH3RBf3tLS0pKSkhx9+WNnp6du2bcuaNWvHjh0p9+7dm4\/LEFq0aBHlqlWrBmr9PydOnLj33nvZNGzYMMx8+fJRlkvzq1evliselPfv3y+P5Xz77beYMm0w1CnLVimEwn\/XIe7oCy1XRgDaQws90Z0gpAc8ZObMmeyzcePG8hTE6dOnMSHBxZ38oHTp0p5ck4GAtnsm7ohg8eLFOd527dop18907dpVnvZhmUsq06BBA\/HHiG5xr1mzZsOGDZWhAQ\/F\/YsvvgjE7xULFy5UrtjQLe5ySSPRxf38+fPJyckMuQceeGDFihWkhPfccw8LZxJttspjs9WqVVu8ePGdd95JtdCbM5988ok8Q4ZSb9myhQI0atRIHojs1asXJovxgQMHXn311aNGjZJPrVq1SnSf8Tlv3rwwvw1NBR3iLquK4cOHy509+ZaW5+IosGdV8ogPP\/yQfRJbO3fuxOQUYN50001efcHPwtuWjx07tmjRogcOHFB2bAS03cvMnbZxvKwvlSsAcoPTTtOmTdW22NAq7kxCNFW+oaIJD8VdAhhCvx4cHbrFvWLFirQ20Z9zP3v2rFwbYRFXp04dIlvuhVocPHiwZ8+epAD0V+jjaxcvXpw+fXrz5s0fe+yxFi1adOrUiUWAfNHc+t7E6NGjW7du3bZt26C7ph988EGrVq347N133y1ziSOaxH3cuHEsUOgcJq2pU6c+8cQT+q5Ohj8FUfDTTz+NGDGC2Kpdu\/agQYMqV65cpkwZToTa7B0etpxQSUlJCfr+Zyx4Je4nT558++23aRgHKzAEli9fzibrQTI7JATywRjRKu5yu0sZevBE3I8fP05TGYPSt8WKFevRo0fs078mcb9w4cKSJUu6devGsUuD+UfoZ+g3eGKEPauSDSeX5nPshnfeeYeFbXSPNmsSdxJ2hu7LL79Mw1577TXrAXwd6DgFaWlp69evHzZs2IABA9544w0d94HBw5bTYPrZw8fyPBR3OjA1NZXZnbUFf\/v37y+3+hctWjRy5EiCBL8wdOhQ+QpI7GgV9wULFnh7+zcUT8SdrK5v376DBw+W7mXi7NOnT5iLtC7RJ+6LFy8mPEaNGkVrx4wZgzSRGfymxZ02AHOysiNBk7hfThLhFERHIrfcK3GPF7qvuevGw8synqP7soxuHMddgoq7PGgY3YPYRtzjiBF3fRhx14cRd39gxD2OGHHXhxF3fRhx9wdG3OOIEXd9GHHXhxF3f2DEPY4YcdeHEXd9GHH3B0bc44gRd30YcdeHEXd\/YMQ9jhhx14cRd30YcY+GVatWscN27dqFj0tGHdWyZMkS9JWoKGBXRtzjRSK3PKDtRtzjhhF3fTiOO+3iLr9q8uijjwa9bimUVq1aUVN+oyYWjLjHkURuuRH3+GLEXR+O485jcd+0adP8+fMPHjwoL+46efLkypUrKe\/btw\/ziy++WLFixerVq7dv375hw4Zly5ZRCHzu0pv55Lfge\/fuvWXLFjYF\/Zake4y4xxEj7vow4q4PI+6ZgLIXKVKkRo0avXr1uvHGG8+fP4+sFyhQgB1WqlSJuJw8eTJlSElJad++PYVrrrnmyJEjfNYS9ypVqnTu3JlC3rx5o\/sZIyPucSSRW27EPb4YcdeH47jzUtzR9Bw5cuzevXv\/\/v0lSpQ4c+YMzrFjx7LD2rVryy+J58yZE7NNmzbHjh2TX0qbNGkSfkvcy5Urd\/HixQYNGlBmh5f2GyFG3ONIIrfciHt8MeKuD8dx56W4Dx06lM9ee+218+bNs37za8iQITgtcc+ePTumiC86Tvnll1+mbIm73FCVF+x16tSJcqQYcY8jidxyI+7xxYi7PhzHnZfifu7cuSZNmvBxaN26tTgdxb1\/\/\/6k5yLupPb4LXHv0qULpoh7586dL+0iQoy4x5FEbrkR9\/hixF0fjuPOS3FPS0vj75IlS3LlysVO5Ge\/jLhHAceuSn4jkVtuxD2+GHHXh+O481Lc0fEpU6ZQ2L9\/f5YsWaQ8ZswYdnjfffcdP34cMykpCfOFF16gnJKSQnnixImUf\/rppxYtWmDKZRl5NXb37t0pR4oR9ziSyC034h5fjLjrw3HceSnuAwcOrFWr1ksvvdShQ4cqVars2bNn9+7d8mbYfPnykdHLy96gRo0agwcPlpurJOno\/urVqwsXLoxZtmzZSZMmFSxYkHLJkiWjeCeGEfc4ksgtN+IeX4y468Nx3Hkp7rt27dq7dy+p+nPPPUeZZPzAgQMDBgwYO3bsoEGD1q1bN3fu3OHDh1MBKMg7a8j3yfTXr1\/P3EBNzHHjxg0bNoxyamrq1q1b1d5dY8Q9jhhx14cRd30YcfcHRtzjiBF3fRhx14cRd39gxD2OGHHXhxF3fRhx9wdG3OOIEXd9GHHXhxF3f2DEPY4YcdeHEXd9GHH3B0bc44gRd30YcdeHEXd\/YMQ9jhhx14cRd30YcfcHRtzjiBF3fRhx14cRd39gxD2OGHHXhxF3fRhx9wdG3OOIEXd9GHHXhxF3f2DEPY4YcdeHEXd9GHH3B0bc44gRd30YcdeHEXd\/YMQ9jhhx14cRd30YcfcHRtzjiBF3fRhx14cRd39gxD2OGHHXhxF3fRhx9wdG3OOIEXd9GHHXhxF3f2DEPY4YcdeHEXd9GHH3B0bc44gRd30YcdeHEXd\/YMQ9jhhx14cRd30YcfcHRtzjiBF3fRhx14cRd3+Qmpr64osvKsOfGHHXAYEByvAhBQoU+PHHH5XhQ7Jly6ZKiUfTpk0XLVqkDB8Smbgf9CenTp3q0aNHz549KSiX3\/DvKUjklktggE8D48KFC3ny5Nm5c+fhw4eVyz8cOnSIZhMbaWlpypVInD17tnbt2pMnTz5x4oRy+Qpr3AXh4CpdunRRP\/OnAMrwJ5UqVVIlv5HILfd7YJQvX75EiRLK8BvFixevUKGCMhKPcuXKJScnK8OHINpKvm04iLvBYDAY\/I4Rd4PBYPgVYsTdYDAYfoUYcTcYDIZfHenp\/wdxli0SIQgzngAAAABJRU5ErkJggg==\" y=\"1\"><\/image> <\/g> <\/svg><\/span><\/p><p>T\u1ee9 phân v\u1ecb th\u1ee9 nh\u1ea5t c\u1ee7a m\u1eabu s\u1ed1 li\u1ec7u ghép nhóm trên (làm tròn \u0111\u1ebfn hàng ph\u1ea7n tr\u0103m) là :<\/p>","options":["A. 2,10","B. 4,84","C. 2,09","D. 6,94"],"correct":"2","answer":"<p>\u0110áp án \u0111úng là : <span style=\"color:#27ae60;\"><strong>B. 4,84<\/strong><\/span><\/p><p><span style=\"color:#27ae60;\"><\/span>M\u1eabu s\u1ed1 li\u1ec7u ghép nhóm có c\u1ee1 m\u1eabu n = 3 + 8 + 7 + 12 + 7 + 1 + 1 = 39.<\/p><p>G\u1ecdi <span class=\"math-tex\">$x_1,x_2,.........x_{39}$<\/span> là \u0111i\u1ec3m c\u1ee7a 39 h\u1ecdc sinh, gi\u1ea3 s\u1eed dãy này \u0111ã \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp theo th\u1ee9 t\u1ef1 không gi\u1ea3m.<\/p><p>T\u1ee9 phân v\u1ecb th\u1ee9 nh\u1ea5t c\u1ee7a m\u1eabu s\u1ed1 li\u1ec7u g\u1ed1c là <span class=\"math-tex\">$x_{10} \\in [4;5)$<\/span><\/p><p><strong><span class=\"math-tex\">$Q_1 = u_m + \\frac{\\frac{n}{4} - C}{n_m} \\cdot \\left( u_{m+1} - u_m \\right)= 4+ \\frac{\\frac{39}{4} - 3}{n_m} \\cdot \\left(5 - 4\\right)=\\frac{155}{32}\\approx4,84$<\/span><\/strong><\/p>","type":"choose","user_id":"156","test":"1","date":"2025-05-13 14:27:34"},{"id":"3799","test_id":"489","question":"<p>Nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng trình <span class=\"math-tex\">$log_{2}x=3$<\/span> là :<\/p>","options":["A. x = 3","B. x = 2","C. <span class=\"math-tex\">$3^2$<\/span>","D. <span class=\"math-tex\">$2^3$<\/span>"],"correct":"4","answer":"<p>\u0110áp án \u0111úng là : <strong><span style=\"color:#27ae60;\">D. <span class=\"math-tex\">$2^3$<\/span><\/span><\/strong><\/p><p> \u0110KX\u0110: x > 0<\/p><p><span class=\"math-tex\">$log_2x=3 \\Leftrightarrow x= 2^3 (t\/m)$<\/span><\/p>","type":"choose","user_id":"156","test":"1","date":"2025-05-13 14:44:41"}]}