{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["78"],["102"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thoi $MNPQ$ trong h\u00ecnh sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_1.jpg' \/><\/center> Bi\u1ebft $\\widehat{N}-\\widehat{M}=24^o$ <br\/> T\u00ednh s\u1ed1 \u0111o c\u00e1c g\u00f3c $M$ v\u00e0 $N$ c\u1ee7a h\u00ecnh thoi. <br\/><br\/> <b> \u0110\u00e1p \u00e1n:<\/b> <br\/> $\\widehat{M}=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <br\/> $\\widehat{N}=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_1.jpg' \/><\/center> Theo t\u00ednh ch\u1ea5t c\u1ee7a h\u00ecnh thoi: $\\widehat{M}+\\widehat{N}=180^o$ <br\/> M\u00e0 theo b\u00e0i cho: $\\widehat{N}-\\widehat{M}=24^o$ <br\/> Do \u0111\u00f3 ta c\u00f3 h\u1ec7: <br\/> $\\left\\{ \\begin{aligned} & \\widehat{M}+\\widehat{N}={{180}^{o}} \\\\ & \\widehat{N}-\\widehat{M}={{24}^{o}} \\\\ \\end{aligned} \\right. \\Rightarrow \\left\\{ \\begin{aligned} & \\widehat{M}=\\dfrac{180^o-24^o}{2}={{78}^{o}} \\\\ & \\widehat{N}=\\dfrac{180^o+24^o}{2}= {{102}^{o}} \\\\ \\end{aligned} \\right.\\Rightarrow \\left\\{ \\begin{aligned} & \\widehat{M}={{78}^{o}} \\\\ & \\widehat{N}={{102}^{o}} \\\\ \\end{aligned} \\right.$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $78$ v\u00e0 $102$ <\/span> <\/span> "}]}],"id_ques":1481},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["120"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thoi $MNPQ$ trong h\u00ecnh sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_2.jpg' \/><\/center> Bi\u1ebft $MP\\bot NQ$ t\u1ea1i $O$ v\u00e0 $NP=13\\, cm; NO=12\\, cm$ <br\/> T\u00ednh di\u1ec7n t\u00edch c\u1ee7a h\u00ecnh thoi. <br\/><br\/> <b> \u0110\u00e1p \u00e1n:<\/b> <br\/> $S_{MNPQ}=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}\\, (cm^2)$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_2.jpg' \/><\/center> X\u00e9t tam gi\u00e1c vu\u00f4ng $NPO$: <br\/> $NP^2=NO^2+OP^2$ (\u0111\u1ecbnh l\u00fd Pi - ta - go) <br\/> $\\Rightarrow OP^2=NP^2-NO^2=13^2-12^2$ <br\/> $OP^2=25$ <br\/> $\\Rightarrow OP=5\\, (cm)$ <br\/> M\u00e0 $MP=2OP=10\\, (cm)$ v\u00e0 $NQ=2NO=24\\, (cm)$ (t\u00ednh ch\u1ea5t h\u00ecnh thoi) <br\/> Di\u1ec7n t\u00edch h\u00ecnh thoi $MNPQ$ l\u00e0: <br\/> $\\dfrac{1}{2}MP.NQ$$= \\dfrac{1}{2}.24.10=120\\, (cm^2)$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $120$ <\/span> <\/span> "}]}],"id_ques":1482},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank","correct":[[["10"],["3"],["10"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thoi $ABCD$ v\u00e0 $O$ l\u00e0 giao c\u1ee7a hai \u0111\u01b0\u1eddng ch\u00e9o, c\u00f3 $S_{ABCD}=50\\sqrt{3}\\, cm^2$ v\u00e0 $AC=10\\, cm.$ <br\/> <b> C\u00e2u 1: <\/b> T\u00ednh \u0111\u1ed9 d\u00e0i $BD$ v\u00e0 $AB$. <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> <br\/> $BD= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}\\sqrt{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}\\, (cm)$ <br\/> $AB= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}\\, (cm)$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_3.jpg' \/><\/center> Theo b\u00e0i ta c\u00f3: <br\/> $S_{ABCD}=50\\sqrt{3}\\, cm^2$ <br\/> $\\Rightarrow\\dfrac{1}{2}AC.BD=50\\sqrt{3}$ <br\/> $\\Rightarrow \\dfrac{1}{2}.10.BD=50\\sqrt{3}$ <br\/> $\\Rightarrow BD=10\\sqrt{3}\\, (cm)$ <br\/> $\\Rightarrow OB= 5\\sqrt{3}\\, (cm)$ <br\/> X\u00e9t trong tam gi\u00e1c vu\u00f4ng $AOB$ c\u00f3: <br\/> $AB^2=AO^2+OB^2$ (\u0111\u1ecbnh l\u00ed Py - ta - go) <br\/> $\\Rightarrow AB^2=5^2+(5\\sqrt{3})^2$ <br\/> $\\Rightarrow AB^2=100 \\Rightarrow AB=10\\, (cm)$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0 $BD=10\\sqrt{3}\\, (cm)$; $AB=10\\, (cm)$ <\/span> <\/span> "}]}],"id_ques":1483},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank","correct":[[["120"],["60"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thoi $ABCD$ v\u00e0 $O$ l\u00e0 giao c\u1ee7a hai \u0111\u01b0\u1eddng ch\u00e9o c\u00f3 $S_{ABCD}=50\\sqrt{3}\\, cm^2$ v\u00e0 $AC=10\\, cm$ <br\/> <b> C\u00e2u 2: <\/b> T\u00ednh s\u1ed1 \u0111o c\u00e1c g\u00f3c c\u1ee7a h\u00ecnh thoi. <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> <br\/> $\\widehat{A}=\\widehat{C}= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <br\/> $\\widehat{B}=\\widehat{D}= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_3.jpg' \/><\/center> Theo c\u00e2u 1, ta \u0111\u00e3 t\u00ednh \u0111\u01b0\u1ee3c: $AB=10\\, cm$ v\u00e0 $OA=5\\, cm$ <br\/> Ta c\u00f3 tam gi\u00e1c vu\u00f4ng $AOB$ = tam gi\u00e1c vu\u00f4ng $COB$. T\u00ednh ch\u1ea5t C\u1ea1ch, G\u00f3c, C\u1ea1nh. <br\/> Do \u0111\u00f3 c\u1ea1nh BC = AB. N\u00ean tam gi\u00e1c $ABC$ l\u00e0 tam gi\u00e1c \u0111\u1ec1u v\u00ec c\u00f3 3 c\u1ea1nh b\u1eb1ng nhau v\u00e0 \u0111\u1ec1u b\u1eb1ng 10(cm) <br\/> $\\Rightarrow \\widehat{BAO}=60^o$ <br\/> $\\Rightarrow \\widehat{A} = 2\\widehat{BAO}=120^o$ (t\u00ednh ch\u1ea5t h\u00ecnh thoi) <br\/> M\u00e0 $\\widehat{A}+\\widehat{B}=180^o$ <br\/> Do \u0111\u00f3 suy ra $\\widehat{B}=60^o$ <br\/> V\u1eady $\\widehat{A}=\\widehat{C}=120^o$; $\\widehat{B}=\\widehat{D}=60^o$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0 $\\widehat{A}=\\widehat{C}=120^o$; $\\widehat{B}=\\widehat{D}=60^o$ <\/span> <\/span> "}]}],"id_ques":1484},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank","correct":[[["60"],["60"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho tam gi\u00e1c $ABC$ \u0111\u1ec1u. G\u1ecdi $M\\in BC$, $E$ v\u00e0 $F$ l\u00e0 ch\u00e2n \u0111\u01b0\u1eddng vu\u00f4ng g\u00f3c k\u1ebb t\u1eeb $M$ \u0111\u1ebfn $AB, AC.$ G\u1ecdi $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AM, D$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BC$ <br\/> <b> C\u00e2u 1: <\/b> T\u00ednh s\u1ed1 \u0111o c\u00e1c g\u00f3c $DIE$ v\u00e0 g\u00f3c $DIF.$ <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> <br\/> $\\widehat{DIE}= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <br\/> $\\widehat{DIF}= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_4.jpg' \/><\/center> Ta c\u00f3: $\\Delta AEM$ vu\u00f4ng t\u1ea1i $E$ (gi\u1ea3 thi\u1ebft) <br\/> $EI$ l\u00e0 \u0111\u01b0\u1eddng trung tuy\u1ebfn n\u00ean $IE=IA=IM$ <br\/> $\\Rightarrow \\widehat{EIM}=\\widehat{EAI}+\\widehat{AEI}=2\\widehat{EAI}$ (1) <br\/> Ta c\u00f3 $\\Delta ABC$ \u0111\u1ec1u, $DB = DC$ <br\/> Suy ra $AD\\bot BD$ v\u00e0 $\\widehat{BAD} = \\widehat{CAD} = 30^o$ <br\/> Tam gi\u00e1c $ADM$ vu\u00f4ng t\u1ea1i $D$ c\u00f3 $DI$ l\u00e0 trung tuy\u1ebfn n\u00ean $ID=IA=IM; \\widehat{I_1}=2\\widehat{A_1}$ (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow \\widehat{EIM}-\\widehat{I_1}=2(\\widehat{EAI}-\\widehat{A_1})$ <br\/> $\\Rightarrow \\widehat{I_2}=2\\widehat{A_2}=60^o$ <br\/> V\u1eady $\\widehat{DIE}=60^o$ <br\/> T\u01b0\u01a1ng t\u1ef1 nh\u01b0 v\u1eady: $\\widehat{DIF}=60^o$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0 $\\widehat{DIE}=60^o;\\widehat{DIF}=60^o$ <\/span> <\/span> "}]}],"id_ques":1485},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t <br\/> Kh\u1eb3ng \u0111\u1ecbnh sau \u0111\u00e2y \u0111\u00fang hay sai","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho tam gi\u00e1c $ABC$ \u0111\u1ec1u. G\u1ecdi $M\\in BC$, $E$ v\u00e0 $F$ l\u00e0 ch\u00e2n \u0111\u01b0\u1eddng vu\u00f4ng g\u00f3c k\u1ebb t\u1eeb $M$ \u0111\u1ebfn $AB, AC.$ G\u1ecdi $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AM, D$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BC.$ <br\/> <b> C\u00e2u 2: <\/b> $DEIF$ l\u00e0 h\u00ecnh thoi <\/span>","select":[" \u0110\u00fang"," Sai"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_4.jpg' \/><\/center> Tam gi\u00e1c $DIE$ c\u00e2n t\u1ea1i $I$ ($EI=DI=IA$) <br\/> M\u00e0 theo c\u00e2u 1, ta t\u00ednh \u0111\u01b0\u1ee3c: $\\widehat{DIE}=60^o$ n\u00ean $\\Delta DIE$ \u0111\u1ec1u <br\/> T\u01b0\u01a1ng t\u1ef1, ta ch\u1ee9ng minh \u0111\u01b0\u1ee3c $\\Delta DIF$ \u0111\u1ec1u <br\/> Do \u0111\u00f3: $EI=ED=DF=IF$ <br\/> $\\Rightarrow $ T\u1ee9 gi\u00e1c $DEIF$ l\u00e0 h\u00ecnh thoi. <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 \u0110\u00fang. <\/span><\/span> ","column":2}]}],"id_ques":1486},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["60"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thoi $ABCD$ c\u00f3 $\\widehat{A}=60^o$. Tr\u00ean c\u1ea1nh $AD$ l\u1ea5y \u0111i\u1ec3m $M$, tr\u00ean c\u1ea1nh $DC$ l\u1ea5y \u0111i\u1ec3m $N$ sao cho $AM=DN.$ <br\/> <b> C\u00e2u 1: <\/b> T\u00ednh s\u1ed1 \u0111o g\u00f3c $BDC$ <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> <br\/> $\\widehat{BDC}= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_5a.jpg' \/><\/center> Theo b\u00e0i, h\u00ecnh thoi $ABCD$ c\u00f3 $\\widehat{A}=60^o$ <br\/> M\u00e0 $\\widehat{A}+\\widehat{B}=180^o$ <br\/> $\\Rightarrow \\widehat{B}=\\widehat{D}=120^o$ <br\/> M\u00e0 $DB$ l\u00e0 ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c $D$ trong h\u00ecnh thoi $ABCD$ <br\/> $\\Rightarrow \\widehat{BDC}=\\dfrac{\\widehat{D}}{2}=60^o$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0 $\\widehat{BDC}=60^o$ <\/span> <\/span> "}]}],"id_ques":1487},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["DBN"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thoi $ABCD$ c\u00f3 $\\widehat{A}=60^o$. Tr\u00ean c\u1ea1nh $AD$ l\u1ea5y \u0111i\u1ec3m $M$, tr\u00ean c\u1ea1nh $DC$ l\u1ea5y \u0111i\u1ec3m $N$ sao cho $AM=DN.$ <br\/> <b> C\u00e2u 2: <\/b> Ta ch\u1ee9ng minh \u0111\u01b0\u1ee3c $\\Delta ABM=\\Delta$ ___________ <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> <br\/> $\\Delta ABM=\\Delta \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_5a.jpg' \/><\/center> X\u00e9t $\\Delta ABD$ c\u00f3:<br\/> $AB = AD$ (t\u00ednh ch\u1ea5t h\u00ecnh thoi) <br\/> $\\widehat{BAD} = 60^o$ (gi\u1ea3 thi\u1ebft) <br\/> Suy ra $\\Delta BAD$ \u0111\u1ec1u <br\/> X\u00e9t hai tam gi\u00e1c $ABM$ v\u00e0 $DBN$ c\u00f3: <br\/> + $AB=BD$ ($\\Delta ABD$ \u0111\u1ec1u) <br\/> + $ \\widehat{BAM}=\\widehat{BDN}=60^o$ <br\/> + $AM=DN$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow \\Delta ABM=\\Delta DBN$ (c - g - c) <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0 $\\Delta ABM=\\Delta DBN$ <\/span> <\/span> "}]}],"id_ques":1488},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["60"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thoi $ABCD$ c\u00f3 $\\widehat{A}=60^o$. Tr\u00ean c\u1ea1nh $AD$ l\u1ea5y \u0111i\u1ec3m $M$, tr\u00ean c\u1ea1nh $DC$ l\u1ea5y \u0111i\u1ec3m $N$ sao cho $AM=DN$ <br\/> <b> C\u00e2u 3: <\/b> T\u00ednh s\u1ed1 \u0111o g\u00f3c $MBN$. <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> <br\/> $\\widehat{MBN}= \\, \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_5d.jpg' \/><\/center> Ta c\u00f3: $\\widehat{ABM}=\\widehat{DBN}$ (do $\\Delta ABM=\\Delta DBN$) <br\/> M\u00e0 $\\widehat{ABM}+\\widehat{B_1}=60^o$ <br\/> $\\Rightarrow \\widehat{DBN}+\\widehat{B_1}=60^o$ <br\/> $\\Rightarrow \\widehat{MBN}=60^o$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0 $\\widehat{MBN}=60^o$ <\/span> <\/span> "}]}],"id_ques":1489},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho h\u00ecnh thoi $ABCD$ c\u00f3 $\\widehat{A}=60^o$. Tr\u00ean c\u1ea1nh $AD$ l\u1ea5y \u0111i\u1ec3m $M$, tr\u00ean c\u1ea1nh $DC$ l\u1ea5y \u0111i\u1ec3m $N$ sao cho $AM=DN$ <br\/> <b> C\u00e2u 4: <\/b> $\\Delta BMN$ l\u00e0 tam gi\u00e1c g\u00ec? <\/span>","select":["A. Tam gi\u00e1c c\u00e2n","B. Tam gi\u00e1c \u0111\u1ec1u","C. Tam gi\u00e1c vu\u00f4ng","D. Tam gi\u00e1c vu\u00f4ng c\u00e2n"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai7/lv3/img\/H817_K1_5d.jpg' \/><\/center> Theo c\u00e2u 2, ta ch\u1ee9ng minh \u0111\u01b0\u1ee3c: $\\Delta ABM=\\Delta DBN$ <br\/> $\\Rightarrow BM=BN$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) <br\/> $\\Rightarrow \\Delta MBN$ c\u00e2n t\u1ea1i $B$. <br\/> M\u00e0 theo c\u00e2u 3: $\\widehat{NBM}=60^o$ <br\/> $\\Rightarrow \\Delta BMN$ l\u00e0 tam gi\u00e1c \u0111\u1ec1u. <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B <\/span><\/span> ","column":2}]}],"id_ques":1490}],"lesson":{"save":0,"level":3}}