{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["-27","64"],["64","-27"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $\\sqrt[3]{{{x}^{2}}}-\\sqrt[3]{x}=12 $<br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0: $S=${_input_; _input_} ","hint":"Chuy\u1ec3n h\u1ea1ng t\u1eed v\u1ebf ph\u1ea3i sang v\u1ebf tr\u00e1i v\u00e0 ph\u00e2n t\u00edch v\u1ebf tr\u00e1i th\u00e0nh nh\u00e2n t\u1eed.","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Chuy\u1ec3n $12$ t\u1eeb v\u1ebf ph\u1ea3i sang v\u1ebf tr\u00e1i<br\/>B\u01b0\u1edbc 2: Ph\u00e2n t\u00edch v\u1ebf tr\u00e1i v\u1ec1 ph\u01b0\u01a1ng tr\u00ecnh t\u00edch b\u1eb1ng ph\u01b0\u01a1ng ph\u00e1p t\u00e1ch v\u00e0 nh\u00f3m<br\/>B\u01b0\u1edbc 3: Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3:<br\/>$\\begin{aligned} & \\,\\,\\,\\,\\,\\sqrt[3]{{{x}^{2}}}-\\sqrt[3]{x}=12 \\\\ & \\Leftrightarrow \\sqrt[3]{{{x}^{2}}}-4\\sqrt[3]{x}+3\\sqrt[3]{x}-12\\,\\,\\,\\,\\,\\,\\,=0 \\\\ & \\Leftrightarrow \\sqrt[3]{x}\\left( \\sqrt[3]{x}-4 \\right)+3\\left( \\sqrt[3]{x}-4 \\right)=0 \\\\ & \\Leftrightarrow \\left( \\sqrt[3]{x}+3 \\right)\\left( \\sqrt[3]{x}-4 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & \\sqrt[3]{x}=-3 \\\\ & \\sqrt[3]{x}=4 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left[ \\begin{aligned} & x=-27 \\\\ & x=64 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$ <br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\{-27;64\\}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $-27$ v\u00e0 $64$<\/span><\/span><\/span>"}]}],"id_ques":681},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["3","-3"],["-3","3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $\\sqrt[3]{1-{{x}^{2}}}=-2$<br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=${_input_; _input_} ","hint":"L\u1eadp ph\u01b0\u01a1ng hai v\u1ebf ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\,\\,\\sqrt[3]{1-{{x}^{2}}}=-2 \\\\ & \\Leftrightarrow 1-{{x}^{2}}\\,\\,\\,=-8 \\\\ & \\Leftrightarrow {{x}^{2}}=9 \\\\ & \\Leftrightarrow x\\,\\,=\\pm 3 \\\\ \\end{align}$ <br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\{3,-3\\}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $3$ v\u00e0 $-3$<\/span><\/span"}]}],"id_ques":682},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["125"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Gi\u00e1 tr\u1ecb nguy\u00ean nh\u1ecf nh\u1ea5t c\u1ee7a $x$ \u0111\u1ec3 $\\sqrt[3]{x+1}>5$ <br\/>\u0110\u00e1p \u00e1n: $x=$_input_ ","hint":"L\u1eadp ph\u01b0\u01a1ng hai v\u1ebf ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\sqrt[3]{x+1}>5 \\\\ & \\Leftrightarrow x+1>125 \\\\ & \\Leftrightarrow x>124 \\\\ \\end{align}$ <br\/>Gi\u00e1 tr\u1ecb nguy\u00ean nh\u1ecf nh\u1ea5t c\u1ee7a $x$ t\u00ecm \u0111\u01b0\u1ee3c l\u00e0 $125$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $125$<\/span> <\/span>"}]}],"id_ques":683},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00fang hay sai","title_trans":"","temp":"true_false","correct":[["f","t","f"]],"list":[{"point":5,"image":"img\/1.png","col_name":["","\u0110\u00fang","Sai"],"arr_ques":["N\u1ebfu $a > 0$ th\u00ec $\\sqrt[3]{a}<0$ ","N\u1ebfu $a > b$ th\u00ec $\\sqrt[3]{a}>\\sqrt[3]{b}$","$\\sqrt[3]{\\dfrac{8(x-5)^4}{27}}=\\dfrac{2}{3}(5-x)\\sqrt[3]{x-5}$"],"hint":"$\\sqrt[3]{{{a}^{3}}}=a$ ","explain":["Sai v\u00ec N\u1ebfu $a > 0$ th\u00ec $\\sqrt[3]{a}>0$ ","<br\/>\u0110\u00fang v\u00ec $7> 5 \\Rightarrow \\sqrt[3]{7}>\\sqrt[3]{5}$","<br\/>Sai v\u00ec $\\sqrt[3]{\\dfrac{8(x-5)^4}{27}}\\,$$=\\sqrt[3]{\\dfrac{[2(x-5)]^3(x-5)}{3^3}}\\,$$=\\dfrac{2}{3}(x-5)\\sqrt[3]{x-5}$"]}]}],"id_ques":684},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"K\u1ebft qu\u1ea3 ph\u00e9p t\u00ednh $\\sqrt[3]{\\left( \\sqrt{3}-1 \\right)\\left( 4-2\\sqrt{3} \\right)}$ l\u00e0: ","select":["A. $1-\\sqrt{3}$ ","B. $\\sqrt{3}-1$","C. $\\sqrt[3]{{{\\left( \\sqrt{3}-1 \\right)}^{2}}}$","D. $2\\sqrt{3}-1$"],"hint":"Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $4-2\\sqrt{3}$ v\u1ec1 d\u1ea1ng $(a-b)^2$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $4-2\\sqrt{3}=(\\sqrt{3}-1)^2$<br\/>B\u01b0\u1edbc 2: T\u00ednh <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<br\/><\/span>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\,\\sqrt[3]{\\left( \\sqrt{3}-1 \\right)\\left( 4-2\\sqrt{3} \\right)} \\\\ & =\\sqrt[3]{\\left( \\sqrt{3}-1 \\right)\\left( \\sqrt{{{3}^{2}}}-2.\\sqrt{3}.1+{{1}^{2}} \\right)} \\\\ & =\\sqrt[3]{\\left( \\sqrt{3}-1 \\right){{\\left( \\sqrt{3}-1 \\right)}^{2}}} \\\\ & =\\sqrt[3]{{{\\left( \\sqrt{3}-1 \\right)}^{3}}} \\\\ & =\\sqrt{3}-1 \\\\\\end{align}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 B<\/span><\/span>","column":2}]}],"id_ques":685},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"K\u1ebft qu\u1ea3 r\u00fat g\u1ecdn c\u1ee7a bi\u1ec3u th\u1ee9c $\\dfrac{a+b}{a-b}\\sqrt[3]{\\dfrac{a{{\\left( a-b \\right)}^{6}}}{{{\\left( a+b \\right)}^{3}}}}$ l\u00e0: ","select":["A. $\\left( a-b \\right)\\sqrt[3]{a}$ ","B. $\\left( a+b \\right)\\sqrt[3]{a}$","C. $\\dfrac{a+b}{a-b}\\sqrt[3]{a}$","D. $\\dfrac{{{\\left( a+b \\right)}^{2}}}{a-b}\\sqrt[3]{a}$"],"hint":"\u00c1p d\u1ee5ng $\\sqrt[3]{A^3B}=A\\sqrt[3]{B}$","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\dfrac{a+b}{a-b}\\sqrt[3]{\\dfrac{a{{\\left( a-b \\right)}^{6}}}{{{\\left( a+b \\right)}^{3}}}}\\,$$=\\dfrac{a+b}{a-b}.\\dfrac{{{\\left( a-b \\right)}^{2}}}{\\left( a+b \\right)}\\sqrt[3]{a}\\,$$=\\left( a-b \\right)\\sqrt[3]{a}$<br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 A<\/span>","column":2}]}],"id_ques":686},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"K\u1ebft qu\u1ea3 c\u1ee7a ph\u00e9p t\u00ednh $\\left( \\sqrt[3]{9}-\\sqrt[3]{21}+\\sqrt[3]{49} \\right)\\left( \\sqrt[3]{3}+\\sqrt[3]{7} \\right)$ l\u00e0: ","select":["A. $-4$ ","B. $4$","C. $8$","D. $10$"],"hint":"\u00c1p d\u1ee5ng $(a^2 -ab+b^2)(a+b)=a^3+b^3$","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\,\\,\\left( \\sqrt[3]{9}-\\sqrt[3]{21}+\\sqrt[3]{49} \\right)\\left( \\sqrt[3]{3}+\\sqrt[3]{7} \\right) \\\\ & =\\left( \\sqrt[3]{{{3}^{2}}}-\\sqrt[3]{3.7}+\\sqrt[3]{{{7}^{2}}} \\right)\\left( \\sqrt[3]{3}+\\sqrt[3]{7} \\right) \\\\ & =\\sqrt[3]{{{3}^{3}}}+\\sqrt[3]{{{7}^{3}}} \\\\ & =3+7 \\\\ & =10 \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D<\/span>","column":2}]}],"id_ques":687},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"K\u1ebft qu\u1ea3 c\u1ee7a ph\u00e9p t\u00ednh $\\,\\,\\,\\left( \\sqrt[3]{49}+\\sqrt[3]{35}+\\sqrt[3]{25} \\right)\\left( \\sqrt[3]{7}-\\sqrt[3]{5} \\right)$ l\u00e0: ","select":["A. $12$ ","B. $-12$","C. $2$","D. $-2$"],"hint":"\u00c1p d\u1ee5ng $(a^2 +ab+b^2)(a-b)=a^3-b^3$","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\,\\,\\left( \\sqrt[3]{49}+\\sqrt[3]{35}+\\sqrt[3]{25} \\right)\\left( \\sqrt[3]{7}-\\sqrt[3]{5} \\right) \\\\ & =\\left( \\sqrt[3]{{{7}^{2}}}+\\sqrt[3]{7.5}+\\sqrt[3]{{{5}^{2}}} \\right)\\left( \\sqrt[3]{7}-\\sqrt[3]{5} \\right) \\\\ & =\\sqrt[3]{{{7}^{3}}}-\\sqrt[3]{{{5}^{3}}} \\\\ & =7-5 \\\\ & =2 \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C<\/span>","column":2}]}],"id_ques":688},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["-26"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c :<br\/>$\\sqrt[3]{-0,008}-\\dfrac{1}{5}\\sqrt[3]{64}+5\\sqrt[3]{{{\\left( -5 \\right)}^{3}}}$=_input_ ","hint":"T\u00ednh t\u1eebng gi\u00e1 tr\u1ecb c\u1ee7a c\u0103n ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align}&\\sqrt[3]{-0,008}-\\dfrac{1}{5}\\sqrt[3]{64}+5\\sqrt[3]{{{\\left( -5 \\right)}^{3}}}\\\\&=-0,2-\\dfrac{1}{5}.4+5.\\left( -5 \\right)\\\\&=-26\\\\ \\end{align}$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $-26$<\/span> <\/span>"}]}],"id_ques":689},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["0"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c :<br\/>$\\sqrt[3]{-432}+\\sqrt[3]{2}+\\sqrt[3]{250}=$_input_ ","hint":"Ph\u00e2n t\u00edch s\u1ed1 trong c\u0103n v\u1ec1 d\u1ea1ng $A^3B$ ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align}&\\,\\,\\,\\sqrt[3]{-432}+\\sqrt[3]{2}+\\sqrt[3]{250}\\\\&=\\sqrt[3]{\\left( -216 \\right).2}+\\sqrt[3]{2}+\\sqrt[3]{125.2}\\\\&=-6\\sqrt[3]{2}+\\sqrt[3]{2}+5\\sqrt[3]{2}\\\\&=0\\\\\\end{align}$ <br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $0$<\/span><\/span>"}]}],"id_ques":690},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["4"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c :<br\/> $\\sqrt[3]{9-\\sqrt{17}}.\\sqrt[3]{9+\\sqrt{17}}$=_input_","hint":"\u00c1p d\u1ee5ng $\\sqrt[3]{A}.\\sqrt[3]{B}=\\sqrt[3]{AB}$ ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align}&\\,\\,\\,\\sqrt[3]{9-\\sqrt{17}}.\\sqrt[3]{9+\\sqrt{17}}\\\\&=\\sqrt[3]{\\left( 9-\\sqrt{17} \\right)\\left( 9+\\sqrt{17} \\right)}\\\\&=\\sqrt[3]{9^2-\\sqrt{17^2}}\\\\&=\\sqrt[3]{81-17}\\\\&=\\sqrt[3]{64}=4\\\\\\end{align}$<br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $4$<\/span><\/span>"}]}],"id_ques":691},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $-\\dfrac{4}{9}$","B. $-\\dfrac{2}{9}$","C. $-\\dfrac{1}{9}$"],"ques":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai6/lv2/img\/4.jpg' \/><\/center> T\u00ednh: $\\dfrac{\\sqrt[3]{-64}}{\\sqrt[3]{729}} =$ ?","hint":"\u00c1p d\u1ee5ng $\\dfrac {\\sqrt [3]{a}}{\\sqrt [3]{b}}=\\sqrt[3]{\\dfrac a b}$","explain":"<span class='basic_left'>$\\dfrac{\\sqrt[3]{-64}}{\\sqrt[3]{729}}=\\sqrt[3]{\\dfrac{-64}{729}} =\\sqrt[3]{{{\\left( \\dfrac{-4}{9} \\right)}^{3}}}=\\dfrac{-4}{9}$<\/span>"}]}],"id_ques":692},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["75"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"T\u00ednh : $\\sqrt[3]{5^5}.\\sqrt[3]{135}=$_input_","hint":"$\\sqrt[3]{A}.\\sqrt[3]{B}=\\sqrt[3]{AB}$ ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\sqrt[3]{5^5}.\\sqrt[3]{135}=\\sqrt[3]{5^5.135}=\\sqrt[3]{5^5.5.27}=\\sqrt[3]{5^6.3^3}=\\sqrt[3]{(5^2)^3.3^3}=5^2.3=75$<br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $75$<\/span><\/span>"}]}],"id_ques":693},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["2"],["3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"T\u00ednh: $\\sqrt[3]{26+15\\sqrt 3}=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}+\\sqrt {\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$","hint":"Ph\u00e2n t\u00edch bi\u1ec3u th\u1ee9c d\u01b0\u1edbi c\u0103n th\u1ee9c v\u1ec1 d\u1ea1ng $(a+b)^3$ ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\sqrt[3]{26+15\\sqrt 3}=\\sqrt[3]{8+12\\sqrt 3 +18 +3\\sqrt 3}=\\sqrt [3]{(2+\\sqrt3)^3}=2+\\sqrt3$<br\/><span class='basic_pink'>V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $2$ v\u00e0 $3$<\/span> <\/span>"}]}],"id_ques":694},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["2"],["3"],["3","2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"T\u00ednh: $\\sqrt[3]{11\\sqrt{2}+9\\sqrt{3}}=\\sqrt {\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}+\\sqrt {\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$","hint":"$\\sqrt[3]{A}.\\sqrt[3]{B}=\\sqrt[3]{AB}$ ","explain":"<span class='basic_left'>Ta c\u00f3: <br\/>$\\begin{align}& \\sqrt[3]{11\\sqrt{2}+9\\sqrt{3}}=\\sqrt[3]{2\\sqrt{2}+6\\sqrt{3}+9\\sqrt{2}+3\\sqrt{3}} \\\\ & =\\sqrt[3]{2\\sqrt{2}+3.2.\\sqrt{3}+3.\\sqrt{2.}3+3\\sqrt{3}} \\\\ & ={{\\sqrt[3]{\\left(\\sqrt{2}+\\sqrt{3} \\right)}}^{3}} \\\\ & =\\sqrt{2}+\\sqrt{3} \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $2$ v\u00e0 $3$<\/span><\/span>"}]}],"id_ques":695},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"select":["A. $a^2b$","B. $ab^2$","C. $ab$"],"ques":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai6/lv2/img\/1.png' \/><\/center> V\u1edbi $a\\ge 0$. T\u00ednh: $\\sqrt[3]{{{a}^{2}}b\\sqrt{{{a}^{2}}{{b}^{4}}}}=$ ?","hint":"\u00c1p d\u1ee5ng: $\\sqrt[3]{{{a}^{3}}}=a$ v\u00e0 $\\sqrt {a^2}=|a|$","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\sqrt[3]{{{a}^{2}}b\\sqrt{{{a}^{2}}{{b}^{4}}}}=\\sqrt[3]{{{a}^{2}}b\\sqrt{{{a}^{2}}{{\\left( {{b}^{2}} \\right)}^{2}}}}=\\sqrt[3]{{{a}^{2}}b.|a{{b}^{2}}|}=\\sqrt[3]{{{a}^{3}}{{b}^{3}}}=ab$ (V\u00ec $a\\ge0$ n\u00ean $|a|=a$)<\/span>"}]}],"id_ques":696},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-1"]]],"list":[{"point":5,"width":50,"type_input":"","input_hint":["frac"],"ques":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai6/lv2/img\/2.jpg' \/><\/center> T\u00ednh: $\\sqrt[3]{2+\\sqrt{5}}\\sqrt[3]{2-\\sqrt{5}}=$ _input_","hint":"","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\sqrt[3]{2+\\sqrt{5}}\\sqrt[3]{2-\\sqrt{5}}=\\sqrt[3]{(2+\\sqrt{5})(2-\\sqrt{5})}=\\sqrt[3]{{{2}^{2}}-{{\\left( \\sqrt{5} \\right)}^{2}}}=\\sqrt[3]{-1}=-1$<br\/><\/span>"}]}],"id_ques":697},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["<"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai6/lv2/img\/5.jpg' \/><\/center>So s\u00e1nh: $\\sqrt[3]{4}.\\sqrt[3]{25}$_input_$5$","hint":"\u0110\u01b0a hai s\u1ed1 c\u1ea7n so s\u00e1nh v\u1ec1 c\u0103n b\u1eadc ba","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>S\u1eed d\u1ee5ng c\u00e1c t\u00ednh ch\u1ea5t:<br\/> +$\\sqrt[3]{A}.\\sqrt[3]{B}=\\sqrt[3]{AB}$<br\/>+$A=\\sqrt[3]{A^3}$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>$\\begin{align} & \\sqrt[3]{4}.\\sqrt[3]{25}=\\sqrt[3]{4.25}=\\sqrt[3]{100} \\\\ & 5=\\sqrt[3]{5^3}=\\sqrt[3]{125} \\\\ \\end{align}$ <br\/> V\u00ec $100<125 \\Rightarrow \\sqrt[3]{4}.\\sqrt[3]{25}< 5 $ <br\/> <span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $<$<\/span><\/span><\/span>"}]}],"id_ques":698},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai6/lv2/img\/5.jpg' \/><\/center>So s\u00e1nh $\\sqrt[3]{2}.\\sqrt[3]{20}$_input_$2\\sqrt[3]{5}$","hint":"\u00c1p d\u1ee5ng quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 v\u00e0o d\u1ea5u c\u0103n r\u1ed3i so s\u00e1nh","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>S\u1eed d\u1ee5ng c\u00e1c t\u00ednh ch\u1ea5t:<br\/> +$\\sqrt[3]{A}.\\sqrt[3]{B}=\\sqrt[3]{AB}$<br\/>+$A=\\sqrt[3]{A^3}$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3:<br\/>$\\begin{align} & \\sqrt[3]{2}.\\sqrt[3]{20}=\\sqrt[3]{2.20}=\\sqrt[3]{40} \\\\ & 2.\\sqrt[3]{5}=\\sqrt[3]{2^3.5}=\\sqrt[3]{40} \\\\ & \\Rightarrow \\sqrt[3]{2}.\\sqrt[3]{20}=2\\sqrt[3]{5} \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $=$<\/span><\/span>"}]}],"id_ques":699},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[[">"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai6/lv2/img\/5.jpg' \/><\/center>So s\u00e1nh $\\sqrt[3]{3}.\\sqrt[3]{25}$_input_$\\sqrt[3]{5}.\\sqrt[3]{13}$","hint":"\u00c1p d\u1ee5ng $\\sqrt[3]{A}.\\sqrt[3]{B}=\\sqrt[3]{AB}$ ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\sqrt[3]{3}.\\sqrt[3]{25}=\\sqrt[3]{3.25}=\\sqrt[3]{75} \\\\ & \\sqrt[3]{5}.\\sqrt[3]{13}=\\sqrt[3]{5.13}=\\sqrt[3]{65} \\\\ & 75>65\\Rightarrow \\sqrt[3]{3}.\\sqrt[3]{25}>\\sqrt[3]{5}.\\sqrt[3]{13} \\\\ \\end{align}$<br\/> <span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $>$<\/span><\/span>"}]}],"id_ques":700}],"lesson":{"save":0,"level":2}}